dc.contributorMontenegro Diaz, Olga Lucía
dc.creatorNova Arias, Laura Milena
dc.date.accessioned2021-08-27T23:03:05Z
dc.date.available2021-08-27T23:03:05Z
dc.date.created2021-08-27T23:03:05Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80049
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa enseñanza del método científico ha sido un amplio tema de discusión que a su vez cuenta con aproximaciones teóricas, epistemológicas y experimentales reportadas; sin embargo, en la mayoría de las ocasiones el proceso de investigación y reporte de resultados es algo tedioso para los estudiantes y no permite el acercamiento genuino de los estudiantes al proceso de investigación científica. El presente trabajo final buscó propiciar el desarrollo de competencias científicas en estudiantes de grado séptimo del Colegio Bilingüe Jose Max León mediante el desarrollo de miniproyectos de investigación siguiendo el método científico entorno a una salida de campo realizada en el Parque Natural Chicaque en el departamento de Cundinamarca, Colombia. Los estudiantes plantearon y ejecutaron sus miniproyectos de investigación mediante trabajo cooperativo y fueron guiados por la docente a través del aprendizaje basado en proyectos y el aprendizaje experiencial. Todo el proceso se dio en la segunda lengua inglés puesto que la asignatura Science cuenta con currículo bilingüe en la institución. Como producto de cada miniproyecto de investigación los estudiantes desarrollaron un reporte tipo artículo científico de manera grupal, cada estudiante empleo una libreta de campo personal, realizó una rutina de pensamiento y fue evaluado mediante pruebas diagnóstica en conceptos ecosistémicos de manera individual. Se obtuvo el desarrollo de competencias científicas de identificación, indagación, explicación, comunicación y trabajo en equipo, además del desarrollo de competencias sociales. Se encontró que las salidas de campo son el ambiente de aprendizaje propicio para el desarrollo de miniproyectos de investigación donde los estudiantes sigan de manera práctica el método científico y además permite una mejor apropiación conceptual disciplinar con respecto a la metodología tradicional desarrollada en el salón de clase como ambiente formal de aprendizaje.
dc.description.abstractScientific method teaching has been widely discussed and has some theoretical, epistemological, and experimental reported approaches; however, mostly the research and results report process turn out to be tedious and makes it hard for the students to get closer to scientific research process. The present Master degree work addresses the promotion of scientific competences development in Bilingüal School’s Jose Max Leon seventh grade students through the research mini-projects development following the scientific method around a field trip developed in Chicaque’s Natural Park in Colombian department of Cundinamarca... They raised and executed their research mini-projects through cooperative work and were guided by the teacher based on experiential learning and project based learning. All the process was carried out in English language because of the bilingüal curriculum of Science subject in the School. As the final product of each research mini-project the teams developed a written record in scientific article format. Each student used a personal field book, developed a thinking routine, and was assessed trough a diagnostic test and a final test on an individually way. The development of scientific competences of identification, inquiry, explanation, communication, and teamwork were obtained, besides the development of social competences. It was found that the field trips are the favorable learning environment to research mini-projects development where the students are able to follow the scientific method, also the field trips enable a better adoption of the disciplinary concepts with regard to traditional methods developed in classroom space as formal learning environment.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Enseñanza de las Ciencias Exactas y Naturales
dc.publisherObservatorio Astronómico Nacional
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAyala, F., Ayala, F. J., Ayala, F. J., & Dobzhansky, T. (Eds.). (1974). Studies in the philosophy of biology: reduction and related problems. Univ of California Press.
dc.relationBacon, F. (1960). The new organon and related writings.
dc.relationBricmont, J. (2014). Por qué no existe un método científico: y por qué eso no supone un problema. Mètode: Revista de difusión de la Investigación, (84), 38-43.
dc.relationChamberlin, T. C. (1965). The method of multiple working hypotheses. Science, 754-759.
dc.relationChona, G., Arteta, J., Martínez, S., Ibáñez, X., Pedraza, M., & Fonseca, G. (2006). ¿ Qué competencias científicas promovemos en el aula. Tecné, Episteme y Didaxis, 20, 62-79.
dc.relationDrake, S. (1978). Ptolemy, Galileo, and scientific method. Studies in History and Philosophy of Science Part A, 9(2), 99-115.
dc.relationDrake, S. (1990). Galileo: Pioneer scientist. Toronto: University of Toronto Press.
dc.relationFeyerabend, P. (1988). Against method (2nd ed.). London: Verso.
dc.relationFudge, D. S. (2014). Fifty years of JR Platts strong inference. Journal of Experimental Biology, 217(8), 1202-1204.
dc.relationGalilei, G. (1953). Dialogue concerning the two chief world systems, Ptolemaic and Copernican. Univ of California Press.
dc.relationGalilei, G. (1832). Opere (Vol. 2). Nicolò Bettoni.
dc.relationGower, B. (1997). Scientific method: An historical and philosophical introduction. Psychology Press.
dc.relationHaack, S., & Duica, W. (1997). Evidence and inquiry. Towards reconstruction in epistemology. Ideas y Valores, 46(104), 99-105.
dc.relationHempel, C. G. (1966). Criteria of confirmation and acceptability. C. Hempel. Philosophy of Natural Science. Englewood Cliffs, New York: Prentice-Hall, 33-46.
dc.relationKuhn, T. S. (2012). The structure of scientific revolutions. University of Chicago press.
dc.relationLiebel, H. (1964). History and Limitations of Scientific Method. University of Toronto Quarterly, 34(1), 15-30.
dc.relationMayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.
dc.relationMEN, M. D. (2004). Estándares básicos de competencias en ciencias naturales y ciencias sociales. Santa Fe de Bogotá.
dc.relationMEN, M. D. (2016). Derechos Básicos de Aprendizaje para el área de ciencias sociales. Bogotá: Panamericana Formas e Impresos S. A.
dc.relationODonohue, W., & Buchanan, J. A. (2001). The weaknesses of strong inference. Behavior and Philosophy, 1-20.
dc.relationPlatt, J. R. (1964). Strong inference. science, 146(3642), 347-353.
dc.relationPopper, K. R. (1959). The Logic of Scientific Discovery.New York: Basic Books.
dc.relationRandall, J. H. (1940). The development of scientific method in the school of Padua. Journal of the History of Ideas, 177-206.
dc.relationQuine, W. V. (1980). 0.[1953]:Two Dogmas of Empiricism. From a logical point of view, 20-46.
dc.relationTamayo, R. P. (2012). ¿ Existe el método científico? Historia y realidad: Historia y realidad. Fondo de cultura económica.
dc.relationVoit, E. O. (2019). Perspective: Dimensions of the scientific method. PLoS computational biology, 15(9), e1007279.
dc.relationWagensberg, J. (2014). On the existence and uniqueness of the scientific method. Biological theory, 9(3), 331-346.
dc.relationBowen-Stevens, S. R., Cox, T. M., & Curran, M. C. (2011). What are bottlenose dolphins doing on land? An activity teaching the scientific method through the unique behavior of strand feeding. The american biology Teacher, 73(7), 407-411.
dc.relationBrooks-Young, S. (Ed.). (2006). Critical technology issues for school leaders. Corwin Press.
dc.relationBehrendt, M., & Franklin, T. (2014). A review of research on school field trips and their value in education. International Journal of Environmental and Science Education, 9(3), 235-245.
dc.relationBuchmann, M., & Schwille, J. (1983). Education: The overcoming of experience. American journal of Education, 92(1), 30-51.
dc.relationBuck, G. A. (2000). Teaching Science to English-as-Second-Language Learners: Teaching, learning, and assessment strategies for elementary ESL students. Faculty Publications: Department of Teaching, Learning and Teacher Education, 20.
dc.relationCollins, R. H., Sibthorp, J., & Gookin, J. (2016). Developing ill-structured problem-solving skills through wilderness education. Journal of Experiential Education, 39(2), 179-195.
dc.relationDavidson, C., Ewert, A., & Chang, Y. (2016). Multiple methods for identifying outcomes of a high challenge adventure activity. Journal of Experiential Education, 39(2), 164-178.
dc.relationDeutsch, M. (1949). A theory of co-operation and competition. Human relations, 2(2), 129-152.
dc.relationDewey, J. (1986, September). Experience and education. In The educational forum (Vol. 50, No. 3, pp. 241-252). Taylor & Francis Group.
dc.relationGillies, R. M. (2016). Cooperative learning: Review of research and practice. Australian journal of teacher education, 41(3), 3.
dc.relationFerreira, J. G. (2011). Teaching Life Sciences to English second language learners: What do teachers do?. South African Journal of Education, 31(1).
dc.relationFung, D. (2020). Teaching Science Through Home and Second Languages as the Medium of Instruction: a Comparative Analysis of Junior Secondary Science Classrooms in Hong Kong. International Journal of Science and Mathematics Education, 1-26.
dc.relationHammer, D., Russ, R., Mikeska, J., & Scherr, R. (2008). Identifying inquiry and conceptualizing students’ abilities. In Teaching scientific inquiry (pp. 138-156). Brill Sense.
dc.relationHuang, Y. C. (2020). The Effects of Elementary Students Science Learning in CLIL. English Language Teaching, 13(2), 1-15.
dc.relationIsaak, J., Devine, M., Gervich, C., & Gottschall, R. (2018). Are we experienced? Reflections on the SUNY experiential learning mandate. Journal of Experiential Education, 41(1), 23-38.
dc.relationJohnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational researcher, 38(5), 365-379.
dc.relationJohnson, D. W., Johnson, R. T., & Holubec, E. J. (1999). El aprendizaje cooperativo en el aula.
dc.relationJohnson, D. W., Maruyama, G., Johnson, R., Nelson, D., & Skon, L. (1981). Effects of cooperative, competitive, and individualistic goal structures on achievement: A meta-analysis. Psychological bulletin, 89(1), 47.
dc.relationJones, B. F., Rasmussen, C. M., & Moffitt, M. C. (1997). Real-life problem solving.: A collaborative approach to interdisciplinary learning. Washington, DC: American Psychological Association.
dc.relationKolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ:Prentice-Hall.
dc.relationKolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
dc.relationKrepel, W. J., & DuVall, C. R. (1981). Field trips: A guide for planning and conducting educational experiences. National Education Association.
dc.relationLarsen, M. A. (2017). International service-learning: Rethinking the role of emotions. Journal of Experiential Education, 40, 279–294.
dc.relationLarsson, P. N. & Jakobsson, A. (2020). Meaning-making in science from the perspective of students’ hybrid language use. International Journal of Science and Mathematics Education, 18(5), 811–830.
dc.relationLou, Y., Abrami, P., Spence, J., Poulsen, C., Chambers, B., & d’Apollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66, 423-458.
dc.relationLou, Y., Abrami, P., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis. Review of Educational Research, 71, 449-521.
dc.relationMcPherson, G. R. (2001). Teaching & learning the scientific method. The American Biology Teacher, 63(4), 242-245.
dc.relationMiettinen, R. (1998). About the legacy of experiential learning. Lifelong Learning in Europe, 3(3), 165-171.
dc.relationMorales, D. A. (2018). La salida de campo como recurso didáctico para enseñar ciencias. Una revisión sistemática. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 3103-3103.
dc.relationMorris, T. H. (2020). Experiential learning–a systematic review and revision of Kolb’s model. Interactive Learning Environments, 28(8), 1064-1077.
dc.relationMujica Rodríguez, A. M. (2012). Aprendizaje por proyectos: Una vía al fortalecimiento de los semilleros de investigación. Docencia Universitaria, 13, 201–216.
dc.relationMunge, B., Thomas, G., & Heck, D. (2018). Outdoor fieldwork in higher education: Learning from multidisciplinary experience. Journal of Experiential Education, 41(1), 39-53.
dc.relationNabors, M.L., Edwards, L.C., & Murray, R.K. (2009). Making the case for field trips:What research tells us and what site coordinators have to say. Education 129(4), 661-667.
dc.relationOrion, N. (2007). A holistic approach for science education for all. Eurasia Journal of Mathematics, Science and Technology Education, 3(2), 111-118.
dc.relationPace, S., & Tesi, R. (2004). Adults Perception of Field Trips Taken within Grades K-12: Eight Case Studies in the New York Metropolitan Area. Education, 125(1).
dc.relationPascagaza, E. F., & Bohórquez, B. G. (2019). El Aprendizaje Basado en Proyectos y su relación con el desarrollo de competencias asociadas al trabajo colaborativo. Amauta, 17(33), 103-118.
dc.relationPiaget, J. (1970). La evolución intelectual entre la adolescencia y la edad adulta. J. Delval (Comp.), Lecturas de psicología del niño, 2(02), 208-213.
dc.relationPipitone, J. M. (2018). Place as pedagogy: Toward study abroad for social change. Journal of Experiential Education, 41, 54–74.
dc.relationPowner, L. C. (2006). Teaching the scientific method in the active learning classroom. PS: Political Science and Politics, 39(3), 521-524.
dc.relationSanmarti Puig, N., & Márquez Bargalló, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Apice, 1(1), 3-16.
dc.relationSchaffer C 2007. Teaching science to English as a second language students.
dc.relationSlavin, R. E., & Johnson, R. T. (1999). Aprendizaje cooperativo: teoría, investigación y práctica. Argentina: Aique.
dc.relationTal, T., & Morag, O. (2009). Reflective practice as a means for preparing to teach outdoors in an ecological garden. Journal of Science Teacher Education, 20(3), 245-262.
dc.relationTang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science education, 94(1), 29-47.
dc.relationTate, P. J. (Ed.). (1978). Learning by Experience-What, Why, how Morris T. Keeton, Pamela J. Tate Editors. Jossey-Bass.
dc.relationThomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, California.
dc.relationWillden, J. L., Crowther, D. T., Gubanich, A. A., & Cannon, J. R. (2002). A Quantitative Comparison of Instruction Format of Undergraduate Introductory Level Content Biology Courses: Traditional Lecture Approach vs. Inquiry Based for Education Majors.
dc.relationÇenberci, S. (2018). Investigation of the Effectiveness of Scientific Research Methods Course in Terms of Academic Dishonesty Tendencies. Universal Journal of Educational Research, 6(11), 2453-2460.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleUso del método científico en estudiantes de séptimo grado, mediante miniproyectos en salidas de campo
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución