dc.contributor | Olaya Flórez, John Jairo | |
dc.contributor | Aperador Chaparro, Willian | |
dc.contributor | GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES) | |
dc.creator | Macías Ramírez, Hugo Alejandro | |
dc.date.accessioned | 2020-12-16T22:38:34Z | |
dc.date.available | 2020-12-16T22:38:34Z | |
dc.date.created | 2020-12-16T22:38:34Z | |
dc.date.issued | 2020-12-15 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78728 | |
dc.description.abstract | This thesis studied the mechanical, tribological and electrochemical properties of TiWSiN thin films. The thin films were deposited by reactive magnetron co-sputtering using equipment of two and three targets. Films were produced under four different conditions: i) by modifying the silicon content; ii) varying the nitrogen content; iii) applying the Taguchi method to find optimal deposition conditions; and iv) under the optimal conditions found, varying the silicon and nitrogen content. Comparative coatings of TiWSi, TiWN, TiSiN and WSiN were also deposited. The coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and nanoindentation. It was found that silicon and nitrogen have effects on the microstructure, chemical composition and morphology, which affect the mechanical, tribological and electrochemical properties of the thin films. Hardness of 26GPa was achieved, as well as low wear rates and low friction coefficients. However, the electrochemical properties did not show improved behavior in comparison with the substrate | |
dc.description.abstract | En la presente investigación se estudiaron las propiedades mecánicas, tribológicas y electroquímicas de recubrimientos de TiWSiN. Los recubrimientos se depositaron por el proceso de co-sputtering reactivo utilizando equipos con una configuración de dos y tres blancos. Se fabricaron recubrimientos bajo cuatro condiciones diferentes: i) modificando el contenido de silicio; ii) variando el contenido de nitrógeno; iii) aplicando el método Taguchi para encontrar condiciones óptimas de depósito; y iv) utilizando las condiciones óptimas encontradas, variando el contenido de silicio y nitrógeno. También se depositaron recubrimientos comparativos de TiWSi, TiWN, TiSiN y WSiN. Los recubrimientos fueron caracterizados por las técnicas de difracción de rayos X (XRD), espectroscopía de fotoelectrones emitidos por rayos X (XPS), microscopía electrónica de barrido (SEM), microscopía de fuerza atómica (AFM) y nanoindentación. Se evidenció que el silicio y el nitrógeno tienen efectos importantes en la microestructura, composición química y morfología que inciden en las propiedades mecánicas, tribológicas y electroquímicas de los recubrimientos. Se lograron durezas de 26GPa, bajas tasas de desgaste y bajos coeficientes de fricción. Sin embargo, las propiedades electroquímicas no presentaron un comportamiento significativamente superior al del sustrato. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | J. Musil, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering, in: A. Cavaleiro, J.T.M.D. Hosson (Eds.), Nanostructured Coat., Springer New York, 2006: pp. 407–463. http://link.springer.com.ezproxy.unal.edu.co/chapter/10.1007/978-0-387-48756-4_10 (accessed September 3, 2015) | |
dc.relation | T.E. Twardowski, Introduction to Nanocomposite Materials: Properties, Processing, Characterization, DEStech Publications, Inc, 2007 | |
dc.relation | J. Musil, P. Zeman, P. Baroch, 4.13 - Hard Nanocomposite Coatings, in: S.H.F.B.J.V.T. Yilbas (Ed.), Compr. Mater. Process., Elsevier, Oxford, 2014: pp. 325–353 | |
dc.relation | D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Segunda, Elsevier Inc, Oxford, UK., 2010 | |
dc.relation | J.M. Albella, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones, Editorial CSIC - CSIC Press, 2003 | |
dc.relation | D. Satas, A. Tracton, eds., Coatings Technology Handbook, Segunda, Marcel Dekker, New York, 2001. C:\Users\Hugo\Documents\Apuntes tesis\Libros Sputtering\Coatings Technology Handbook.pdf | |
dc.relation | R.F. Bunshah, Handbook of hard coatings: deposition technologies, properties and applications, Noyes Publications ; William Andrew Pub., Park Ridge, N.J.; Norwich, N.Y., 2001 | |
dc.relation | M. Jaroš, J. Musil, R. Čerstvý, S. Haviar, Effect of energy on structure, microstructure and mechanical properties of hard Ti(Al,V)Nx films prepared by magnetron sputtering, Surf. Coat. Technol. (n.d.). https://doi.org/10.1016/j.surfcoat.2017.06.074 | |
dc.relation | J.A. Thornton, The microstructure of sputter‐deposited coatings, J. Vac. Sci. Technol. A. 4 (1986) 3059–3065. https://doi.org/10.1116/1.573628 | |
dc.relation | H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps., William Andrew, 1996 | |
dc.relation | J.-L. Vallés, I. Vergara, Tribología con nanomateriales, Investig. Cienc. (2008) 48–57 | |
dc.relation | K. Holmberg, Friction science saves energy, VTT Impulse Mag. (2009) 18–25 | |
dc.relation | J.C. Caicedo, L. Yate, J. Montes, Improving the physicochemical surface properties on AISI D3 steel coated with Ti-W-N, Surf. Coat. Technol. 205 (2011) 2947–2953. https://doi.org/10.1016/j.surfcoat.2010.11.005 | |
dc.relation | A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore, eds., Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Springer and Business Media Inc, Dordrecht, 2004. http://link.springer.com/10.1007/1-4020-2222-0 (accessed September 19, 2015). | |
dc.relation | T.E. Twardowski, Introduction to Nanocomposite Materials: Properties, Processing, Characterization, DEStech Publications, Inc, 2007. | |
dc.relation | F. Díaz, Introducción a los nanomateriales, (2012). http://olimpia.cuautitlan2.unam.mx/pagina_ingenieria/mecanica/mat/mat_mec/m6/Introduccion%20a%20los%20nanomateriales.pdf (accessed September 13, 2015). | |
dc.relation | A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Springer Science & Business Media, 2006. | |
dc.relation | A.S.H. Makhlouf, D. Scharnweber, Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Butterworth-Heinemann, 2015. | |
dc.relation | A.J. Detor, A.M. Hodge, E. Chason, Y. Wang, H. Xu, M. Conyers, A. Nikroo, A. Hamza, Stress and microstructure evolution in thick sputtered films, Acta Mater. 57 (2009) 2055–2065. https://doi.org/10.1016/j.actamat.2008.12.042 | |
dc.relation | S.T. Oyama, The chemistry of transition metal carbides and nitrides, Springer Science and Business Media Inc, 1996 | |
dc.relation | M. Donachie, Titanium: A Technical Guide, Segunda Edición, ASM international, USA, 2000 | |
dc.relation | S. Zhang, W. Zhu, TiN coating of tool steels: a review, J. Mater. Process. Technol. 39 (1993) 165–177. https://doi.org/10.1016/0924-0136(93)90016-Y | |
dc.relation | E. Lassner, W.-D. Schubert, Tungsten, Properties, chemistry, technology of the elements, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999. | |
dc.relation | C.L. Rollinson, The chemistry of chromium, molybdenum and tungsten, Pergamon Press, 1975 | |
dc.relation | W. Jeitschko, R. Pottgen, R.-D. Hoffmann, Structural Chemistry of Hard Materials, in: R. Riedel (Ed.), Handb. Ceram. Hard Mater., Wiley-VCH Verlag GmbH, 2000: pp. 2–40. http://onlinelibrary.wiley.com/doi/10.1002/9783527618217.ch1/summary (accessed September 21, 2015). | |
dc.relation | M. Herrmann, H. Klemm, Chr. Schubert, Silicon Nitride Based Hard Materials, in: R. Riedel (Ed.), Handb. Ceram. Hard Mater., Wiley-VCH Verlag GmbH, 2000: pp. 749–801 | |
dc.relation | C. Yuangyai, H.B. Nembhard, Chapter 8 - Design of Experiments: A Key to Innovation in Nanotechnology, in: Emerg. Nanotechnologies Manuf., William Andrew Publishing, Boston, 2010: pp. 207–234. https://doi.org/10.1016/B978-0-8155-1583-8.00008-9 | |
dc.relation | M. Sivapragash, P. Kumaradhas, B. Stanly Jones Retnam, X. Felix Joseph, U.T.S. Pillai, Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy, Mater. Des. 90 (2016) 713–722 | |
dc.relation | B. Wang, S. Wei, L. Guo, Y. Wang, Y. Liang, B. Xu, F. Pan, A. Tang, X. Chen, Effect of deposition parameters on properties of TiO2 films deposited by reactive magnetron sputtering, Ceram. Int. 43 (2017) 10991–10998. https://doi.org/10.1016/j.ceramint.2017.05.139 | |
dc.relation | D. Yu, C. Wang, X. Cheng, F. Zhang, Optimization of hybrid PVD process of TiAlN coatings by Taguchi method, Appl. Surf. Sci. 255 (2008) 1865–1869. https://doi.org/10.1016/j.apsusc.2008.06.204 | |
dc.relation | C. Montero-Ocampo, E.A. Ramírez-Ceja, J.A. Hidalgo-Badillo, Effect of codeposition parameters on the hardness and adhesion of TiVN coatings, Ceram. Int. 41 (2015) 11013–11023. https://doi.org/10.1016/j.ceramint.2015.05.046 | |
dc.relation | Y.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films. 618, Part A (2016) 13–20. https://doi.org/10.1016/j.tsf.2016.05.021 | |
dc.relation | D.Y. Chen, C.H. Tsai, W.J. Yang, D.W. Liu, C.Y. Hsu, Reactive co-sputter deposition and properties of CrAlSiN hard films for enhancement of cutting tools, Int. J. Refract. Met. Hard Mater. 58 (2016) 110–116. https://doi.org/10.1016/j.ijrmhm.2016.04.006 | |
dc.relation | D. Yang, C. Liu, X. Liu, M. Qi, G. Lin, EIS diagnosis on the corrosion behavior of TiN coated NiTi surgical alloy, Curr. Appl. Phys. 5 (2005) 417–421. https://doi.org/10.1016/j.cap.2004.11.002 | |
dc.relation | M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Ltd, 2008. https://doi.org/10.1002/9780470381588 | |
dc.relation | M. Danışman, The corrosion behavior of nanocrystalline nickel based thin films, Mater. Chem. Phys. 171 (2016) 276–280. https://doi.org/10.1016/j.matchemphys.2016.01.018 | |
dc.relation | A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer-Verlag, New York, 2014. https://doi.org/10.1007/978-1-4614-8933-7 | |
dc.relation | M. Weil, W.-D. Schubert, The Beautiful Colours of Tungsten Oxides, (2013). https://pdfs.semanticscholar.org/c477/efb0be273f9ab630401ca6f47e7514dc1dde.pdf?_ga=2.185929705.1562938630.1576561637-1261920055.1570291803 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo | |
dc.type | Otro | |