dc.contributor | Duque Daza, Carlos Alberto | |
dc.contributor | GNUM - Modelado y métodos numéricos en ingeniería. | |
dc.creator | Botero Henao, Andrés | |
dc.date.accessioned | 2020-09-23T21:23:20Z | |
dc.date.available | 2020-09-23T21:23:20Z | |
dc.date.created | 2020-09-23T21:23:20Z | |
dc.date.issued | 2018-06-04 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78493 | |
dc.description.abstract | The present work shows the study of the performance of a helical blade subjected to a water
flow stream. Blades with helical geometry are principally used in tidal turbines because of
their minimum fluctuating torque conditions in the sea environment and for the reduction
that this fact makers on the structural loads on the turbines. One blade was simulated using
CFD with transient formulation and a LES turbulence model. The results were validated
against 2 reference works showing good agreement in the majority of the variables obtained.
Later, an analysis in local coordinates was made in the critic zones of each case in order to
determine de behaviour of the flow near the wall. In this analysis, the results were compared
with theoretical results showing good agreement in general as well. The proposed model,
even showing similarity with the reference works, is more conservative because it sub predicts
the output torque for all cases. It is shown that the zones of minimum torque are regions
dominated by recirculation, as the obtained results suggest. | |
dc.description.abstract | El presente trabajo muestra el estudio del desempeño hidrodinámico de un perfil helicoidal
sometido a una corriente de agua. Los perfiles con geometría son utilizados principalmente
en turbinas mareomotrices por las mínimas condiciones de oscilación del torque que ofrece
este diseño y por la disminución que esto representa en las cargas cíclicas que experimenta
la turbina. Un álabe fue simulado en condición estática en 4 posiciones diferentes utilizando
mecánica de fluidos computacional con una formulación transitoria en 3D y un modelo de
turbulencia LES. Los resultados obtenidos se validaron con 2 trabajos de referencia mostrando
similitud en la gran mayoría de variables obtenidas. Posteriormente se realizó un
estudio a nivel local en las zonas consideradas críticas para determinar el comportamiento
del flujo en regiones cercanas a la pared. En este análisis, los resultados fueron comparados
con resultados teóricos y en general se presentan acorde a lo propuesto. La metodología de
trabajo, si bien presenta similitud con los trabajos de referencia, es mas conservador, pues
subpredice el torque de salida para todos los casos. Se muestra también que las zonas de
torque mínimo son regiones dominadas por la recirculación de flujo, según lo muestran los
resultados obtenidos. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Antheaume, Sylvain ; Maıtre, Thierry ; Achard, Jean-Luc: Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions. En: Renewable Energy 33 (2008), Nr. 10, p. 2186–2198 | |
dc.relation | Bahaj, AS ; Myers, Luke E.: Fundamentals applicable to the utilisation of
marine current turbines for energy production. En: Renewable energy 28 (2003),
Nr. 14, p. 2205–2211 | |
dc.relation | Benelghali, Seifeddine ; Benbouzid, Mohamed El H. ; Charpentier, Jean F. ; Ahmed-Ali, Tarek ; Munteanu, Iulian: Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous
generator-based system second-order sliding mode control. En: IEEE Transactions on Industrial Electronics 58 (2011), Nr. 1, p. 118–126 | |
dc.relation | Beri, Habtamu ; Yao, Yingxue: Numerical simulation of unsteady flow to show
self-starting of vertical axis wind turbine using fluent. En: Journal of Applied
Sciences 11 (2011), Nr. 6, p. 962–970 | |
dc.relation | Gorlov, Alexander: Development of the helical reaction hydraulic turbine. En:
NASA (1998), Nr. 19990036780 | |
dc.relation | Goundar, Jai N. ; Ahmed, M R.: Marine current energy resource assessment
and design of a marine current turbine for Fiji. En: Renewable energy 65 (2014),
p. 14–22 | |
dc.relation | Hall, Taylor J.: Numerical simulation of a cross flow marine hydrokinetic turbine.
University of Washington, 2012 | |
dc.relation | Hirsch, Ir H. ; Mandal, AC: A cascade theory for the aerodynamic performance
of Darrieus wind turbines. En: Wind Engineering (1987), p. 164–175 | |
dc.relation | Khan, MJ ; Bhuyan, G ; Iqbal, MT ; Quaicoe, JE: Hydrokinetic energy
conversion systems and assessment of horizontal and vertical axis turbines for
river and tidal applications: A technology status review. En: Applied energy 86
(2009), Nr. 10, p. 1823–1835 | |
dc.relation | Larsen, HC: Summary of a Vortex Theory of the Cyclogiro. En: Proceedings of
the 2ˆ¡nd¿US National conference on Wind Engineering Research.(1975-8) Colorad State University, 1975 | |
dc.relation | Layton, LC Berselli T Iliescu W. Mathematics of Large Eddy Simulation of
Turbulent Flows. 2005 | |
dc.relation | Liu, Hong-wei ; Ma, Shun ; Li, Wei ; Gu, Hai-gang ; Lin, Yong-gang ; Sun,
Xiao-jing: A review on the development of tidal current energy in China. En:
Renewable and sustainable energy reviews 15 (2011), Nr. 2, p. 1141–1146 | |
dc.relation | Liu, Yue ; Packey, Daniel J.: Combined-cycle hydropower systems–The potential of applying hydrokinetic turbines in the tailwaters of existing conventional
hydropower stations. En: Renewable energy 66 (2014), p. 228–231 | |
dc.relation | european marine enrgy centre LTD, The. EMEC | |
dc.relation | M. Islam, D.S.K. T. ; Fartaj, A: Aerodynamic models for Darrieus-type
straight-bladed vertical axis wind turbines. En: Renewable & Sustainable Energy
Reviews (2008) | |
dc.relation | Mandal, AC ; Burton, JD: The effects of dynamic stall and flow curvature
on the aerodynamics of darrieus turbines applying the cascade model. En: Wind
Engineering (1994), p. 267–282 | |
dc.relation | Marsh, George: Tidal turbines harness the power of the sea. En: Reinforced
Plastics 48 (2004), Nr. 6, p. 44–47 | |
dc.relation | Marsh, Philip ; Ranmuthugala, Dev ; Penesis, Irene ; Thomas, Giles: Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. En: Renewable Energy 81 (2015), p.
926–935 | |
dc.relation | Migliore, PG ; Wolfe, WP ; Fanucci, JB: Flow curvature effects on Darrieus
turbine blade aerodynamics. En: Journal of Energy 4 (1980), Nr. 2, p. 49–55 | |
dc.relation | Moser, Robert D. ; Kim, John ; Mansour, Nagi N.: Direct numerical simulation
of turbulent channel flow up to Re τ= 590. En: Physics of fluids 11 (1999), Nr.
4, p. 943–945 | |
dc.relation | Mozafari, Javaherchi ; Teymour, Amir: Numerical investigation of Marine Hydrokinetic Turbines: methodology development for single turbine and small array
simulation, and application to flume and full-scale reference models., Tesis de Grado, 2015 | |
dc.relation | Nabavi, Yasser: Numerical study of the duct shape effect on the performance of a
ducted vertical axis tidal turbine, University of British Columbia, Tesis de Grado,
2008 | |
dc.relation | Niblick, Adam L.: Experimental and analytical study of helical cross-flow turbines for a tidal micropower generation system. University of Washington, 2012 | |
dc.relation | Osbourne, Nicholas: 3D Modelling of a tidal turbine-A numerical investigation
of wake phenomena, Tesis de Grado, 2015 | |
dc.relation | Osorio, AF ; Ortega, Santiago ; Arango-Aramburo, Santiago: Assessment
of the marine power potential in Colombia. En: Renewable and Sustainable Energy
Reviews 53 (2016), p. 966–977 | |
dc.relation | O'Rourke, Fergal ; Boyle, Fergal ; Reynolds, Anthony: Ireland's tidal
energy resource; An assessment of a site in the Bulls Mouth and the Shannon
Estuary using measured data. En: Energy Conversion and Management 87 (2014),
p. 726–734 | |
dc.relation | Palacita, Johar. GORLOV Wind Turbine | |
dc.relation | Paraschivoiu, Ion: Double-multiple streamtube model for Darrieus in turbines.
(1981) | |
dc.relation | Pendar, Mohammad-Reza ; Roohi, Ehsan: Cavitation characteristics around a
sphere: An LES investigation. En: International Journal of Multiphase Flow 98
(2018), p. 1–23 | |
dc.relation | Plew, David R. ; Stevens, Craig L.: Numerical modelling of the effect of turbines
on currents in a tidal channel–Tory Channel, New Zealand. En: Renewable Energy
57 (2013), p. 269–282 | |
dc.relation | Polo, John M. ; Rodríguez, Jorge ; Sarmiento, Armando: Potencial de generación de energía a lo largo de la costa colombiana mediante el uso de corrientes
inducidas por mareas. En: Revista de Ingeniería (2008), Nr. 28, p. 99–105 | |
dc.relation | Pope, Stephen B. Turbulent flows. 2001 | |
dc.relation | Shiono, Mitsuhiro ; Suzuki, Katsuyuki ; Kiho, Sezji [u. a.]: Output characteristics of Darrieus water turbine with helical blades for tidal current generations.
En: The Twelfth International Offshore and Polar Engineering Conference International Society of Offshore and Polar Engineers, 2002 | |
dc.relation | ] Soleimani, Kaveh ; Ketabdari, Mohammad J. ; Khorasani, Farzan: Feasibility study on tidal and wave energy conversion in Iranian seas. En: Sustainable
Energy Technologies and Assessments 11 (2015), p. 77–86 | |
dc.relation | Strickland, James H. ; Webster, BT ; Nguyen, T: A vortex model of the
Darrieus turbine: an analytical and experimental study. En: Journal of Fluids
Engineering 101 (1979), Nr. 4, p. 500–505 | |
dc.relation | Strickland, JH: A performance prediction model for the darrieus turbine. En:
International symposium on wind energy systems, 1977, p. C3–39 | |
dc.relation | Templin, RJ: Aerodynamic performance theory for the NRC vertical-axis wind
turbine. En: NASA STI/Recon Technical Report N 76 (1974) | |
dc.relation | Twidell, John ; Weir, Tony: Renewable energy resources. Routledge, 2015 | |
dc.relation | Versteeg, Henk K. ; Malalasekera, Weeratunge: An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007 | |
dc.relation | Xia, Junqiang ; Falconer, Roger A. ; Lin, Binliang ; Tan, Guangming: Estimation of annual energy output from a tidal barrage using two different methods.
En: Applied Energy 93 (2012), p. 327–336 | |
dc.relation | Yang, Bo ; Lawn, Chris: Fluid dynamic performance of a vertical axis turbine
for tidal currents. En: Renewable Energy 36 (2011), Nr. 12, p. 3355–3366 | |
dc.relation | Chen, Wenshi. Tidal Energy | |
dc.relation | direct, CFD. OpenFoam | |
dc.relation | Georgescu, Andrei-Mugur ; Georgescu, Sanda-Carmen ; Degeratu, Mircea ; Bernad, Sandor ; Cosoiu, Costin I.: Numerical modelling comparison between airflow and water flow within the Achard-type turbine. En: Sci.
Bull.ˆaœPolitehnicaˆa Univ. Timisoara, Trans. Mech 52 (2007), Nr. 66, p. 289–298 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Estudio del comportamiento de capa límite y de los fenómenos en la región cercana a la pared en un perfil hidrodinámico helicoidal de una turbina Gorlov de flujo cruzado a bajos números de Reynolds | |
dc.type | Otro | |