dc.relation | Adu-Oppong, B., Gasparrini, A. J., & Dantas, G. (2017). Genomic and functional
techniques to mine the microbiome for novel antimicrobials and antimicrobial
resistance genes. Annals of the New York Academy of Sciences, 1388(1), 42–58.
Altermann, E., Kelly, W. J., Mora, D., Alvarez-Ordóñez, A., Coughlan, L. M., Cotter, P. D.,
& Hill, C. (2015). Biotechnological applications of functional metagenomics in the
food and pharmaceutical industries. Frontiers in Microbiology | 1, 672.
Bagdasarian, M., Lurz, R., Rückert, B., Franklin, F. C., Bagdasarian, M. M., Frey, J., &
Timmis, K. N. (1981). Specific-purpose plasmid cloning vectors. II. Broad host range,
high copy number, RSF1010-derived vectors, and a host-vector system for gene
cloning in Pseudomonas. Gene, 16(1–3), 237–247.
Bennett, P. M. (2009). Plasmid encoded antibiotic resistance: acquisition and transfer of
antibiotic resistance genes in bacteria. British Journal of Pharmacology, 153(S1),
S347–S357.
Boolchandani, M., & Dantas, G. (2017). Functional Metagenomics to Study Antibiotic
Resistance. In Methods in Molecular Biology (pp. 269–308).
Brautaset, T., Lale, R., & Valla, S. (2009). Positively regulated bacterial expression
systems Minireview. Microbial Biotecvhnology, 2(1), 15–30.
Calderon, D., Peña, L., Suarez, A., Villamil, C., Ramirez‐Rojas, A., Anzola, J. M., …
Mongui, A. (2019). Recovery and functional validation of hidden soil enzymes in
metagenomic libraries. MicrobiologyOpen, 8(4), e00572.
Cameron, A., Barbieri, R., Read, R., Church, D., Adator, E. H., Zaheer, R., & McAllister,
T. A. (2019). Functional screening for triclosan resistance in a wastewater
metagenome and isolates of Escherichia coli and Enterococcus spp. from a large
Canadian healthcare region. PloS One, 14(1), e0211144.
Cao, Y., Fanning, S., Proos, S., Jordan, K., & Srikumar, S. (2017). A Review on the
Applications of Next Generation Sequencing Technologies as Applied to FoodRelated Microbiome Studies. Frontiers in Microbiology, 8, 1829.
Castillo Villamizar, G. A., Nacke, H., Boehning, M., Herz, K., & Daniel, R. (2019).
Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of
Soil-Derived Bacterial Phosphatases and Phytases. MBio, 10(1).
Chao, M. C., Abel, S., Davis, B. M., & Waldor, M. K. (2016). The design and analysis of
transposon insertion sequencing experiments. Nature Reviews. Microbiology, 14(2),
119–128.
Chavarría, M., Silva-rocha, R., Martı, E., Heras, A. De, Pa, A. D., Arce-rodrı, A., …
Lorenzo, D. (2013). The Standard European Vector Architecture ( SEVA ): a
coherent platform for the analysis and deployment of complex prokaryotic
phenotypes, 41(November 2012), 666–675.
Coughlan, L. M., Cotter, P. D., Hill, C., Alvarez-ordóñez, A., Kelly, W. J., & Mora, D.
(2015). Biotechnological applications of functional metagenomics in the food and
pharmaceutical industries, 6(June), 1–22.
Craig, J. W., Chang, F. Y., Kim, J. H., Obiajulu, S. C., & Brady, S. F. (2010). Expanding
small-molecule functional metagenomics through parallel screening of broad-hostrange cosmid environmental DNA libraries in diverse proteobacteria. Applied and
Environmental Microbiology, 76(5), 1633–1641.
Culligan, E. P., Sleator, R. D., Marchesi, J. R., & Hill, C. (2014). Metagenomics and novel
gene discovery: promise and potential for novel therapeutics. Virulence, 5(3), 399–
412.
Dobrijevic, D., Di Liberto, G., Tanaka, K., de Wouters, T., Dervyn, R., Boudebbouze, S.,
… van de Guchte, M. (2013). High-Throughput System for the Presentation of
Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional
Metagenomics Studies. PLoS ONE, 8(6).
Dunivin, T. K., Yeh, S. Y., & Shade, A. (2019). A global survey of arsenic-related genes in
soil microbiomes. BMC Biology, 17(1), 45. https://doi.org/10.1186/s12915-019-0661-
5
Ekkers, D. M., Cretoiu, M. S., Kielak, A. M., & Elsas, J. D. van. (2012). The great screen
anomaly--a new frontier in product discovery through functional metagenomics.
Applied Microbiology and Biotechnology, 93(3), 1005–1020.
Ferrer, M., Beloqui, A., Timmis, K. N., & Golyshin, P. N. (2009). Metagenomics for Mining
New Genetic Resources of Microbial Communities. Journal of Molecular
Microbiology and Biotechnology, 16(1–2), 109–123.
Feschotte, C., & Pritham, E. J. (2007). DNA Transposons and the Evolution of Eukaryotic
Genomes. Annual Review of Genetics, 41(1), 331–368.
Gabor, E., Liebeton, K., Niehaus, F., Eck, J., & Lorenz, P. (2007). Updating the
metagenomics toolbox. Biotechnology Journal, 2(2), 201–206.
Gabor, E. M., Alkema, W. B. L., & Janssen, D. B. (2004). Quantifying the accessibility of
the metagenome by random expression cloning techniques. Environmental
Microbiology, 6(9), 879–886.
Gawin, A., Peebo, K., Hans, S., Ertesvåg, H., Irla, M., Neubauer, P., & Brautaset, T.
(2019). Construction and characterization of broad-host-range reporter plasmid
suitable for on-line analysis of bacterial host responses related to recombinant
protein production. Microbial Cell Factories, 18(1), 80.
Gawin, A., Valla, S., & Brautaset, T. (2017). Minireview The XylS / Pm regulator /
promoter system and its use in fundamental studies of bacterial gene expression ,
recombinant protein production and metabolic engineering. Microbial Biotechnology,
00(0), 000–000.
Godiska, R., Mead, D., Dhodda, V., Wu, C., Hochstein, R., Karsi, A., … Ravin, N. (2010).
Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia
coli. Nucleic Acids Research, 38(6), e88.
Goldhaber-Gordon, I., Williams, T. L., & Baker, T. A. (2002). DNA recognition sites
activate MuA transposase to perform transposition of non-Mu DNA. The Journal of
Biological Chemistry, 277(10), 7694–7702.
Haapa-Paananen, S., Rita, H., & Savilahti, H. (2002). DNA transposition of bacteriophage
Mu. A quantitative analysis of target site selection in vitro. Journal of Biological
Chemistry, 277(4), 2843–2851.
Haapa, S, Suomalainen, S., Eerikäinen, S., Airaksinen, M., Paulin, L., & Savilahti, H.
(1999). An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro
DNA transposition reaction. Genome Research, 9(3), 308–315.
Haapa, Saija, Taira, S., Heikkinen, E., & Savilahti, H. (1999). An efficient and accurate
integration of mini-Mu transposons in vitro: A general methodology for functional
genetic analysis and molecular biology applications. Nucleic Acids Research, 27(13),
2777–2784.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998).
Molecular biological access to the chemistry of unknown soil microbes: a new frontier
for natural products. Chemistry & Biology, 5(10), R245-9.
Harshey, R. M. (2014). Transposable Phage Mu. Microbiology Spectrum, 2(5).
Harshey, R. M., & Jayaram, M. (2006). The Mu Transpososome Through a Topological
Lens. Critical Reviews in Biochemistry and Molecular Biology, 41(6), 387–405.
Hickman, A. B., Chandler, M., & Dyda, F. (2010). Integrating prokaryotes and eukaryotes:
DNA transposases in light of structure. Critical Reviews in Biochemistry and
Molecular Biology (Vol. 45).
Horton, R. M., Cai, Z., Ho, S. N., & Pease, L. R. (2013). Gene splicing by overlap
extension: Tailor-made genes using the polymerase chain reaction. BioTechniques,
54(3), 528–535.
Huo, Y.-Y., Jian, S.-L., Cheng, H., Rong, Z., Cui, H.-L., & Xu, X.-W. (2018). Two novel
deep-sea sediment metagenome-derived esterases: residue 199 is the determinant
of substrate specificity and preference. Microbial Cell Factories, 17(1), 16.
Ivics, Z., Li, M. A., Mátés, L., Boeke, J. D., & Bradley, A. (2009). Transposon-mediated
Genome Manipulations in Vertebrates. Nature Methods, 6(6), 415–422.
Jung, Y., Kim, H., Hyeon, S., Rha, E., Choi, S., Yeom, S., … Lee, S. (2016). Improved
metagenome screening efficiency by random insertion of T7 promoters. Journal of
Biotechnology, 230, 47–53.
Kazazian, H. H. (2004). Mobile Elements: Drivers of Genome Evolution. Science,
303(5664), 1626–1632.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., …
Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop
software platform for the organization and analysis of sequence data. Bioinformatics
(Oxford, England), 28(12), 1647–1649.
Kipchirchir Bitok, J., Lemetre, C., Ternei, M. A., & Brady, S. F. (2017). Identification of
biosynthetic gene clusters from metagenomic libraries using PPTase
complementation in a Streptomyces host. FEMS Microbiology Letters, 364, 155.
Knight, R., Jansson, J., Field, D., Fierer, N., Desai, N., Jed, A., … Carolina, N. (2016).
Unlocking the potential of metagenomics through replicated experimental design.
Nature Biotechnology, 30(6), 513–520.
Koga, A., Iida, A., Hori, H., Shimada, A., & Shima, A. (2006). Vertebrate DNA transposon
as a natural mutator: The medaka fish Tol2 element contributes to genetic variation
without recognizable traces. Molecular Biology and Evolution, 23(7), 1414–1419.
Kudla, G., Murray, A. W., Tollervey, D., & Plotkin, J. B. (2009). Coding-sequence
determinants of gene expression in Escherichia coli. Science, 324(5924), 255.
Lämmle, K., Zipper, H., Breuer, M., Hauer, B., Buta, C., Brunner, H., & Rupp, S. (2007).
Identification of novel enzymes with different hydrolytic activities by metagenome
expression cloning. Journal of Biotechnology, 127(4), 575–592.
Latorre Ochoa, S. M. (2014). Búsqueda de genes de resistencia a arsénico en el
metagenoma microbiano de la Sabana de Bogotá. Recuperado de
http://www.bdigital.unal.edu.co/39517/
Lefevre, F., Robe, P., Jarrin, C., Ginolhac, A., Zago, C., Auriol, D., … Nalin, R. (2008).
Drugs from hidden bugs: their discovery via untapped resources. Research in
Microbiology, 159(3), 153–161.
Leggewie, C., Henning, H., Schmeisser, C., Streit, W. R., & Jaeger, K.-E. (2006). A novel
transposon for functional expression of DNA libraries. Journal of Biotechnology,
123(3), 281–287.
Li, R., Li, Z., Ma, K., Wang, G., Li, W., Liu, H.-W., … Liu, X.-Z. (2019). Strategy for
efficient cloning of biosynthetic gene clusters from fungi. Science China Life
Sciences.
Li, Y., Wexler, M., Richardson, D. J., Bond, P. L., & Johnston, A. W. B. (2005). Screening
a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of
Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned
trp genes. Environmental Microbiology, 7(12), 1927–1936.
Lussier, F.-X., Chambenoit, O., Côté, A., Hupé, J.-F., Denis, F., Juteau, P., … Shareck, F.
(2011). Construction and functional screening of a metagenomic library using a T7
RNA polymerase-based expression cosmid vector. Journal of Industrial Microbiology
& Biotechnology, 38(9), 1321–1328.
Martínez-García, E., Aparicio, T., Goñi-Moreno, A., Fraile, S., & De Lorenzo, V. (2015).
SEVA 2.0: An update of the Standard European Vector Architecture for de-/reconstruction of bacterial functionalities. Nucleic Acids Research, 43(D1), D1183–
D1189.
Martínez-García, E., Aparicio, T., Lorenzo, V. De, & Nikel, P. I. (2014). New transposon
tools tailored for metabolic engineering of Gram-negative microbial cell factories.
Frontiers in Bioengineering and Biotechnology, 2, 1–13.
Martínez-García, E., & Lorenzo, V. De. (2012). Transposon-Based and Plasmid-Based
Genetic Tools for Editing Genomes of Gram-Negative Bacteria. In Methods in
molecular biology (Clifton, N.J.) (Vol. 813, pp. 267–283).
McMahon, M. D., Guan, C., Handelsman, J., & Thomas, M. G. (2012). Metagenomic
analysis of Streptomyces lividans reveals host-dependent functional expression.
Applied and Environmental Microbiology, 78(10), 3622–3629.
Miskey, C., Izsvák, Z., Kawakami, K., & Ivics, Z. (2005). DNA transposons in vertebrate
functional genomics. Cellular and Molecular Life Sciences, 62(6), 629–641.
Mongui, A., del Portillo, P., Restrepo, S., & Junca, H. (2016). Nuevo transposón que
promueve la expresión funcional de genes en ADNs episomales y un método para
aumentar la transcripción de ADN en análisis funcionales de librerías. Colombia.
Mullany, P. (2014). Functional metagenomics for the investigation of antibiotic resistance.
Virulence, 5(3), 443–447.
Nagayama, H., Sugawara, T., Endo, R., Ono, A., Kato, H., Ohtsubo, Y., … Tsuda, M.
(2015). Isolation of oxygenase genes for indigo-forming activity from an artificially
polluted soil metagenome by functional screening using Pseudomonas putida strains
as hosts. Applied Microbiology and Biotechnology, 99(10), 4453–4470.
Nesmelova, I. V, & Hackett, P. B. (2010). DDE transposases: Structural similarity and
diversity. Advanced Drug Delivery Reviews, 62(12), 1187–1195.
https://doi.org/10.1016/j.addr.2010.06.006
Orsini, L., Pajunen, M., Hanski, I., & Savilahti, H. (2007). SNP discovery by mismatchtargeting of Mu transposition. Nucleic Acids Research, 35(6), 0–7.
Pray, L. (2008). Transposons: The jumping genes. Nature Education, 1(1), 204.
Recuperado de http://www.nature.com/scitable/topicpage/transposons-the-jumpinggenes-518
Price, M. A., Cruz, R., Baxter, S., Escalettes, F., & Rosser, S. J. (2019). CRISPR-Cas9 In
Situ engineering of subtilisin E in Bacillus subtilis. PLOS ONE, 14(1), e0210121.
Rice, P., & Kiyoshi, M. (1995). Structure of the bacteriophage Mu transposase core: A
common structural motif for DNA transposition and retroviral integration. Cell, 82(2),
209–220.
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M.
R., … Handelsman, J. O. (2000). Cloning the Soil Metagenome : a Strategy for
Accessing the Genetic and Functional Diversity of Uncultured Microorganisms
Cloning the Soil Metagenome : a Strategy for Accessing the Genetic and Functional
Diversity of Uncultured Microorganisms. Applied and Environmental Microbiology,
66(6), 2541–2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000.Updated
Sabree, Z. L., Rondon, M. R., & Handelsman, J. (2009). Metagenomics. Genetics,
Genomics.
Schloss, P. D., & Handelsman, J. (2003). Biotechnological prospects from metagenomics.
Current Opinion in Biotechnology, 14(3), 303–310.
Schwentner, A., Feith, A., Münch, E., Stiefelmaier, J., Lauer, I., Favilli, L., … Blombach, B.
(2019). Modular systems metabolic engineering enables balancing of relevant
pathways for l-histidine production with Corynebacterium glutamicum. Biotechnology
for Biofuels, 12, 65.
Sharma, P., Kumari, H., Kumar, M., Verma, M., Kumari, K., Malhotra, S., … Lal, R.
(2008). From bacterial genomics to metagenomics: concept, tools and recent
advances. Indian Journal of Microbiology, 48(2), 173–194.
Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology,
26(10), 1135–1145.
Singh, B. K., & Macdonald, C. A. (2010). Drug discovery from uncultivable
microorganisms. Drug Discovery Today, 15(17–18), 792–799.
Sørensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant
protein expression in Escherichia coli. Journal of Biotechnology, 115(2), 113–128.
Sousa, R., & Mukherjee, S. (2003). T7 RNA polymerase. Progress in Nucleic Acid
Research and Molecular Biology, 73, 1–41.
Tabor, S. (2001). Expression Using the T7 RNA Polymerase/Promoter System. In Current
Protocols in Molecular Biology (Vol. Chapter 16, p. Unit16.2). Hoboken, NJ, USA:
John Wiley & Sons, Inc.
Taylor, R. G., Walker, D. C., & Mclnnes, R. R. (1993). E.coli host strains significantly
affect the quality of small scale plasmid DNA preparations used for sequencing.
Nucleic Acids Research, 21(7), 1677–1678.
Uchiyama, T., & Miyazaki, K. (2009). Functional metagenomics for enzyme discovery:
challenges to efficient screening. Current Opinion in Biotechnology, 20(6), 616–622.
Vilen, H., Aalto, J., Kassinen, A., Paulin, L., & Savilahti, H. (2003). A Direct Transposon
Insertion Tool for Modification and Functional Analysis of Viral Genomes. Journal of
Virology, 77(1), 123–134.
Warren, L., Freeman, J. D., Levesque, R. C., Smailus, D. E., Flibotte, S., & Holt, R. A.
(2008). Transcription of foreign DNA in Escherichia coli. Genome Research, 18(604),
1798–1805.
Watson, J., Gann, A., Baker, T., Levine, M., Bell, S., Losick, R., & Harrison, S. (2014).
Molecular Biology of the Gene. Cold Spring Harbor Laboratory Press (7th Ed.).
Welch, M., Govindarajan, S., Ness, J. E., Villalobos, A., Gurney, A., Minshull, J., &
Gustafsson, C. (2009). Design parameters to control synthetic gene expression in
Eschorichia coli. PLoS ONE, 4(9).
Wicker, T., Yu, Y., Haberer, G., Mayer, K. F. X., Marri, P. R., Rounsley, S., … Roffler, S.
(2016). DNA transposon activity is associated with increased mutation rates in genes
of rice and other grasses. Nature Communications, 7, 12790. | |