dc.contributorArias Abad, Camilo
dc.contributorGrupo Interinstitucional de Investigación en Geometría y Topología
dc.creatorJaramillo Díaz, Juan Sebastián
dc.date.accessioned2020-04-29T19:26:42Z
dc.date.available2020-04-29T19:26:42Z
dc.date.created2020-04-29T19:26:42Z
dc.date.issued2019-09-13
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77469
dc.description.abstractThe objective of this work is to generalize basic ideas from linear algebra and topology, such as traces and fixed points, into a categorical context. Each of those generalizations has important objects and ideas behind, such as the Thom spectrum and stable homotopy phenomena. Throughout this thesis, we intend to connect those generalizations by means of dualizability, in order to tell a story from both categorical and topological approaches. We then try to go beyond those topics and we study distant but related topics that were born as particular examples of the abstract theory, for instance, the stable homotopy category (example of monoidal category), Atiyah duality (example of dualizability), and the Thom spectrum (example of a dualizable object).
dc.description.abstractEl objetivo de este trabajo es generalizar ideas básicas del álgebra lineal y la topología, tales como trazas y puntos fijos, en un contexto categórico. Cada una de esas generalizaciones tiene detrás objetos e ideas importantes, como el espectro de Thom y homotropía estable. A lo largo de esta tesis, pretendemos conectar esas generalizaciones por medio de la dualidad, para contar una historia desde enfoques tanto categóricos como topológicos. Luego tratamos de ir más allá de esos temas y estudiamos temas distantes pero relacionados que nacieron como ejemplos particulares de la teoría abstracta, por ejemplo, la categoría de homotropía estable (ejemplo de categoría monoidal), la dualidad de Atiyah (ejemplo de dualizabilidad) y el espectro de Thom (ejemplo de objeto dualizable).
dc.languageeng
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherEscuela de matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAlgebraic Topology, A. Hatcher.   
dc.relationAlgebraic Topology: An Introduction, W.S. Massey.
dc.relationIntroduction to Smooth Manifolds, Raoul Bott, and Loring W. Tu.
dc.relationDifferential Topology, Victor Guillemin and Alain Pollack.
dc.relationDifferential forms in Algebraic Topology, Massey, W.S.
dc.relationElements of algebraic topology, Munkres, J.R.
dc.relationTopology, Munkres, J.R.
dc.relationTopology and Geometry, Bredon, G.E.
dc.relationTraced monoidal categories, A, royal, R Street, and D Verity.
dc.relationDuality, trace, and transfer, A. Dold, D. Puppe.
dc.relationTraces in symmetric monoidal categories, Ponto, Kate, and Shulman, Michael.
dc.relationShadows and traces in bicategories, Ponto, Kate and Shulman, Michael.
dc.relationAlgebraic Topology: Homotopy and Homology, Switzer, R.M.
dc.relationThom complexes, M. F. Atiyah.
dc.relationStable Homotopy, Joel M. Cohen.
dc.relationCohomology Theories, Edgar H. Brown.
dc.relationTraced Premonoidal Categories, Nick Benton and  Martin Hyland.
dc.relationString Topology, Chas, M. and Sullivan, D.
dc.relationOn the classification of topological field theories, Lurie, Jacob.
dc.relationThe definition of conformal field theory, Segal, Graeme.
dc.relationTopological quantum field theory, Atiyah, Michael F.
dc.relationFrobenius Algebras and 2-D Topological Quantum Field Theories, Kock, J.
dc.relationTopological quantum field theory, Witten, Edward.
dc.relationHigher-dimensional algebra and topological quantum field theory, Baez, John C. and Dolan, James.
dc.relationA variant of E. H. Brown's representability theorem, J.F. Adams.
dc.relationThe stable homotopy category, Cary Malkiewich.
dc.relationA homotopy theoretic realization of string topology, Cohen, Ralph L. and Jones, John D.S.
dc.relationSymmetric spectra, Hovey, Mark and Shipley, Brooke and Smith, Jeff.
dc.relationHomotopical algebra, Daniel G. Quillen.
dc.relationStable Homotopy and Generalised Homology, Adams, J.F.
dc.relationDuality and Postnikov Invariants, Lima, E.L.
dc.relationGeneralized homology theories, George W. Whitehead.
dc.relationComplete Axioms for Categorical Fixed-Point Operators, Simpson, Alex, and Plotkin, Gordon.
dc.relationMonoidal Categories and Topological Field Theory, Turaev, V., and Virelizier, A.
dc.relationLectures on Algebraic Topology, Dold, A.
dc.relationThe geometry of tensor calculus, Joyal, André, and Street, Ross.
dc.relationSpectra and the Steenrod Algebra, Harvey Margolis.
dc.relationRecursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi, Hasegawa, M.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleTraces in symmetric monoidal categories
dc.typeOtro


Este ítem pertenece a la siguiente institución