dc.contributorYunis Londoño, Juan José
dc.contributorPatología Molecular
dc.creatorRucinski Calderón, Cynthia
dc.date.accessioned2021-05-03T20:19:55Z
dc.date.available2021-05-03T20:19:55Z
dc.date.created2021-05-03T20:19:55Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79466
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa más importante manifestación de las canalopatías y miocardiopatías es la muerte súbita cardiaca; por ello la evaluación de estas patologías es de gran importancia. Las canalopatías cardíacas congénitas son causadas por mutaciones que afectan los genes que codifican canales iónicos de la membrana (canales iónicos de sodio, potasio o calcio) o las estructuras celulares que afectan la disponibilidad de calcio. Las miocardiopatías están relacionadas principalmente con anomalías estructurales cardíacas que conducen a arritmias y dependen de alteraciones genéticas en las proteínas estructurales, incluidas las de sarcómeros, desmosomas y el citoesqueleto. Este proyecto busca determinar las variantes genéticas por medio de secuenciación de siguiente generación en una muestra piloto de pacientes colombianos diagnosticados con miocardiopatías hereditarias: síndrome de QT largo, síndrome de Brugada, miocardiopatía hipertrófica y miocardiopatía arritmogénica. En este estudio se incluyeron 25 pacientes no relacionados con edades de inicio de síntomas entre los 9 y los 55 años. La media de diagnóstico para la miocardiopatía hipertrófica fue de 2 años, y para síndrome de QT largo fue de 10.1 años. Existe una diferencia importante en el intervalo de tiempo que lleva diagnosticar una miocardiopatía hipertrófica y un síndrome de QT largo (p<0,01). La edad de presentación de eventos severos, divididos en pérdida de la conciencia (19.3 años) y sin pérdida de la conciencia (33 años) tienen una diferencia significativa (p<0,01). Se realizó aislamiento de ADN de sangre periférica con posterior secuenciación genética masiva en paralelo. Los datos obtenidos se compararon con la secuencia de referencia y las variantes encontradas se cotejaron con bases de datos internacionales y literatura científica. Se identificaron las variantes patogénicas causales en 52% de los pacientes estudiados, 13/25 en total. De ellas dos variantes no han sido reportadas; una variante tipo nonsense en el gen DSP en un paciente con miocardiopatía arritmogénica y otra variante tipo frameshift en el gen KCNE1 en dos pacientes con síndrome de QT largo. Se evidenció un rendimiento superior de la prueba a menor edad de presentación de síntomas, rendimiento de 66.6%, 50% y 20% en menores de edad, 18 a 39 años y mayores de 40 años, respectivamente. El rendimiento de la prueba para síndrome de QT largo fue de 62.5%. Los pacientes con este diagnóstico tuvieron 4 veces más eventos con pérdida de la conciencia, y la muerte súbita reanimada fue más representativa frente a otras patologías. Asimismo, todos los pacientes que presentaron un evento severo mientras realizaban ejercicio tienen una variante patogénica detectada por secuenciación. Para la miocardiopatía hipertrófica el rendimiento de la prueba fue de 45.4%. Los genes sarcoméricos fueron los implicados en la mayoría de las variantes patogénicas o probablemente patogénicas y se reportó una variante en un gen no sarcomérico. Se identificaron 2 cambios missense y 1 variante intrónica catalogadas como variantes de significado incierto; una hallada en el gen fenocopia LAMP2. Este estudio es el primero en Colombia en evaluar canalopatías y miocardiopatías de forma conjunta. Resalta la necesidad de realizar el análisis mutacional en este grupo de enfermedades, para así brindar un adecuado asesoramiento genético a las familias y poder identificar pacientes en riesgo de eventos severos. Se considera que la principal barrera es encontrar una muestra significativa y representativa de todas las regiones del país. Creemos en la importancia de tener grupos con experticia clínica y molecular, con información centralizada de los pacientes, por medio de alianzas estratégicas entre instituciones cardiovasculares y laboratorios de diagnóstico molecular del país.
dc.description.abstractThe most relevant outcome of channelopathies and cardiomyopathies is sudden cardiac death. For this reason, the study of this conditions is of great importance. Congenital cardiac channelopathies are caused by mutations that affect genes that encode membrane ion channels (sodium, potassium, or calcium ion channels) or cellular structures that affect calcium availability. Cardiomyopathies are primarily related to cardiac structural abnormalities that lead to arrhythmias and depend on genetic alterations in structural proteins, including those of sarcomeres, desmosomes, and cytoskeleton. This project seeks to determine genetic variants using next generation sequencing in a pilot sample of Colombian patients diagnosed with inherited cardiac conditions: long QT syndrome, Brugada syndrome, hypertrophic cardiomyopathy, and arrhythmogenic cardiomyopathy. Twenty-five unrelated patients with ages of disease onset between 9 and 55 years were included in this study. The mean time to diagnose hypertrophic cardiomyopathy was 2 years and for long QT syndrome it was 10.1 years. There is a significant difference in the time interval that it takes to diagnose hypertrophic cardiomyopathy and long QT syndrome (p <0.01). The age at which severe events occur, divided into, loss of consciousness (19.3 years) and without loss of consciousness (33 years) shows a significant difference (p <0.01). Peripheral blood DNA isolation and subsequent massive parallel sequencing were performed. The data obtained were compared with the reference sequence, and the variants found were checked against international databases and scientific literature. Causative mutations were identified in 52% of the subjects, 13 in total. Two novel mutations were found, a nonsense variant in the DSP gene in a patient with arrhythmogenic cardiomyopathy, and another frameshift variant in the KCNE1 gene in two patients with long QT syndrome. Younger individuals (i.e., those <18 years of age) had the highest yield of genetic testing (66.6%) compared with 50% and 20% in young adults and patients over 40 years, respectively. The test yield for long QT syndrome was 62.5%. Patients with this diagnosis had 4 times more events with loss of consciousness. Resuscitated sudden cardiac arrest was more representative compared to other conditions. Likewise, all patients who presented a severe event while exercising have a positive genetic test. For hypertrophic cardiomyopathy, the test yield was 45.4%. Sarcomeric genes were involved in four of the pathogenic or probably pathogenic variants while one subject had a non-sarcomeric causing variant. Two missense variants and 1 intronic mutation cataloged as variants of uncertain significance were identified; one found in a phenocopy gene, LAMP2. This study is the first in Colombia to evaluate altogether channelopathies and cardiomyopathies. It highlights the need to perform mutational analysis in this group of diseases, in order to provide adequate genetic counseling to families and to be able to identify patients at risk of severe events. Finding a significant and representative sample from all regions of the country is probably the main shortcoming of this kind of research. We believe in the importance of setting groups with clinical and molecular expertise, with centralized information on patients, through strategic alliances between cardiovascular institutions and molecular diagnostic laboratories in the country.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Genética Humana
dc.publisherFacultad de Medicina
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relation1. Teo R, Gollop ND, Baig M, Uppal H, Chandran S, Potluri R. The burden and trends of psychiatric co-morbidities amongst patients with cardiomyopathy. Int J Cardiol. 2014;174(2):398-399. doi:10.1016/j.ijcard.2014.04.062
dc.relation2. Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660-675. doi:10.1161/CIRCRESAHA.113.300282
dc.relation3. Stefan N. The Failing Heart — An Engine Out of Fuel. N Engl J Med. 2007;356(11):1140-1151.
dc.relation4. Basso C, Aguilera B, Banner J, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017. doi:10.1007/s00428-017-2221-0
dc.relation5. Zheng Z, Croft JB, Giles WH, Mensah G a. Clinical Investigation and Reports Sudden Cardiac Death in the United States , 1989 to 1998. Circulation. 2001:2158-2163.
dc.relation6. Hayashi M, Shimizu W, Albert CM. The Spectrum of Epidemiology Underlying Sudden Cardiac Death. Circ Res. 2015;116(12):1887-1906. doi:10.1161/CIRCRESAHA.116.304521
dc.relation7. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear Rhythm. 2011;8(8):1308-1339. doi:10.1016/j.hrthm.2011.05.020
dc.relation8. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis E. The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell. 2014;155(1):27-38. doi:10.1016/j.cell.2013.09.006.
dc.relation9. Bahassi EM, Stambrook PJ. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis. 2014;29(5):303-310. doi:10.1093/mutage/geu031
dc.relation10. Lapunzina P, López RO, Rodríguez-Laguna L, García-Miguel P, Martínez AR, Martínez-Glez V. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies. Genet Mol Biol. 2014;37(1 SUPPL. 1):241-249. doi:10.1590/S1415-47572014000200010
dc.relation11. Mizusawa Y. Recent advances in genetic testing and counseling for inherited arrhythmias. J Arrhythmia. 2016;32(5):389-397. doi:10.1016/j.joa.2015.12.009
dc.relation12. McKenna WJ, Maron BJ, Thiene G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res. 2017;121(7):722-730. doi:10.1161/CIRCRESAHA.117.309711
dc.relation13. Arbustini E, Narula N, Dec GW, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: Endorsed by the world heart federation. Glob Heart. 2013;8(4):355-382. doi:10.1016/j.gheart.2013.11.001
dc.relation14. Giraldo G. CA, Mesa Cock A, García Jaramillo S, Hurtado A. MV. Muerte súbita. Estudio prospectivo en Medellín, Colombia, 1982. Bol La Of Sanit Panam. 1984;96(6):532-550.
dc.relation15. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620-637. doi:10.1161/CIRCULATIONAHA.111.023838
dc.relation16. Magi S, Lariccia V, Maiolino M, Amoroso S, Gratteri S. Sudden cardiac death: focus on the genetics of channelopathies and cardiomyopathies. J Biomed Sci. 2017;24(1):56. doi:10.1186/s12929-017-0364-6
dc.relation17. Hershberger RE, Morales A, Cowan J. Is Left Ventricular Noncompaction a Trait, Phenotype, or Disease?: The Evidence Points to Phenotype. Circ Cardiovasc Genet. 2017;10(6):1-3. doi:10.1161/CIRCGENETICS.117.001968
dc.relation18. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi:10.1038/gim.2015.30
dc.relation19. Hershberger RE, Givertz MM, Ho CY, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899-909. doi:10.1038/s41436-018-0039-z
dc.relation20. Mademont-Soler I, Mates J, Yotti R, et al. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One. 2017;12(8):1-23. doi:10.1371/journal.pone.0181465
dc.relation21. Hertz CL, Christiansen SL, Larsen MK, et al. Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases. Eur J Hum Genet. 2015;(August):1-6. doi:10.1038/ejhg.2015.198
dc.relation22. Hertz CL, Christiansen SL, Ferrero-Miliani L, et al. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med. 2016;130(1):91-102. doi:10.1007/s00414-015-1261-8
dc.relation23. Bagnall RD, Weintraub RG, Ingles J, et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med. 2016;374(25):2441-2452. doi:10.1056/NEJMoa1510687
dc.relation24. Whiffin N, Walsh R, Govind R, et al. CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genet Med. 2018;00(December 2017):1-9. doi:10.1038/gim.2017.258
dc.relation25. Robyns T, Kuiperi C, Breckpot J, et al. Repeat genetic testing with targeted capture sequencing in primary arrhythmia syndrome and cardiomyopathy. Eur J Hum Genet. 2017;25(12):1313-1323. doi:10.1038/s41431-017-0004-3
dc.relation26. Schwartz, Peter J. Crotti, Lia. Insolia R. Long QT Syndrome: From Genetics to Management. 2013;5(4):868-877. doi:10.1161/CIRCEP.111.962019.Long
dc.relation27. Gaetano Vacantia, Riccardo Maragnaa, Andrea Mazzantia, b and SGP. Genetic causes of sudden cardiac death in children: inherited arrhythmogenic diseases. Curr Opin Pediatr. 2017;29(5):552-559. doi:10.1097/HCO.0000000000000391
dc.relation28. Mazzanti A, Underwood K, Nevelev D, Kofman S, Priori SG. The new kids on the block of arrhythmogenic disorders: Short QT syndrome and early repolarization. J Cardiovasc Electrophysiol. 2017;(1):1-28. doi:10.1111/jce.13265
dc.relation29. Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology (Basel). 2017;6(1):7. doi:10.3390/biology6010007
dc.relation30. Gehi AK, Duong TD, Metz LD, Gomes JA, Mehta D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006;17(6):577-583. doi:10.1111/j.1540-8167.2006.00455.x
dc.relation31. Polovina MM, Vukicevic M, Banko B, Lip GYH, Potpara TS. Brugada syndrome: A general cardiologist’s perspective. Eur J Intern Med. 2017. doi:10.1016/j.ejim.2017.06.019
dc.relation32. Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J Arrhythmia. 2016;32(5):344-351. doi:10.1016/j.joa.2015.09.008
dc.relation33. Refaat MM, Hassanieh S, Scheinman M. Catecholaminergic Polymorphic Ventricular Tachycardia. Card Electrophysiol Clin. 2016;8(1):233-237. doi:10.1016/j.ccep.2015.10.035
dc.relation34. Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annu Rev Med. 2010;61(1):233-253. doi:10.1146/annurev.med.052208.130419
dc.relation35. Corrado D, Link MS, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy. N Engl J Med. 2017;376(1):61-72. doi:10.1056/NEJMra1509267
dc.relation36. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur Heart J. 2010;31(7):806-814. doi:10.1093/eurheartj/ehq025
dc.relation37. Corrado D, Basso C, Judge DP. Arrhythmogenic Cardiomyopathy. Circ Res. 2017;121(7). doi:10.1016/j.ccep.2011.02.015
dc.relation38. Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of Sudden Death in Sports Insights from a United Kingdom Regional Registry. J Am Coll Cardiol. 2016;67(18):2108-2115. doi:10.1016/j.jacc.2016.02.062
dc.relation39. Austin KM, Trembley MA, Chandler SF, et al. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2019;16(9):519-537. doi:10.1038/s41569-019-0200-7
dc.relation40. Biagini E, Coccolo F, Ferlito M, et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: Prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46(8):1543-1550. doi:10.1016/j.jacc.2005.04.062
dc.relation41. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy. Circ Res. 2017;121(7):749-770. doi:10.1161/CIRCRESAHA.117.311059
dc.relation42. Bick AG, Flannick J, Ito K, et al. Burden of rare sarcomere gene variants in the framingham and jackson heart study cohorts. Am J Hum Genet. 2012;91(3):513-519. doi:10.1016/j.ajhg.2012.07.017
dc.relation43. Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón JP, Gimeno JR. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet. 2017;(November 2016):1-12. doi:10.1111/cge.13027
dc.relation44. Oficina de Tecnología de la Información y la Comunicación – OTIC. Ministerio de Salud y Protección Social. Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB. 2019.
dc.relation45. Burgos M, Arenas A, Cabrera R. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Mol Diagn Ther. 2016;20(4):353-362. doi:10.1007/s40291-016-0207-2
dc.relation46. Charron P, Arad M, Arbustini E, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010;31(22):2715-2726. doi:10.1093/eurheartj/ehq271
dc.relation47. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. Circulation. 2013;128(16). doi:10.1161/CIR.0b013e31829e8776
dc.relation48. Herbert E, Trusz-Gluza M, Moric E, Śmiłowska-Dzielicka E, Mazurek U, Wilczok T. KCNQ1 gene mutations and the respective genotype-phenotype correlations in the long QT syndrome. Med Sci Monit. 2002;8(10):240-249.
dc.relation49. Albertella L, Crawford J, Skinner JR. Presentation and outcome of water-related events in children with long QT syndrome. Arch Dis Child. 2011;96(8):704-707. doi:10.1136/adc.2009.178152
dc.relation50. Zehelein J, Thomas D, Khalil M, et al. Identification and characterisation of a novel KCNQ1 mutation in a family with Romano–Ward syndrome. Biochim Biophys Acta - Mol Basis Dis. 2004;1690(3):185-192. doi:10.1016/J.BBADIS.2004.06.024
dc.relation51. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. J Am Med Assoc. 2006;296(10):1249-1254. doi:10.1001/jama.296.10.1249
dc.relation52. Ackerman MJ, Priori SG, Dubin AM, et al. Beta-blocker therapy for long QT syndrome and catecholaminergic polymorphic ventricular tachycardia: Are all beta-blockers equivalent? Hear Rhythm. 2017;14(1). doi:10.1016/j.hrthm.2016.09.012
dc.relation53. Ahn J, Kim HJ, Choi J Il, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: A meta-analysis. Aalto-Setala K, ed. PLoS One. 2017;12(10):e0185680. doi:10.1371/journal.pone.0185680
dc.relation54. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51-59. doi:10.1016/j.jacc.2010.07.038
dc.relation55. Dicker B, Garrett N, Wong S, et al. Relationship between socioeconomic factors, distribution of public access defibrillators and incidence of out-of-hospital cardiac arrest. Resuscitation. 2019;138(February):53-58. doi:10.1016/j.resuscitation.2019.02.022
dc.relation56. Earle N, Crawford J, Smith W, et al. Community detection of long QT syndrome with a clinical registry: An alternative to ECG screening programs? Hear Rhythm. 2013;10(2):233-238. doi:10.1016/j.hrthm.2012.10.043
dc.relation57. Winbo A, Earle N, Marcondes L, et al. Genetic testing in Polynesian long QT syndrome probands reveals a lower diagnostic yield and an increased prevalence of rare variants. Hear Rhythm. 2020;17(8):1304-1311. doi:10.1016/j.hrthm.2020.03.015
dc.relation58. den Haan AD, Tan BY, Zikusoka MN, et al. Comprehensive Desmosome Mutation Analysis in North Americans With Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circ Cardiovasc Genet. 2009;2(5):428-435. doi:10.1161/CIRCGENETICS.109.858217
dc.relation59. Watanabe H, Minamino T. Genetics of Brugada syndrome. J Hum Genet. 2016;61(1):57-60. doi:10.1038/jhg.2015.97
dc.relation60. Bos JM, Will ML, Gersh BJ, Kruisselbrink TM, Ommen SR, Ackerman MJ. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2014;89(6):727-737. doi:10.1016/j.mayocp.2014.01.025
dc.relation61. Berge KE, Leren TP. Genetics of hypertrophic cardiomyopathy in Norway. Clin Genet. 2014;86(4):355-360. doi:10.1111/cge.12286
dc.relation62. Risgaard B. Sudden cardiac death: A nationwide cohort study among the young. Dan Med J. 2016;63(12):1-18.
dc.relation63. Rucinski C, Winbo A, Marcondes L, et al. A Population-Based Registry of Patients With Inherited Cardiac Conditions and Resuscitated Cardiac Arrest. J Am Coll Cardiol. 2020;75(21):2698-2707. doi:10.1016/j.jacc.2020.04.004
dc.relation64. Hershkovitz T, Kurolap A, Ruhrman-Shahar N, et al. Clinical diversity of MYH7-related cardiomyopathies: Insights into genotype–phenotype correlations. Am J Med Genet Part A. 2019;179(3):365-372. doi:10.1002/ajmg.a.61017
dc.relation65. L C, G M, K S, F C. Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene. 2015;573(2). doi:10.1016/J.GENE.2015.09.008
dc.relation66. Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol. 2018;107(1):30-41. doi:10.1007/s00392-017-1155-5
dc.relation67. Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Hear Lung Circ. 2019;28(1):22-30. doi:10.1016/j.hlc.2018.09.007
dc.relation68. Ramdat Misier AR, Ghani A, Elvan A, Ottervanger JP, Maas AHEM, Delnoy PPHM. Sex-Based Differences in Cardiac Arrhythmias, ICD Utilisation and Cardiac Resynchronisation Therapy. Netherlands Hear J. 2010;19(1):35-40. doi:10.1007/s12471-010-0050-8
dc.relation69. Garg L, Garg J, Krishnamoorthy P, et al. Influence of Pregnancy in Patients with Congenital Long QT Syndrome. Cardiol Rev. 2017;25(4):197-201. doi:10.1097/CRD.0000000000000108
dc.relation70. Rodriguez I, Kilborn MJ, Liu XK, Pezzullo JC, Woosley RL. Drug-induced QT prolongation in women during the menstrual cycle. J Am Med Assoc. 2001;285(10):1322-1326. doi:10.1001/jama.285.10.1322
dc.relation71. Cheung CC, Laksman ZWM, Mellor G, Sanatani S, Krahn AD. Exercise and Inherited Arrhythmias. Can J Cardiol. 2016;32(4):452-458. doi:10.1016/j.cjca.2016.01.007
dc.relation72. Mascia G, Arbelo E, Solimene F, Giaccardi M, Brugada R, Brugada J. The long-QT syndrome and exercise practice: The never-ending debate. J Cardiovasc Electrophysiol. 2018;29(3):489-496. doi:10.1111/jce.13410
dc.relation73. Lombardi R, Chen SN, Ruggiero A, et al. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ Res. 2016;119(1):41-54. doi:10.1161/CIRCRESAHA.115.308136
dc.relation74. Saffitz JE, Asimaki A, Huang H. Arrhythmogenic right ventricular cardiomyopathy: new insights into mechanisms of disease. Cardiovasc Pathol. 2010;19(3):166-170. doi:10.1016/j.carpath.2009.10.006
dc.relation75. Zhang Q, Deng C, Rao F, et al. Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL-1 cardiomyocytes. Mol Med Rep. 2013;8(3):780-786. doi:10.3892/mmr.2013.1594
dc.relation76. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012-2021. doi:10.1172/JCI27751
dc.relation77. Giuliodori A, Beffagna G, Marchetto G, et al. Loss of cardiac Wnt/β-catenin signalling in desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovasc Res. 2018;114(8):1082-1097. doi:10.1093/cvr/cvy057
dc.relation78. Castelletti S, Vischer AS, Syrris P, et al. Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: Genotype-phenotype correlation. Int J Cardiol. 2017;249:268-273. doi:10.1016/j.ijcard.2017.05.018
dc.relation79. Abbott GW, Goldstein SAN. Disease‐associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J. 2002;16(3):390-400. doi:10.1096/fj.01-0520hyp
dc.relation80. Faridi R, Tona R, Brofferio A, et al. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum Mutat. 2019;40(2):162-176. doi:10.1002/humu.23689
dc.relation81. Adler A, Novelli V, Amin AS, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020:418-428. doi:10.1161/CIRCULATIONAHA.119.043132
dc.relation82. Roberts JD, Asaki SY, Mazzanti A, et al. An International Multicenter Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition. Circulation. 2020:429-439. doi:10.1161/CIRCULATIONAHA.119.043114
dc.relation83. Lane CM, Giudicessi JR, Ye D, et al. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Hear Rhythm. 2018;15(8):1223-1230. doi:10.1016/j.hrthm.2018.03.038
dc.relation84. Kim M, Hunter RW, Garcia-Menendez L, et al. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res. 2014;114(6):966-975. doi:10.1161/CIRCRESAHA.114.302364
dc.relation85. Zhan Y, Sun X, Li B, et al. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells. J Mol Cell Cardiol. 2018;117(August 2017):49-61. doi:10.1016/j.yjmcc.2018.02.007
dc.relation86. Porto AG, Brun F, Severini GM, et al. Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythmia Electrophysiol. 2016;9(1):1-8. doi:10.1161/CIRCEP.115.003121
dc.relation87. Albernaz Siqueira MH, Honorato-Sampaio K, Dias GM, et al. Sudden death associated with a novel H401Q PRKAG2 mutation. Europace. 2020;22(8):1278. doi:10.1093/europace/euaa014
dc.relation88. Hu D, Hu D, Liu L, et al. Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine. 2020;54:1-14. doi:10.1016/j.ebiom.2020.102723
dc.relation89. Chi C, Leonard A, Knight WE, et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc Natl Acad Sci U S A. 2019;116(2):556-565. doi:10.1073/pnas.1808618116
dc.relation90. Cheng Z, Fang Q. Danon disease: Focusing on heart. J Hum Genet. 2012;57(7):407-410. doi:10.1038/jhg.2012.72
dc.relation91. Boucek D, Jirikowic J, Taylor M. Natural history of Danon disease. Genet Med. 2011;13(6):563-568. doi:10.1097/GIM.0b013e31820ad795
dc.relation92. Cheng Z, Cui Q, Tian Z, et al. Danon disease as a cause of concentric left ventricular hypertrophy in patients who underwent endomyocardial biopsy. Eur Heart J. 2012;33(5):649-656. doi:10.1093/eurheartj/ehr420
dc.relation93. Arad M, Seidman JG. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362-372. doi:10.1016/s0093-3619(08)70160-6
dc.relation94. Wei B, Jin J-P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene. 2016;582(1):1-13. doi:10.1016/j.gene.2016.01.006
dc.relation95. Lv W, Qiao L, Petrenko N, et al. Functional Annotation of TNNT2 Variants of Uncertain Significance With Genome-Edited Cardiomyocytes. Circulation. 2018;138(24):2852-2854. doi:10.1161/CIRCULATIONAHA.118.035028
dc.relation96. Pedram A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell. 2013;24(24):3805-3818. doi:10.1091/mbc.E13-08-0444
dc.relation97. Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat. 2020;41(6):1091-1111. doi:10.1002/humu.24004
dc.relation98. Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun. 2014;5(1):5326. doi:10.1038/ncomms6326
dc.relation99. Ader F, De Groote P, Réant P, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019;96(4):317-329. doi:10.1111/cge.13594
dc.relation100. Cui H, Wang J, Zhang C, et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol Genet Genomic Med. 2018;6(6):1104-1113. doi:10.1002/mgg3.488
dc.relation101. Karbassi I, Maston GA, Love A, et al. A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders. Hum Mutat. 2016;37(1):127-134. doi:10.1002/humu.22918
dc.relation102. Kelly MA, Caleshu C, Morales A, et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: Recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med. 2018;20(3):351-359. doi:10.1038/gim.2017.218
dc.relation103. Taha A, Ballou MM, Lama AE. Utilization of national patient registries by clinical nurse specialist: Opportunities and implications. Clin Nurse Spec. 2014;28(1):56-62. doi:10.1097/NUR.0000000000000018
dc.relation104. Fredman D, Ringh M, Svensson L, et al. Experiences and outcome from the implementation of a national Swedish automated external defibrillator registry. Resuscitation. 2018;130:73-80. doi:10.1016/j.resuscitation.2018.06.036
dc.relation105. Earle NJ, Crawford J, Hayes I, et al. Development of a cardiac inherited disease service and clinical registry: A 15-year perspective. Am Heart J. 2019;209:126-130. doi:10.1016/j.ahj.2018.11.013
dc.relation106. Martins AM, Cabrera G, Molt F, et al. The clinical profiles of female patients with Fabry disease in Latin America: A Fabry Registry analysis of natural history data from 169 patients based on enzyme replacement therapy status. JIMD Rep. 2019;49(1):107-117. doi:10.1002/jmd2.12071
dc.relation107. Drelichman G, Linares A, Villalobos J, et al. Enfermedad de Gaucher en LatinoAmérica: Un informe del registro internacional y del grupo LatinoAmericano para la enfermedad de Gaucher. Med. 2012;72(4):273-282. http://www.medicinabuenosaires.com/PMID/22892077.pdf. Accessed August 4, 2020.
dc.relation108. Eslava Otálora, Andrea Cecilia; Mateus Arbelaez HE. Registro de pacientes con distrofinopatías en Colombia. 2016.
dc.relation109. Krahn AD, Healey JS, Chauhan V, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac arrest survivors with preserved ejection fraction registry (CASPER). Circulation. 2009;120(4):278-285. doi:10.1161/CIRCULATIONAHA.109.853143
dc.relation110. Wissenberg M, Hansen CM, Folke F, et al. Survival after out-of-hospital cardiac arrest in relation to sex: A nationwide registry-based study. Resuscitation. 2014;85(9):1212-1218. doi:10.1016/j.resuscitation.2014.06.008
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDeterminación de variantes genéticas en una muestra de población colombiana con miocardiopatías hereditarias: Un estudio piloto
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución