dc.contributor | Arias Abad, Camilo | |
dc.contributor | Grupo Interinstitucional de Investigación en Geometría y Topología | |
dc.creator | Jaramillo Díaz, Juan Sebastián | |
dc.date.accessioned | 2020-04-29T19:26:42Z | |
dc.date.available | 2020-04-29T19:26:42Z | |
dc.date.created | 2020-04-29T19:26:42Z | |
dc.date.issued | 2019-09-13 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77469 | |
dc.description.abstract | The objective of this work is to generalize basic ideas from linear algebra and topology, such as traces and fixed points, into a categorical context. Each of those generalizations has important objects and ideas behind, such as the Thom spectrum and stable homotopy phenomena. Throughout this thesis, we intend to connect those generalizations by means of dualizability, in order to tell a story from both categorical and topological approaches. We then try to go beyond those topics and we study distant but related topics that were born as particular examples of the abstract theory, for instance, the stable homotopy category (example of monoidal category), Atiyah duality (example of dualizability), and the Thom spectrum (example of a dualizable object). | |
dc.description.abstract | El objetivo de este trabajo es generalizar ideas básicas del álgebra lineal y la topología, tales como trazas y puntos fijos, en un contexto categórico. Cada una de esas generalizaciones tiene detrás objetos e ideas importantes, como el espectro de Thom y homotropía estable. A lo largo de esta tesis, pretendemos conectar esas generalizaciones por medio de la dualidad, para contar una historia desde enfoques tanto categóricos como topológicos. Luego tratamos de ir más allá de esos temas y estudiamos temas distantes pero relacionados que nacieron como ejemplos particulares de la teoría abstracta, por ejemplo, la categoría de homotropía estable (ejemplo de categoría monoidal), la dualidad de Atiyah (ejemplo de dualizabilidad) y el espectro de Thom (ejemplo de objeto dualizable). | |
dc.language | eng | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Algebraic Topology, A. Hatcher.
| |
dc.relation | Algebraic Topology: An Introduction, W.S. Massey. | |
dc.relation | Introduction to Smooth Manifolds, Raoul Bott, and Loring W. Tu. | |
dc.relation | Differential Topology, Victor Guillemin and Alain Pollack. | |
dc.relation | Differential forms in Algebraic Topology, Massey, W.S. | |
dc.relation | Elements of algebraic topology, Munkres, J.R. | |
dc.relation | Topology, Munkres, J.R. | |
dc.relation | Topology and Geometry, Bredon, G.E. | |
dc.relation | Traced monoidal categories, A, royal, R Street, and D Verity. | |
dc.relation | Duality, trace, and transfer, A. Dold, D. Puppe. | |
dc.relation | Traces in symmetric monoidal categories, Ponto, Kate, and Shulman, Michael. | |
dc.relation | Shadows and traces in bicategories, Ponto, Kate and Shulman, Michael. | |
dc.relation | Algebraic Topology: Homotopy and Homology, Switzer, R.M. | |
dc.relation | Thom complexes, M. F. Atiyah. | |
dc.relation | Stable Homotopy, Joel M. Cohen. | |
dc.relation | Cohomology Theories, Edgar H. Brown. | |
dc.relation | Traced Premonoidal Categories, Nick Benton and Martin Hyland. | |
dc.relation | String Topology, Chas, M. and Sullivan, D. | |
dc.relation | On the classification of topological field theories, Lurie, Jacob. | |
dc.relation | The definition of conformal field theory, Segal, Graeme. | |
dc.relation | Topological quantum field theory, Atiyah, Michael F. | |
dc.relation | Frobenius Algebras and 2-D Topological Quantum Field Theories, Kock, J. | |
dc.relation | Topological quantum field theory, Witten, Edward. | |
dc.relation | Higher-dimensional algebra and topological quantum field theory, Baez, John C. and Dolan, James. | |
dc.relation | A variant of E. H. Brown's representability theorem, J.F. Adams. | |
dc.relation | The stable homotopy category, Cary Malkiewich. | |
dc.relation | A homotopy theoretic realization of string topology, Cohen, Ralph L. and Jones, John D.S. | |
dc.relation | Symmetric spectra, Hovey, Mark and Shipley, Brooke and Smith, Jeff. | |
dc.relation | Homotopical algebra, Daniel G. Quillen. | |
dc.relation | Stable Homotopy and Generalised Homology, Adams, J.F. | |
dc.relation | Duality and Postnikov Invariants, Lima, E.L. | |
dc.relation | Generalized homology theories, George W. Whitehead. | |
dc.relation | Complete Axioms for Categorical Fixed-Point Operators, Simpson, Alex, and Plotkin, Gordon. | |
dc.relation | Monoidal Categories and Topological Field Theory, Turaev, V., and Virelizier, A. | |
dc.relation | Lectures on Algebraic Topology, Dold, A. | |
dc.relation | The geometry of tensor calculus, Joyal, André, and Street, Ross. | |
dc.relation | Spectra and the Steenrod Algebra, Harvey Margolis. | |
dc.relation | Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi, Hasegawa, M. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Traces in symmetric monoidal categories | |
dc.type | Otro | |