dc.contributorMurcia Aranguren, Martha Isabel
dc.contributorCarazzone, Chiara
dc.contributorEdgar Orlando Rodríguez Beltrán
dc.contributorMICOBAC-UN
dc.creatorRodríguez Beltrán, Edgar Orlando
dc.date.accessioned2021-06-08T20:55:33Z
dc.date.available2021-06-08T20:55:33Z
dc.date.created2021-06-08T20:55:33Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79617
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa TB multirresistente es causada por Mycobacterium tuberculosis (MTB) resistente a rifampicina e isoniazida y constituye un grave problema de salud pública en países emergentes. Puesto que el fitness del agente patógeno es crítico en el desenlace en la infección, el conocimiento sobre el mismo debe ser claro. Trabajos previos sobre resistencia a rifampicina han mostrado situaciones de pérdida y otras de conservación del fitness competitivo. El objetivo del trabajo fue medir la expresión de genes de virulencia / resistencia y los niveles de PDIM relacionándolos con el fitness competitivo de una cepa ATCC25618 RR-TB. Materiales y métodos: Se realizó un ensayo de fitness competitivo usando las cepas MTB ATCC25618 wt: ATCC25618 rpoB-S450L (o S531L) (RifR 1 µg/ml) 1:1 en 50 ml Middlebrook 7H9/OADC (Días 2-12) calculándose tiempos de generación in vitro y fitness relativo. Se extrajeron mRNA y PDIM en días 10/11 y 21 Resultados: Se obtuvo la cepa ATCC 25618 rpoB-S450L (transición en rpoB C1349T). Disminuyó el fitness en rpoB-S450L yH445Y mostrándose fitness dispar interréplicas biológicas. En S450L, hubo dos réplicas con disminución del fitness y una con aumento. Hubo aumento significativo de la expresión de pknG en rpoB-S450L vs silvestre y un aumento no significativo en la cepa silvestre (comparada con rpoB-S450L) en la expresión de ppsA en fase logarítmica que se correlaciona con mayor producción de PDIM, siendo pknG y PDIM potenciales biomarcadores
dc.description.abstractIntroduction. Multidrug-resistant TB, the infection by INH/ RIF-resistant tuberculosis is a severe public health problem in emerging countries. Fitness (W) is a critical component in clinical outcome so it must be explored. Previous works on RIF-resistance have shown some competitive fitness gains and losses. Objective. The objective of these experiments was to measure virulence/ resistance genes and PDIM levels in relation with competitive fitness of a S450L RifR ATCC25618 strain. Materials and methods. We made a competitive fitness in vitro assay with ATCC 25618 wt: ATCC 25618 rpoB-S450L (RifR 1 µg/ml) 1:1 strains in 50 ml Middlebrook OADC and we found generation time (G) in vitro and relative fitness. mRNA and PDIM were extracted on days 10/11 and 21. Results. We obtained ATCC 25618 rpoB S450L mutant (rpoB C1349T transition). Fitness decreased in rpoB-S450L strain with heterogeneous fitness in 3 biological replicas for both S450L and H445Y strains, for the former, 2 replicas with low W and one with high W. There was significant pknG increase in rpoB-S450L and non-significant increase in wt (compared to S450L) in polyketide synthase-ppsA in log phase which is related to increased PDIM, being PDIM and pknG potential biomarkers.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdone, R., Ciuchini, F., & Marianelli, C. (2005). Protective Properties of Rifampin-Resistant Rough Mutants of Brucella melitensis. Infect Immun, 73(7), 4198–4204. https://doi.org/10.1128/IAI.73.7.4198
dc.relationAmbion, & Life Technologies. (2012). TURBO DNA-free 3 TM Kit User Guide. User Guide.
dc.relationAndersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489–493. https://doi.org/10.1016/S1369-5274(99)00005-3
dc.relationAngst, D. C., & Hall, A. R. (2013). The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evolutionary Biology, 13(1), 163. https://doi.org/10.1186/1471-2148-13-163
dc.relationApplied-Biosystems. (2010). Relative Quantitation Using Comparative CT - Getting started guide, 1–120.
dc.relationApplied Biosystems. (2002). TaqMan ® Universal PCR Master Mix.
dc.relationApplied Biosystems. (2010). High Capacity cDNA Reverse Transcription Kits for 200 and 1000 Reactions Protocol (Rev E). Manual, (06), 1–29.
dc.relationAppliedBiosystems. (2011). SYBR Green PCR Master Mix and SYBR Green RT-PCR Reagents Kit User Guide, 4309155(4309155), 1–48. Retrieved from http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041053.pdf%5Cnpapers3://publication/uuid/32687140-3E25-4A66-B58A-ED792D5D3C76
dc.relationAstarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F. K., Chalut, C., Lopez, A., & Guilhot, C. (2009). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens, 5(2). https://doi.org/10.1371/journal.ppat.1000289
dc.relationATCC, & BEI Resources. (2015). Certificate of analysis for NR-20328 – Mycobacterium tuberculosis, Strain H37Rv, Purified Phtiocerol dimycocerosate. Manassas (VA)
dc.relationBæk, K. T., Thøgersen, L., Mogensen, R. G., Mellergaard, M., Thomsen, L. E., Petersen, A., & Skov, S. (2015). Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX Gene. Antimicrobial Agents and Chemotherapy, 59(11), 6983–6991. https://doi.org/10.1128/AAC.01303-15.
dc.relationBergman, J. M., Wrande, M., & Hughes, D. (2014). Acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies. PLoS ONE, 9(10), 1–9. https://doi.org/10.1371/journal.pone.0109255
dc.relationBergval, I., Kwok, B., Schuitema, A., Kremer, K., van Soolingen, D., Klatser, P., & Anthony, R. (2012). Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029108
dc.relationBergval, I. L., Klatser, P. R., Schuitema, A. R. J., Oskam, L., & Anthony, R. M. (2007). Specific mutations in the Mycobacterium tuberculosis rpoB gene are associated with increased dnaE2 expression. FEMS Microbiology Letters, 275(2), 338–343. https://doi.org/10.1111/j.1574-6968.2007.00905.x
dc.relationBhatnagar, N; Getachew, E; Straley, S; Williams, J; Meltzer, M; Fortier, A. (1994). Reduced virulence of rifampicin-resistant mutants of Francisella tularensis. J Infect Dis, 170(4), 841-7.
dc.relationBillington, O. J., Mchugh, T. D., & Gillespie, S. H. (1999). Physiological Cost of Rifampin Resistance Induced In Vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother., 43(8), 1866–1869.
dc.relationBisson, G. P., Mehaffy, C., Broeckling, C., Prenni, J., Rifat, D., Lun, D. S., … Dobosc, K. (2012). Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by Rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. Journal of Bacteriology, 194(23), 6441–6452. https://doi.org/10.1128/JB.01013-12
dc.relationBjörkman, J., Hughes, D., & Andersson, D. I. (1998). Virulence of antibiotic-resistant Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3949–3953. https://doi.org/10.1073/pnas.95.7.3949
dc.relationBlaser, M. J., Musser, J. M., Bifani, P. J., Kreiswirth, B. N., & Small, P. M. (2001). Bacterial polymorphisms The nature and consequence of genetic variability within Mycobacterium tuberculosis Bacterial polymorphisms. The Journal of Clinical Investigation, 107(5), 533–537. https://doi.org/10.1172/JCI11426
dc.relationBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relationBoor, K. Price, C. (1995). Genetic and Transcriptional organization of the region encoding the B subunit of RNA polymerase in Bacillus subtilis.
dc.relationBoor, K. J., Duncan, M. L., & Price, C. W. (1995). Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. The Journal of Biological Chemistry, 270(35), 20329–20336. https://doi.org/10.1074/jbc.270.35.20329
dc.relationBorrell, S., & Gagneux, S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 13(12), 1456–1466.
dc.relationBorrell, Sonia, Teo, Y., Giardina, F., Streicher, E. M., Klopper, M., Feldmann, J., … Gagneux, S. (2013). Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evolution, Medicine, and Public Health, 2013(1), 65–74. https://doi.org/10.1093/emph/eot003
dc.relationBrandis, G., & Hughes, D. (2013). Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. Journal of Antimicrobial Chemotherapy, 68(11), 2493–2497. https://doi.org/10.1093/jac/dkt224
dc.relationBrandis, G., & Hughes, D. (2018). Mechanisms of fitness cost reduction for rifampicin-resistant strains with deletion or duplication mutations in rpoB. Scientific Reports, 8(1), 1–6. https://doi.org/10.1038/s41598-018-36005-y
dc.relationBrandis, G., Pietsch, F., Alemayehu, R., & Hughes, D. (2014). Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 1–6. https://doi.org/10.1093/jac/dku434
dc.relationBrandis, G., Wrande, M., Liljas, L., & Hughes, D. (2012). Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Molecular Microbiology, 85(1), 142–151. Retrieved from http://doi.wiley.com/10.1111/j.1365-2958.2012.08099.x
dc.relationBrinkman, C. L., Tyner, H. L., Schmidt-Malan, S. M., Mandrekar, J. N., & Patel, R. (2015). Causes and implications of the disappearance of rifampin resistance in a rat model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrobial Agents and Chemotherapy, 59(8), 4481–4488. https://doi.org/10.1128/AAC.05078-14
dc.relationBromfield, E. S. P., Lewis, D. M., & Barran, L. R. (1985). Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. Journal of Bacteriology, 164(1), 410–413.
dc.relationBurian, J., Ramon-Garcia, S., Howes, C. G., & Thompson, C. J. (2012). WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev Anti Infect Ther, 10(9), 1037–1047. https://doi.org/10.1586/eri.12.90
dc.relationButler, W. R., & Guthertz, L. S. (2001). Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species Mycolic Acid Analysis by High-Performance Liquid Chromatography for Identification of Mycobacterium Species. Clinical Microbiology Reviews, 14(4), 704–726. https://doi.org/10.1128/CMR.14.4.704
dc.relationCajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC - Trends in Analytical Chemistry, 61, 192–206. https://doi.org/10.1016/j.trac.2014.04.017
dc.relationCamacho, L. R., Constant, P., Raynaud, C., Lanéelle, M. A., Triccas, J. A., Gicquel, B., … Guilhot, C. (2001). Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. Journal of Biological Chemistry, 276(23), 19845–19854. https://doi.org/10.1074/jbc.M100662200
dc.relationCampbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., … . (2001). Structural mechanism for rifampin inhibition of bacterial RNA polymerase. Cell, 104(6), 901–912. https://doi.org/10.1016/S0092-8674(01)00286-0
dc.relationCampodónico, V. L., Rifat, D., Chuang, Y. M., Ioerger, T. R., & Karakousis, P. C. (2018). Altered Mycobacterium tuberculosis cell wall metabolism and physiology associated with RpoB mutation H526D. Frontiers in Microbiology, 9(MAR), 494. https://doi.org/10.3389/fmicb.2018.00494
dc.relationCarata, E., Peano, C., Tredici, S. M., Ferrari, F., Talà, A., Corti, G., … Alifano, P. (2009). Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microbial Cell Factories, 8, 18. https://doi.org/10.1186/1475-2859-8-18
dc.relationCasadevall, A., & Pirofski, L. (2001). Host-pathogen interactions: the attributes of virulence. The Journal of Infectious Diseases, 184(3), 337–344. https://doi.org/10.1086/322044
dc.relationCerezo, I., Jiménez, Y., Hernandez, J., Zozio, T., Murcia, M., & Rastogi, N. (2011). A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol, 12(4), 657–663.
dc.relationChavadi, S. S., Edupuganti, U. R., Vergnolle, O., Fatima, I., Singh, S. M., Soll, C. E., & Quadri, L. E. N. (2011). Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. Journal of Biological Chemistry, 286(28), 24616–24625. https://doi.org/10.1074/jbc.M111.247601
dc.relationChung-Delgado, K., Guillen-Bravo, S., Revilla-Montag, A., & Bernabe-Ortiz, A. (2015). Mortality among MDR-TB cases: Comparison with drug-susceptible tuberculosis and associated factors. PLoS ONE, 10(3), 1–10. https://doi.org/10.1371/journal.pone.0119332
dc.relationCingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695
dc.relationCohan, F. M., King, E. C., & Zawadzki, P. (1994). Amelioration of the deleterious pleiotropy effects of an adaptive mutation in Bacillus subtilis. Evolution, 48(1), 81–95.
dc.relationCohen, T., Sommers, B., & Murray, M. (2003). The effect of drug resistance on the fitness of Mycobacterium tuberculosis. The Lancet Infectious Diseases, 3, 13–21. https://doi.org/10.1016/S1473-3099(03)00483-3
dc.relationColicchio, R., Pagliuca, C., Pastore, G., Cicatiello, A. G., Pagliarulo, C., Talà, A., … Salvatore, P. (2015). Fitness cost of rifampin resistance in Neisseria meningitidis: In Vitro study of mechanisms associated with rpoB H553Y mutation. Antimicrobial Agents and Chemotherapy, 59(12), 7637–7649. https://doi.org/10.1128/AAC.01746-15
dc.relationComas, I., Borrell, S., Roetzer, A., Rose, G., Malla, B., Kato-Maeda, M., … Gagneux, S. (2011). Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nature Genetics, 44(1), 106–110. https://doi.org/10.1038/ng.1038
dc.relationCompeau, G., Alachi, B., Platsouka, E., & Levy, S. (1988). Survival of Rifampin-Resistant Mutants of Pseudomonas fluorescens and Pseudomonas putida in Soil Systems. Applied and Environmental Microbiology, 54(10), 2432–2438. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=20&SID=X1zq5N1zsWYNocNVLLR&page=1&doc=5
dc.relationConrad, T. M., Frazier, M., Joyce, A. R., Cho, B. K., Knight, E. M., Lewis, N. E., … Palsson, B. (2010). RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20500–20505. https://doi.org/10.1073/pnas.0911253107
dc.relationConrad, T. M., Joyce, A. R., Applebee, M. K., Barrett, C. L., Xie, B., Gao, Y., & Palsson, B. T. (2009). Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biology, 10(10), 1–12. https://doi.org/10.1186/gb-2009-10-10-r118
dc.relationCSU-Colorado State University. (2013). Isolation of total lipid-PP018.1. Colorado State University. Fort Collins, CO: Colorado State University.
dc.relationCui, L., Isii, T., Fukuda, M., Ochiai, T., Neoh, H. M., Da Cunha Camargo, I. L. B., … Hiramatsu, K. (2010). An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 54(12), 5222–5233. https://doi.org/10.1128/AAC.00437-10
dc.relationDang, N. A., Kolk, A. H. J., Kuijper, S., Janssen, H. G., & Vivo-Truyols, G. (2013). The identification of biomarkers differentiating Mycobacterium tuberculosis and non-tuberculous mycobacteria via thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and chemometrics. Metabolomics, 9(6), 1274–1285. https://doi.org/10.1007/s11306-013-0531-z
dc.relationDang, N. A., Kuijper, S., Walters, E., Claassens, M., van Soolingen, D., Vivo-Truyols, G., … Kolk, A. H. J. (2013). Validation of Biomarkers for Distinguishing Mycobacterium tuberculosis from Non-Tuberculous Mycobacteria Using Gas Chromatography-Mass Spectrometry and Chemometrics. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0076263
dc.relationDang, U. T., Zamora, I., Hevener, K. E., Adhikari, S., Wu, X., & Hurdle, J. G. (2016). Rifamycin resistance in Clostridium difficile is generally associated with a low fitness burden. Antimicrobial Agents and Chemotherapy, 60(9), 5604–5607. https://doi.org/10.1128/AAC.01137-16
dc.relationDavies, a P., Billington, O. J., Bannister, B. a, Weir, W. R., McHugh, T. D., Gillespie, S. H., & Davies, AP; Billington, OJ; Bannister, BA; Weir, WR; McHugh, TD; Gillespie, S. (2000). Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J Infect, 41(2), 184–187. https://doi.org/10.1053/jinf.2000.0711
dc.relationDe Knegt, G. J., Bruning, O., Ten Kate, M. T., De Jong, M., Van Belkum, A., Endtz, H. P., … De Steenwinkel, J. E. M. (2013). Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis, 93(1), 96–101. https://doi.org/10.1016/j.tube.2012.10.013
dc.relationde Visser, J. A. G. M., Cooper, T. F., & Elena, S. F. (2011). The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 278(1725), 3617–3624. https://doi.org/10.1098/rspb.2011.1537
dc.relationDe Vos, M., Müller, B., Borrell, S., Black, P. A., Van Helden, P. D., Warren, R. M., … Victor, T. C. (2013). Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrobial Agents and Chemotherapy, 57(2), 827–832. https://doi.org/10.1128/AAC.01541-12
dc.relationDeatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E., & Barrick, J. E. (2017). Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proceedings of the National Academy of Sciences of the United States of America, 114(10), E1904–E1912. https://doi.org/10.1073/pnas.1616132114
dc.relationDixit, A., Freschi, L., Vargas, R., Calderon, R., Sacchettini, J., Drobniewski, F., … Farhat, M. R. (2019). Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-41967-8
dc.relationdu Preez, I., & Loots, D. T. (2012). Altered fatty acid metabolism due to rifampicin-resistance conferring mutations in the rpoB Gene of Mycobacterium tuberculosis: mapping the potential of pharmaco-metabolomics for global health and personalized medicine. Omics : A Journal of Integrative Biology, 16(11), 596–603. https://doi.org/10.1089/omi.2012.0028
dc.relationDurão, P., Gülereşi, D., Proença, J., & Gordo, I. (2016). Enhanced survival of rifampin- and streptomycin-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 60(7), 4324–4332. https://doi.org/10.1128/AAC.00624-16
dc.relationDurão, P., Trindade, S., Sousa, A., & Gordo, I. (2015). Multiple resistance at no cost: Rifampicin and streptomycin a dangerous liaison in the spread of antibiotic resistance. Molecular Biology and Evolution, 32(10), 2675–2680. https://doi.org/10.1093/molbev/msv143
dc.relationEnne, V. I., Delsol, A. A., Roe, J. M., & Bennett, P. M. (2004). Rifampicin resistance and its fitness cost in Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 53(2), 203–207. https://doi.org/10.1093/jac/dkh044
dc.relationENSEMBL genomes. (n.d.). Mycobacterium tuberculosis H37Rv genome. In: http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gz. Retrieved from http://ftp.ensemblgenomes.org/vol1/pub/release-48/bacteria/fasta/bacteria_0_collection/mycobacterium_tuberculosis_h37rv/dna/Mycobacterium_tuberculosis_h37rv.ASM19595v2.dna.chromosome.Chromosome.fa.gz
dc.relationFajardo-Cavazos, P., Leehan, J. D., & Nicholson, W. L. (2018). Alterations in the spectrum of spontaneous rifampicin-resistance mutations in the Bacillus subtilis rpoB gene after cultivation in the human spaceflight environment. Frontiers in Microbiology, 9(FEB), 1–11. https://doi.org/10.3389/fmicb.2018.00192
dc.relationFajardo-Cavazos, P., & Nicholson, W. L. (2016). Cultivation of Staphylococcus epidermidis in the human spaceflight environment leads to alterations in the frequency and spectrum of spontaneous rifampicin-resistance mutations in the rpoB gene. Frontiers in Microbiology, 7(JUN), 1–10. https://doi.org/10.3389/fmicb.2016.00999
dc.relationFeng, S., Du, Y. Q., Zhang, L., Zhang, L., Feng, R. R., & Liu, S. Y. (2015). Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: Application in a pilot study to discriminate patients with tuberculosis. Chinese Medical Journal, 128(2), 159–168. https://doi.org/10.4103/0366-6999.149188
dc.relationForrellad, M. A., Klepp, L. I., Gioffre, A., Sabio y Garcia, J., Morbidoni, H. R., de la Paz Santangelo, M., … Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66. https://doi.org/10.4161/viru.22329
dc.relationGagneux, S., Long, C. D., Small, P. M., Van, T., Schoolnik, G. K., & Bohannan, B. J. M. (2006). The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis. Science, 312(5782), 1944–1946. https://doi.org/10.1126/science.1124410
dc.relationGagneux, S., & Small, P. M. (2007). Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infectious Diseases, 7(5), 328–337. https://doi.org/10.1016/S1473-3099(07)70108-1
dc.relationGao, W., Cameron, D. R., Davies, J. K., Kostoulias, X., Stepnell, J., Tuck, K. L., … Howden, B. P. (2013). The RpoB H148Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. Journal of Infectious Diseases, 207(6), 929–939. https://doi.org/10.1093/infdis/jis772
dc.relationGarrison, E; Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. ArXiv. Retrieved from arxiv:1207.3907 [q-bio.GN] 2012
dc.relationGifford, D. R., & Maclean, R. C. (2013). Evolutionary Reversals Of Antibiotic Resistance In Experimental Populations Of Pseudomonas aeruginosa. Evolution, 67(10), 2973–2981. https://doi.org/10.1111/evo.12158
dc.relationGifford, D. R., Moss, E., & Maclean, R. C. (2016). Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution, 70(3), 725–730. https://doi.org/10.1111/evo.12880
dc.relationGifford, D. R., Toll-Riera, M., & MacLean, R. C. (2016). Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution; International Journal of Organic Evolution, 70(7), 1659–1666. https://doi.org/10.1111/evo.12958
dc.relationGliniewicz, K., Plant, K. P., Lapatra, S. E., Lafrentz, B. R., Cain, K., Snekvik, K. R., & Call, D. R. (2012). Comparative proteomic analysis of virulent and rifampicin-attenuated Flavobacterium psychrophilum. Journal of Fish Diseases, 35(7), 529–539. https://doi.org/10.1111/j.1365-2761.2012.01378.x
dc.relationGliniewicz, Karol, Wildung, M., Orfe, L. H., Wiens, G. D., Cain, K. D., Lahmers, K. K., … Call, D. R. (2015). Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum Microbial genetics, genomics and proteomics. BMC Microbiology, 15(1), 1–15. https://doi.org/10.1186/s12866-015-0518-1
dc.relationGonzález-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S., & Gaut, B. S. (2017). Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Molecular Biology and Evolution, 34(11), 2839–2855. https://doi.org/10.1093/molbev/msx216
dc.relationGreen, M., & Sambrook, J. (2012). Molecular Cloning: A laboratory manual. (4th ed.). Cold Spring Harbor (NY): CSH Press.
dc.relationGygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011
dc.relationHain Lifescience. (2012). Genotype MDRTB plus version 2.0 (No. IFU-304A-02). Nerhen, Germany. Retrieved from https://www.ghdonline.org/uploads/MTBDRplusV2_0212_304A-02-02.pdf
dc.relationHall, A. R. (2013). Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli. Journal of Evolutionary Biology, 26(8), 1655–1664. https://doi.org/10.1111/jeb.12172
dc.relationHall, Alex R., Iles, J. C., & MacLean, R. C. (2011). The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 187(3), 817–822. https://doi.org/10.1534/genetics.110.124628
dc.relationHall, Alex R., & Maclean, R. C. (2011). Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa. Evolution, 65(8), 2370–2379. https://doi.org/10.1111/j.1558-5646.2011.01302.x
dc.relationHeid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6(10), 986–994. https://doi.org/10.1101/gr.6.10.986
dc.relationHermann, C., Giddey, A. D., Nel, A. J. M., Soares, N. C., & Blackburn, J. M. (2019). Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. Journal of Proteomics, 191(February 2018), 166–179. https://doi.org/10.1016/j.jprot.2018.02.019
dc.relationHerring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., … Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38(12), 1406–1412. https://doi.org/10.1038/ng1906
dc.relationHotter, G. S., & Collins, D. M. (2011). Mycobacterium bovis lipids: Virulence and vaccines. Veterinary Microbiology, 151(1–2), 91–98. https://doi.org/10.1016/j.vetmic.2011.02.030
dc.relationHovhannisyan, H. G., & Barseghyan, A. H. (2015). The influence of rifampicin resistant mutations on the biosynthesis of exopolysaccharides by strain Escherichia coli K-12 lon. Applied Biochemistry and Microbiology, 51(5), 546–550. https://doi.org/10.1134/S0003683815040134
dc.relationHoward, N. C., Marin, N. D., Ahmed, M., Rosa, B. A., Martin, J., Bambouskova, M., … Khader, S. A. (2018). Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 3(10), 1099–1108. https://doi.org/10.1038/s41564-018-0245-0
dc.relationHu, Y. H., Deng, T., Sun, B. G., & Sun, L. (2012). Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus. Fish and Shellfish Immunology, 32(6), 1155–1161. https://doi.org/10.1016/j.fsi.2012.03.032
dc.relationIlumina. (2020). Illumina DNA Prep Reference Guide-Document # 1000000025416 v09. Retrieved from www.illumina.com/company/legal.html.
dc.relationInaoka, T., Takahashi, K., Yada, H., Yoshida, M., & Ochi, K. (2004). RNA Polymerase Mutation Activates the Production of a Dormant Antibiotic 3,3’-Neotrehalosadiamine via an Autoinduction Mechanism in Bacillus subtilis. Journal of Biological Chemistry, 279(5), 3885–3892. https://doi.org/10.1074/jbc.M309925200
dc.relationIngham, C. J., & Furneaux, P. A. (2000). Mutations in the β subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG. Microbiology, 146(12), 3041–3049. https://doi.org/10.1099/00221287-146-12-3041
dc.relationJacobs, R. F. (1994). Multiple-Drug-Resistant Tuberculosis. Clin Infect Dis, 19(1), 1–8.
dc.relationJagielski, T., Bakuła, Z., Brzostek, A., Minias, A., Law Stachowiak, R., Kalita, J., … Dziadek, J. (2018). Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrobial Agents and Chemotherapy, 62(10), 1–16. https://doi.org/10.1128/AAC.01093-18
dc.relationJansen, G., Crummenerl, L. L., Gilbert, F., Mohr, T., Pfefferkorn, R., Thänert, R., … Schulenburg, H. (2015). Evolutionary transition from pathogenicity to commensalism: Global regulator mutations mediate fitness gains through virulence attenuation. Molecular Biology and Evolution, 32(11), 2883–2896. https://doi.org/10.1093/molbev/msv160
dc.relationJayaraman, R. (2011). Hypermutation and stress adaptation in bacteria. Journal of Genetics, 90(2), 383–391. https://doi.org/10.1007/s12041-011-0086-6
dc.relationJenkins, C., Bacon, J., Allnutt, J., Hatch, K. A., Bose, A., O’Sullivan, D. M., … McHugh, T. D. (2009). Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at low pH. Journal of Antimicrobial Chemotherapy, 63(6), 1118–1120. https://doi.org/10.1093/jac/dkp125
dc.relationJoloba, M. L., Bajaksouzian, S., & Jacobs, M. R. (2000). Evaluation of Etest for susceptibility testing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 38(10), 3834–3836. https://doi.org/10.1128/jcm.38.10.3834-3836.2000
dc.relationJozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175. https://doi.org/10.3390/ijms13033145
dc.relationKang, Y. S., & Park, W. (2010). Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environmental Microbiology, 12(5), 1304–1318. https://doi.org/10.1111/j.1462-2920.2010.02175.x
dc.relationKlesius, P. H., & Shoemaker, C. A. (1999). Development and use of modified live Edwardsiella ictaluri vaccine against enteric septicemia of catfish. Advances in Veterinary Medicine, 41(C), 523–537. https://doi.org/10.1016/S0065-3519(99)80039-1
dc.relationKrašovec, R., Belavkin, R. V, Aston, J. a D., Channon, A., Aston, E., Rash, B. M., … Knight, C. G. (2014). Mutation rate plasticity in rifampicin resistance depends on Escherichia coli cell-cell interactions. Nature Communications, 5, 3742. https://doi.org/10.1038/ncomms4742
dc.relationKuehne, S. A., Dempster, A. W., Collery, M. M., Joshi, N., Jowett, J., Kelly, M. L., … Minton, N. P. (2018). Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. Journal of Antimicrobial Chemotherapy, 73(4), 973–980. https://doi.org/10.1093/jac/dkx486
dc.relationKunnath-Velayudhan, S., & Gennaro, M. L. (2011). Immunodiagnosis of tuberculosis: A dynamic view of biomarker discovery. Clinical Microbiology Reviews, 24(4), 792–805. https://doi.org/10.1128/CMR.00014-11
dc.relationLaFrentz, B. R., LaPatra, S. E., Call, D. R., & Cain, K. D. (2008). Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine, 26(44), 5582–5589. https://doi.org/10.1016/j.vaccine.2008.07.083
dc.relationLahiri, N., Shah, R. R., Layre, E., Young, D., Ford, C., Murray, M. B., … Moody, D. B. (2016). Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. The Journal of Biological Chemistry, 291(27), 14248–14256. https://doi.org/10.1074/jbc.M116.716704
dc.relationLai, C., Xu, J., Tozawa, Y., Okamoto-Hosoya, Y., Yao, X., & Ochi, K. (2002). Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology (Reading, England), 148(Pt 11), 3365–3373. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12427928
dc.relationLawrence, M. L., & Banes, M. M. (2005). Tissue persistence and vaccine efficacy of an O polysaccharide mutant strain of Edwardsiella ictaluri. Journal of Aquatic Animal Health, 17(3), 228–232. https://doi.org/10.1577/H04-049.1
dc.relationLayre, E., Lee, H. J., Young, D. C., Jezek Martinot, A., Buter, J., Minnaard, A. J., … Moody, D. B. (2014). Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 111(8), 2978–2983. https://doi.org/10.1073/pnas.1315883111
dc.relationLayre, E., Sweet, L., Hong, S., Madigan, C. A., Desjardins, D., Young, D. C., … Moody, D. B. (2011). A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chemistry and Biology, 18(12), 1537–1549. https://doi.org/10.1016/j.chembiol.2011.10.013
dc.relationLenski, R. (1991). Quantifying fitness and gene stability in microorganisms. In L. Ginzburg (Ed.), Assessing ecological risks of biotechnology. (Vol. 15, pp. 173–192). Stoneham, MA: Butterworth-Heinemann. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2009380
dc.relationLewis, DM; Bromfield, ESP. and Barran, L. (1987). Effect of rifampin resistance on nodulating competitiveness of Rhizobium meliloti. Canadian Journal of Microbiology, 33(4), 343–345.
dc.relationLi, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
dc.relationLi, Q.-J., Jiao, W. wei, Yin, Q. qin, Li, Y. jia, Li, J. qiong, Xu, F., … Shen, A. dong. (2017). Positive epistasis of major low-cost drug resistance mutations rpoB531-TTG and katG315-ACC depends on the phylogenetic background of Mycobacterium tuberculosis strains. International Journal of Antimicrobial Agents, 49(6), 757–762. https://doi.org/10.1016/j.ijantimicag.2017.02.009
dc.relationLi, Q. J., Jiao, W. W., Yin, Q. Q., Xu, F., Li, J. Q., Sun, L., … Shen, A. D. (2016). Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrobial Agents and Chemotherapy, 60(5), 2807–2812. https://doi.org/10.1128/AAC.02358-15
dc.relationLife Technologies. (2012). TRIzol ® Reagent, (15596026), 18–21. https://doi.org/10.1101/pdb.caut2701
dc.relationLin, W., Zeng, J., Wan, K., Lv, L., Guo, L., Li, X., & Yu, X. (2018). Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environment International, 120(March), 63–71. https://doi.org/10.1016/j.envint.2018.07.035
dc.relationLinde, K., Fthenakis, G. C., & Fichtner, A. (1998). Bacterial live vaccines with graded level of attenuation achieved by antibiotic resistance mutations: Transduction experiments on the functional unit of resistance, attenuation and further accompanying markers. Veterinary Microbiology, 62(2), 121–134. https://doi.org/10.1016/S0378-1135(98)00201-6
dc.relationLipsitch, M. (2001). The rise and fall of antimicrobial resistance. Trends in Microbiology, 9(9), 438–444. https://doi.org/10.1016/S0966-842X(01)02130-8
dc.relationLipsitch, M., & Moxon, E. R. (1997). Virulence and transmissibility of pathogens: What is the relationship? Trends in Microbiology, 5(1), 31–37. https://doi.org/10.1016/S0966-842X(97)81772-6
dc.relationLodi, L., Rubino, C., Ricci, S., Indolfi, G., Giovannini, M., Consales, G., … Azzari, C. (2020). Neisseria meningitidis with H552Y substitution on rpoB gene shows attenuated behavior in vivo: report of a rifampicin-resistant case following chemoprophylaxis. Journal of Chemotherapy, 32(2), 98–102. https://doi.org/10.1080/1120009X.2020.1723967
dc.relationLoots, D. T. (2016). New insights into the survival mechanisms of rifampicin-resistant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 71(3), 655–660. https://doi.org/10.1093/jac/dkv406
dc.relationMacLean, R. C., Perron, G. G., & Gardner, A. (2010). Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics, 186(4), 1345–1354. https://doi.org/10.1534/genetics.110.123083
dc.relationMacLean, R. Craig, & Buckling, A. (2009). The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa. PLoS Genetics, 5(3). https://doi.org/10.1371/journal.pgen.1000406
dc.relationMaharjan, R., & Ferenci, T. (2017). The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environmental Microbiology Reports, 9(5), 635–641. https://doi.org/10.1111/1758-2229.12564
dc.relationMalik, A. N. J., & Godfrey-Faussett, P. (2005). Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. The Lancet. Infectious Diseases, 5(3), 174–183. https://doi.org/10.1016/S1473-3099(05)01310-1
dc.relationMalshetty, V., Kurthkoti, K., China, A., Mallick, B., Yamunadevi, S., Sang, P. B., … Varshney, U. (2010). Novel insertion and deletion mutants of RpoB that render Mycobacterium smegmatis RNA polymerase resistant to rifampicin-mediated inhibition of transcription. Microbiology, 156(5), 1565–1573. https://doi.org/10.1099/mic.0.036970-0
dc.relationManten, A., & Van Wijngaarden, L. (1969). Development of drug resistance to rifampicin. Chemotherapy, 14(2), 93–100.
dc.relationMariam, D. H., Mengistu, Y., Hoffner, S. E., & Andersson, D. I. (2004). Effect of rpoB mutations on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 48(4), 1289–1294. https://doi.org/10.1128/AAC.48.4.1289
dc.relationMartin, A., Herranz, M., Ruiz Serrano, M. J., Bouza, E., & Garcia de Viedma, D. (2010). The clonal composition of Mycobacterium tuberculosis in clinical specimens could be modified by culture. Tuberculosis, 90(3), 201–207. https://doi.org/10.1016/j.tube.2010.03.012
dc.relationMatange, N., Hegde, S., & Bodkhe, S. (2019). Adaptation through lifestyle switching sculpts the fitness landscape of evolving populations: Implications for the selection of drug-resistant bacteria at low drug pressures. Genetics, 211(3), 1029–1044. https://doi.org/10.1534/genetics.119.301834
dc.relationMatsuo, M., Hishinuma, T., Katayama, Y., Cui, L., Kapi, M., & Hiramatsu, K. (2011). Mutation of RNA polymerase β subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrobial Agents and Chemotherapy, 55(9), 4188–4195. https://doi.org/10.1128/AAC.00398-11
dc.relationMaudsdotter, L., Ushijima, Y., & Morikawa, K. (2019). Fitness of spontaneous rifampicin-resistant Staphylococcus aureus isolates in a biofilm environment. Frontiers in Microbiology, 10(MAY), 1–10. https://doi.org/10.3389/fmicb.2019.00988
dc.relationMaughan, H., Galeano, B., & Nicholson, W. L. (2004). Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. Journal of Bacteriology, 186(8), 2481–2486. https://doi.org/10.1128/jb.186.8.2481-2486.2004
dc.relationMcCarty, J., Glodé, M. P., Granoff, D. M., & Daum, R. S. (1986). Pathogenicity of a rifampin-resistant cerebrospinal fluid isolate of Haemophilus influenzae type b. The Journal of Pediatrics, 109(2), 255–259. https://doi.org/10.1016/S0022-3476(86)80381-X
dc.relationMcDermott-Lancaster, R. D., & Hilson, G. R. F. (1988). Rifampicin-resistant strains of Mycobacterium leprae may have reduced virulence. Journal of Medical Microbiology, 25(1), 13–15. https://doi.org/10.1099/00222615-25-1-13
dc.relationMcNerney, R., Maeurer, M., Abubakar, I., Marais, B., McHugh, T. D., Ford, N., … Zumla, A. (2012). Tuberculosis diagnostics and biomarkers: Needs, challenges, recent advances, and opportunities. Journal of Infectious Diseases, 205(SUPPL. 2), 147–158. https://doi.org/10.1093/infdis/jir860
dc.relationMeenakshi, S., & Munavar, M. H. (2015). Suppression of capsule expression in Δlon strains of Escherichia coli by two novel rpoB mutations in concert with HNS: Possible role for DNA bending at rcsA promoter. MicrobiologyOpen, 4(5), 712–729. https://doi.org/10.1002/mbo3.268
dc.relationMeftahi, N., Namouchi, A., Mhenni, B., Brandis, G., Hughes, D., & Mardassi, H. (2016). Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain. Journal of Antimicrobial Chemotherapy, 71(2), 324–332. https://doi.org/10.1093/jac/dkv345
dc.relationMiskinyte, M., & Gordo, I. (2013). Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Antimicrobial Agents and Chemotherapy, 57(1), 189–195. https://doi.org/10.1128/AAC.01632-12
dc.relationMoeller, R., Vlasic, I., Reitz, G., & Nicholson, W. L. (2012). Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Archives of Microbiology, 194(9), 759–767. https://doi.org/10.1007/s00203-012-0811-4
dc.relationMoorman, D. R., & Mandell, G. L. (1981). Characteristics of Rifampin-Resistant Variants Obtained from Clinical Isolates of Staphylococcus aureus, 20(6), 709–713.
dc.relationMorlock, G. P., Plikaytis, B. B., & Crawford, J. T. (2000). Characterization of Spontaneous , In Vitro-Selected , Rifampin-Resistant Mutants of Mycobacterium tuberculosis Strain H37Rv. Antimicrob Agents Chemother, 44(12), 3298–3301.
dc.relationMoura de Sousa, J., Balbontín, R., Durão, P., & Gordo, I. (2017). Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biology, 15(4). https://doi.org/10.1371/journal.pbio.2001741
dc.relationMukherjee, R., & Chatterji, D. (2008). Stationary phase induced alterations in mycobacterial RNA polymerase assembly: A cue to its phenotypic resistance towards rifampicin. Biochemical and Biophysical Research Communications, 369(3), 899–904. https://doi.org/10.1016/j.bbrc.2008.02.118
dc.relationMundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., … Nielsen, A. T. (2017). Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metabolic Engineering, 39(November 2016), 141–150. https://doi.org/10.1016/j.ymben.2016.11.008
dc.relationNair, R. R., Fiegna, F., & Velicer, G. J. (2018). Indirect evolution of social fitness inequalities and facultative social exploitation. Proceedings of the Royal Society B: Biological Sciences, 285(1875). https://doi.org/10.1098/rspb.2018.0054
dc.relationNandy, P., Chib, S., & Seshasayee, A. (2020). A Mutant RNA Polymerase Activates the General Stress Response, Enabling Escherichia coli Adaptation to Late Prolonged Stationary Phase . MSphere, 5(2), 1–16. https://doi.org/10.1128/msphere.00092-20
dc.relationNeri, A., Mignogna, G., Fazio, C., Giorgi, A., Schininà, M. E., & Stefanelli, P. (2010). Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed. BMC Microbiology, 10, 246. https://doi.org/10.1186/1471-2180-10-246
dc.relationNicholson, W. L., & Park, R. (2015). Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance. FEMS Microbiology Letters, 362(24), 1–7. https://doi.org/10.1093/femsle/fnv213
dc.relationNicoara, S. C., Turner, N. W., Minnikin, D. E., Lee, O. Y. C., O’Sullivan, D. M., McNerney, R., … Morgan, G. H. (2015). Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 986–987, 135–142. https://doi.org/10.1016/j.jchromb.2015.02.010
dc.relationNIST. (n.d.). Unified atomic mass unit. Retrieved from https://physics.nist.gov/cgi-bin/cuu/Value?ukg
dc.relationO’Neill, AJ; Huovinen, T; Fishwick, CW; Chopra, I. (2006). Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother, 50(1), 298–309. https://doi.org/10.1128/AAC.50.1.298
dc.relationO’Sullivan, D. M., McHugh, T. D., & Gillespie, S. H. (2010). Mapping the fitness of Mycobacterium tuberculosis strains: A complex picture. Journal of Medical Microbiology, 59(12), 1533–1535. https://doi.org/10.1099/jmm.0.019091-0
dc.relationOh, T. S., Kang, H. Y., Nam, Y. S., Kim, Y. J., You, E. K., Lee, M. Y., … Lee, H. J. (2016). An Effective Method of RNA Extraction from Mycobacterium tuberculosis . Annals of Clinical Microbiology, 19(1), 20. https://doi.org/10.5145/acm.2016.19.1.20
dc.relationOlivares-Fuster, O., & Arias, C. R. (2011). Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. Journal of Fish Diseases, 34(5), 385–394. https://doi.org/10.1111/j.1365-2761.2011.01253.x
dc.relationOsada, Y., Une, T., Nakajo, M., & Ogawa, H. (1973). Virulence of rifampicin-resistant mutants of Shigella and enteropathogenic Escherichia coli with special reference to their cell invasiveness. Japanese Journal of Microbiology, 17(4), 243–249.
dc.relationPain, A. N. (1979). Symbiotic Properties of Antibiotic-Resistant and Auxotrophic Mutants of Rhizobium leguminosarum. J Appl Microbiol, 47(1), 53–64.
dc.relationPal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2015). Comparative Lipidome Profile of Sensitive and Resistant Mycobacterium tuberculosis Strain. Int.J.Curr.Microbiol.App.Sci, 1(1), 189–197. Retrieved from https://www.ijcmas.com/special/1/Rahul Pal, et al.pdf
dc.relationPal, R., Hameed, S., Kumar, P., Singh, S., & Fatima, Z. (2017). Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0972-6
dc.relationPankhurst, C. E. (1977). Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Canadian Journal of Microbiology, 23(8), 1026–1033.
dc.relationPérez-Varela, M., Corral, J., Vallejo, J. A., Rumbo-Feal, S., Bou, G., Aranda, J., & Barbé, J. (2017). Mutations in the β-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii. Infect Immun, 85(8), 1–13. https://doi.org/10.1128/IAI.00327-17
dc.relationPerkins, A. E., & Nicholson, W. L. (2008). Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. Journal of Bacteriology, 190(3), 807–814. https://doi.org/10.1128/JB.00901-07
dc.relationPerron, G. G., Hall, A. R., & Buckling, A. (2010). Hypermutability and Compensatory Adaptation in Antibiotic-Resistant Bacteria. American Naturalist, 176(3), 303–311. https://doi.org/10.1086/655217
dc.relationPiccaro, G., Pietraforte, D., Giannoni, F., Mustazzolu, A., & Fattorini, L. (2014). Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(12), 7527–7533. https://doi.org/10.1128/AAC.03169-14
dc.relationPridgeon, J. W., & Klesius, P. H. (2011). Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine, 29(45), 7896–7904. https://doi.org/10.1016/j.vaccine.2011.08.082
dc.relationQi, Q., Preston, G. M., & Maclean, R. C. (2014). Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. MBio, 5(6), 1–12. https://doi.org/10.1128/mBio.01562-14
dc.relationQi, Q., Toll-Riera, M., Heilbron, K., Preston, G. M., & Maclean, R. C. (2016). The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 283(1822). https://doi.org/10.1098/rspb.2015.2452
dc.relationQiu, X., Yan, X., Liu, M., & Han, R. (2012). Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043114
dc.relationRamaswamy, S., & Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tubercle and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 79(1), 3–29. Retrieved from http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6WXJ-45M7SD6-1-1&_cdi=7160&_user=613892&_check=y&_orig=search&_coverDate=12/31/1998&view=c&wchp=dGLbVlb-zSkzS&md5=dc9043f2ec30ace8b3e477b568a0fb3c&ie=/sdarticle.pdf
dc.relationRavan, P., Nejad Sattari, T., Siadat, S. D., & Vaziri, F. (2019). Evaluation of the expression of cytokines and chemokines in macrophages in response to rifampin-monoresistant Mycobacterium tuberculosis and H37Rv strain. Cytokine, 115(August 2018), 127–134. https://doi.org/10.1016/j.cyto.2018.12.004
dc.relationReynolds, M. G. (2000). Compensatory evolution in rifampin resistant Escherichia coli. Genetics, 156(4), 1471–1481.
dc.relationRifat, D., Campodónico, V. L., Tao, J., Miller, J. A., Alp, A., Yao, Y., & Karakousis, P. C. (2017). In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiology, 12(9), 753–765. https://doi.org/10.2217/fmb-2017-0022
dc.relationRodríguez-Verdugo, A., Gaut, B. S., & Tenaillon, O. (2013). Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evolutionary Biology, 13(1), 50. https://doi.org/10.1186/1471-2148-13-50
dc.relationRodŕiguez-Verdugo, A., Tenaillon, O., & Gaut, B. S. (2016). First-Step mutations during adaptation restore the expression of hundreds of genes. Molecular Biology and Evolution, 33(1), 25–39. https://doi.org/10.1093/molbev/msv228
dc.relationRoss, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T., & Gourse, R. L. (2013). The magic spot: A ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Molecular Cell, 50(3), 420–429. https://doi.org/10.1016/j.molcel.2013.03.021
dc.relationRugbjerg, P., Feist, A. M., & Sommer, M. O. A. (2018). Enhanced metabolite productivity of Escherichia coli adapted to glucose M9 minimal medium. Frontiers in Bioengineering and Biotechnology, 6(NOV), 1–6. https://doi.org/10.3389/fbioe.2018.00166
dc.relationRyall, B., Eydallin, G., & Ferenci, T. (2012). Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiology and Molecular Biology Reviews : MMBR, 76(3), 597–625. https://doi.org/10.1128/MMBR.05028-11
dc.relationS. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. W. & B. G. B. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(NOVEMBER), 537–544. https://doi.org/10.1038/29241
dc.relationSandalakis, V., Psaroulaki, A., De Bock, P. J., Christidou, A., Gevaert, K., Tsiotis, G., & Tselentis, Y. (2012). Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. Journal of Proteome Research, 11(4), 2374–2385. https://doi.org/10.1021/pr201122w
dc.relationSandberg, T. E., Pedersen, M., Lacroix, R. A., Ebrahim, A., Bonde, M., Herrgard, M. J., … Feist, A. M. (2014). Evolution of Escherichia coli to 42 °c and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Molecular Biology and Evolution, 31(10), 2647–2662. https://doi.org/10.1093/molbev/msu209
dc.relationSartain, M. J., Dick, D. L., Rithner, C. D., Crick, D. C., & Belisle, J. T. (2011). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. Journal of Lipid Research, 52(C), 861–872. https://doi.org/10.1194/jlr.M010363
dc.relationSchurig, G., Roop, R. 2nd, Bagchi, T., Boyle, S., Buhrman, D., & Sriranganathan, N. (1991). Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol, 28(2), 171–188.
dc.relationSharma, S. K., & Mohan, A. (2004). Multidrug-resistant tuberculosis. The Indian Journal of Medical Research, 120(4), 354–376. https://doi.org/10.1378/chest.130.1.261
dc.relationShoemaker, C. A., Klesius, P. H., & Evans, J. J. (2002). In ovo methods for utilizing the modified live Edwardsiella ictaluri vaccine against enteric septicemia in channel catfish. Aquaculture, 203(3–4), 221–227. https://doi.org/10.1016/S0044-8486(01)00631-7
dc.relationSkoog, D., Holler, F., & Crouch, S. (2007). Principles of instrumental analysis (6th ed.). Belmont (CA): Thompson Brooks/Cole.
dc.relationSmith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D’Argenio, D. A., … Olson, M. V. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA, 103(22), 8487–8492. https://doi.org/10.1073/pnas.0602138103
dc.relationSong, T., Park, Y., Shamputa, I. C., Seo, S., Lee, S. Y., Jeon, H. S., … Cho, S. N. (2014). Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Molecular Microbiology, 91(6), 1106–1119. https://doi.org/10.1111/mmi.12520
dc.relationSpies, F. S., Almeida Da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrobial Agents and Chemotherapy, 52(8), 2947–2949. https://doi.org/10.1128/AAC.01570-07
dc.relationSpies, F. S., Von Groll, A., Ribeiro, A. W., Ramos, D. F., Ribeiro, M. O., Dalla Costa, E. R., … Da Silva, P. E. A. (2013). Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes.Tuberculosis, 93(2), 150–154. https://doi.org/10.1016/j.tube.2012.11.004
dc.relationSriraman, K., Nilgiriwala, K., Saranath, D., Chatterjee, A., & Mistry, N. (2018). Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis. Current Microbiology, 75(4), 394–400. https://doi.org/10.1007/s00284-017-1393-9
dc.relationSsengooba, W., Lukoye, D., Meehan, C. J., Kateete, D. P., Joloba, M. L., De Jong, B. C., … Van Leth, F. (2017). Tuberculosis resistance-conferring mutations with fitness cost among HIV-positive individuals in Uganda. International Journal of Tuberculosis and Lung Disease, 21(5), 531–536. https://doi.org/10.5588/ijtld.16.0544
dc.relationStefan, M. A., Ugur, F. S., & Garcia, G. A. (2018). Source of the fitness defect in rifamycin-resistant Mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the B’ subunit. Antimicrobial Agents and Chemotherapy, 62(6), 1–13. https://doi.org/10.1128/AAC.00164-18
dc.relationStrauss, O. J., Warren, R. M., Jordaan, A., Streicher, E. M., Hanekom, M., Falmer, A. A., … Victor, T. C. (2008). Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. Journal of Clinical Microbiology, 46(4), 1514–1516. https://doi.org/10.1128/JCM.01938-07
dc.relationSun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., … Gao, Q. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. Journal of Infectious Diseases, 206(11), 1724–1733. https://doi.org/10.1093/infdis/jis601
dc.relationSun, J., Zhu, D., Xu, J., Jia, R., Chen, S., Liu, M., … Cheng, A. (2019). Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/s12866-019-1478-7
dc.relationSun, Y., Liu, C. sheng, & Sun, L. (2010). Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine, 28(38), 6344–6350. https://doi.org/10.1016/j.vaccine.2010.06.101
dc.relationSwain, P., Behera, T., Mohapatra, D., Nanda, P. K., Nayak, S. K., Meher, P. K., & Das, B. K. (2010). Derivation of rough attenuated variants from smooth virulent Aeromonas hydrophila and their immunogenicity in fish. Vaccine, 28(29), 4626–4631. https://doi.org/10.1016/j.vaccine.2010.04.078
dc.relationTaha, M.-K., Zarantonelli, M. L., Ruckly, C., Giorgini, D., & Alonso, J.-M. (2006). Rifampin-resistant Neisseria meningitidis. Emerging Infectious Diseases, 12(5), 859–860.
dc.relationTanaka, Y., Kasahara, K., Hirose, Y., Murakami, K., Kugimiya, R., & Ochi, K. (2013). Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. Journal of Bacteriology, 195(13), 2959–2970. https://doi.org/10.1128/JB.00147-13
dc.relationTB alliance. (2015). Genolyse DNA isolation from decontaminated sputum (screening samples) and from positive cultures (control strain M.tb H37Rv).
dc.relationThermo Scientific. (2009). NanoDrop 2000 / 2000c Spectrophotometer User Manual. Wilmington, Delaware: Thermo Scientific.
dc.relationThermo Scientific. (2010). LCQFleet - Getting Start Guide. (Thermo Scientific, Ed.). Dormering: Thermo Scientific.
dc.relationThermo Scientific. (2013). Thermo Scientific Dionex UltiMate 3000 Series SD, RS, BM and BX pumps-DOC4820-4001. (Thermo Scientific, Ed.). Dormering: Thermo Scientific
dc.relationTrindade, S., Sousa, A., & Gordo, I. (2012). Antibiotic resistance and stress in the light of Fisher’s model. Evolution, 66(12), 3815–3824. https://doi.org/10.1111/j.1558-5646.2012.01722.x
dc.relationVargas, A. P., Rios, A. A., Grandjean, L., Kirwan, D. E., Gilman, R. H., Sheen, P., & Zimic, M. J. (2020). Determination of potentially novel compensatory mutations in rpoC associated with rifampin resistance and rpoB mutations in Mycobacterium tuberculosis Clinical isolates from Peru. International Journal of Mycobacteriology, 9(2), 121–137. https://doi.org/10.4103/ijmy.ijmy_27_20
dc.relationVelayati, A. A., Farnia, P., Masjedi, M. R., Ibrahim, T. A., Tabarsi, P., Haroun, R. Z., … Varahram, M. (2009). Totally drug-resistant tuberculosis strains: Evidence of adaptation at the cellular level. European Respiratory Journal, 34(5), 1202–1203. https://doi.org/10.1183/09031936.00081909
dc.relationVelayati, Ali Akbar, Farnia, P., Ibrahim, T. A., Haroun, R. Z., Kuan, H. O., Ghanavi, J., … Masjedi, M. R. (2009). Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: Using transmission electron microscopy. Chemotherapy, 55(5), 303–307. https://doi.org/10.1159/000226425
dc.relationVellend, M. (2010). Conceptual synthesis in community ecology. Quarterly Review of Biology, 85(2), 183–206. https://doi.org/10.1086/652373
dc.relationVillanueva, M., Jousselin, A., Baek, K. T., Prados, J., Andrey, D. O., Renzoni, A., … Kelley, W. L. (2016). Rifampin resistance rpoB alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. Journal of Bacteriology, 198(19), 2719–2731. https://doi.org/10.1128/JB.00261-16
dc.relationVitali, B., Turroni, S., Serina, S., Sosio, M., Vannini, L., Candela, M., … Brigidi, P. (2008). Molecular and phenotypic traits of in-vitro-selected mutants of Bifidobacterium resistant to rifaximin. International Journal of Antimicrobial Agents, 31(6), 555–560. https://doi.org/10.1016/j.ijantimicag.2008.02.002
dc.relationVogwill, T., Kojadinovic, M., & Maclean, R. C. (2016). Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proceedings of the Royal Society B: Biological Sciences, 283(1830). https://doi.org/10.1098/rspb.2016.0151
dc.relationWang, C., Fang, R., Zhou, B., Tian, X., Zhang, X., Zheng, X., … Zhou, T. (2019). Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiology, 19(1), 1–8. https://doi.org/10.1186/s12866-019-1573-9
dc.relationWang, S., Zhou, Y., Zhao, B., Ou, X., Xia, H., Zheng, Y., … Zhao, Y. (2020). Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Frontiers of Medicine, 14(1), 51–59. https://doi.org/10.1007/s11684-019-0720-x
dc.relationWatanabe, Y., Cui, L., Katayama, Y., Kozue, K., & Hiramatsu, K. (2011). Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. Journal of Clinical Microbiology, 49(7), 2680–2684. https://doi.org/10.1128/JCM.02144-10
dc.relationWegrzyn, A., Szalewska-Pałasz, A., Błaszczak, A., Liberek, K., & Wegrzyn, G. (1998). Differential inhibition of transcription from sigma70- and sigma32-dependent promoters by rifampicin. FEBS Letters, 440(1–2), 172–174.
dc.relationWHO. (2019). WHO TB Report. WHO Library Cataloguing-in-Publication Data World, 7.
dc.relationWi, Y. M., Greenwood-Quaintance, K. E., Brinkman, C. L., Lee, J. Y. H., Howden, B. P., & Patel, R. (2018). Rifampicin resistance in Staphylococcus epidermidis: molecular characterisation and fitness cost of rpoB mutations. International Journal of Antimicrobial Agents, 51(5), 670–677. https://doi.org/10.1016/j.ijantimicag.2017.12.019
dc.relationWichelhaus, T. A., Böddinghaus, B., Besier, S., Schäfer, V., Brade, V., & Ludwig, A. (2002). Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46(11), 3381–3385. https://doi.org/10.1128/AAC.46.11.3381-3385.2002
dc.relationWillingham-Lane, J. M., Berghaus, L. J., Berghaus, R. D., Hart, K. A., & Giguère, S. (2019). Effect of macrolide and rifampin resistance on fitness of Rhodococcus equi during intramacrophage replication and in vivo. Infection and Immunity, 87(10), 1–10. https://doi.org/10.1128/IAI.00281-19
dc.relationWolff, K. A., Nguyen, H. T., Cartabuke, R. H., Singh, A., Ogwang, S., & Nguyen, L. (2009). Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrobial Agents and Chemotherapy, 53(8), 3515–3519. https://doi.org/10.1128/AAC.00012-09
dc.relationWrande, M., Roth, J. R., & Hughes, D. (2008). Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11863–11868. https://doi.org/10.1073/pnas.0804739105
dc.relationWu, S., Barnes, P. F., Samten, B., Pang, X., Rodrigue, S., Ghanny, S., … Howard, S. T. (2009). Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth. Microbiology, 155(4), 1272–1281. https://doi.org/10.1099/mic.0.024638-0
dc.relationXu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Molecular Genetics and Genomics, 268(2), 179–189. https://doi.org/10.1007/s00438-002-0730-1
dc.relationXu, Z., Zhou, A., Wu, J., Zhou, A., Li, J., Zhang, S., … Yao, Y. F. (2018). Transcriptional approach for decoding the mechanism of rpoC compensatory mutations for the fitness cost in rifampicin-resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 9(NOV), 1–12. https://doi.org/10.3389/fmicb.2018.02895
dc.relationYu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005a). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528–534. https://doi.org/10.1093/jac/dki053
dc.relationZaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20004–20009. https://doi.org/10.1073/pnas.0907925106
dc.relationZhan, L., Tang, J., Sun, M., & Qin, C. (2017). Animal models for tuberculosis in translational and precision medicine. Frontiers in Microbiology, 8(MAY). https://doi.org/10.3389/fmicb.2017.00717
dc.relationZhou, Y. N., & Jin, D. J. (1998). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2908–2913. https://doi.org/10.1073/pnas.95.6.2908
dc.relationZuo, Y., Wang, Y., & Steitz, T. A. (2013). The Mechanism of E. coli RNA Polymerase Regulation by ppGpp is suggested by the structure of their complex. Molecular Cell, 50(3), 430–436. https://doi.org/10.1016/j.molcel.2013.03.020
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAislamiento de mutantes rpoB S531L resistentes a rifampicina en Mycobacterium tuberculosis H37Rv ATCC 25618 e identificación de biomarcadores de adaptación
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución