dc.contributor | Guerrero Fajardo, Carlos Alberto | |
dc.contributor | Aprovechamiento energético de recursos naturales - APRENA | |
dc.creator | Rincón Rincón, Sahra Nathalíe | |
dc.date.accessioned | 2020-11-05T22:31:00Z | |
dc.date.available | 2020-11-05T22:31:00Z | |
dc.date.created | 2020-11-05T22:31:00Z | |
dc.date.issued | 2020-07-23 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78589 | |
dc.description.abstract | La agroindustria es una de las actividades económicas que más se ha consolidado en el país en los últimos años, debido a que promueve la inversión extranjera. Esto es posible gracias a la variedad de climas y riqueza de ecosistemas que posee Colombia. La floricultura es uno los sectores más importantes, pues Colombia está posicionado como el segundo país exportador de flores a nivel mundial y la rosa es la principal especie exportada. No obstante, el proceso productivo de la rosa genera una cantidad considerable de residuos, que en muchos casos origina impactos ambientales negativos al no ser utilizados. Por tal razón, la valorización de la biomasa de tallos de rosas a través del proceso organosolv ofrece una alternativa más allá de la producción de abonos orgánicos.
El objetivo de este trabajo de maestría fue evaluar la obtención de azúcares y lignina a partir de biomasa lignocelulósica proveniente de cultivos de rosas utilizando el proceso organosolv. Para esto, se realizó una caracterización de la biomasa por medio de un análisis próximo, análisis último y análisis composicional. El proceso organosolv se desarrolló utilizando un diseño experimental factorial multinivel en donde se evaluaron tres factores, temperatura (130 °C y 200 °C), tiempo (30 min y 90 min) y tipo de solvente (etanol – agua (1:1), glicerol – agua (1:1) y etanol – agua – glicerol (1:2:1)). Por último, se evaluó el rendimiento de azúcares y deslignificación de la biomasa, así como la obtención de lignina organosolv y los subproductos 5-HMF y furfural. El rendimiento de azúcares, 5-HMF y furfural en las fracciones líquidas y en los hidrolizados de las fracciones sólidas se midieron por medio de HPLC. El contenido de lignina soluble en ácido (LSA) se cuantificó por medio de espectrofotometría UV-Vis, mientras que la lignina insoluble en ácido (LIA) se determinó mediante análisis gravimétrico. El proceso organosolv realizado con una mezcla de etanol – agua (1:1) a 200 °C durante 30 min resultó en una mayor deslignificación y rendimiento de lignina organosolv con un 91% (p/p) y 11% (p/p) respectivamente. El aumento del tiempo de reacción de 30 min a 90 min con la misma temperatura y sistema de co-solvente resultó en una mayor recuperación de glucosa en la fracción sólida con un porcentaje del 71% (p/p), mientras que la mayor solubilización de xilosa (60% (p/p)) se presentó con la mezcla glicerol – agua (1:1) a 200 °C durante 30 min. | |
dc.description.abstract | The agroindustry in Colombia is one of the most consolidated economic activities in recent years because it promotes foreign investment. This is possible thanks to the variety of climates and wealth of ecosystems in the country. Floriculture is one of the most important sectors since Colombia is positioned as the second flower exporting country worldwide and the rose is the main exported species. However, the rose’s production process generates a considerable amount of waste, which in many occasions causes negative environmental impacts when these are not used. For this reason, rose stalks valorization through organosolv process offers an alternative beyond the production of organic fertilizers.
The objective of this thesis was to evaluate the obtaining of sugars and lignin from lignocellulosic biomass of rose crops using the organosolv process. For this, a biomass characterization was carried out by means of proximate analysis, elemental analysis and compositional analysis. The organosolv process was developed using a multilevel factorial experimental design, where three factors were evaluated: temperature (130 °C and 200 °C), time (30 min and 90 min) and type of solvent (ethanol – water (1:1), glycerol – water (1:1) and ethanol – water – glycerol (1:2:1)). Finally, sugars yield and biomass delignification were evaluated as well as the obtaining of organosolv lignin and 5-HMF and furfural by-products. The yield of sugars, 5-HMF and furfural in the liquid fractions and in the hydrolysates of the solid fractions were measured by means of HPLC. Acid soluble lignin content (ASL) was quantified through UV-Vis spectroscopy while acid insoluble lignin (AIL) was determined by means of gravimetric analysis. The organosolv process carried out with an ethanol – water mixture (1:1) at 200 °C for 30 min resulted in a higher delignification and organosolv lignin yield with 91 wt% and 11 wt% respectively. The increase in the reaction time from 30 min to 90 min with the same temperature and co-solvent system resulted in a greater glucose recovery in the solid fraction with 71 wt%, while the highest xylose solubilization (60 wt%) was presented with the glycerol – water mixture (1:1) at 200 °C for 30 min. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abdelaziz, O. Y., Brink, D. P., Prothmann, J., Ravi, K., Sun, M., García-Hidalgo, J., … Gorwa-Grauslund, M. F. (2016). Biological valorization of low molecular weight lignin. Biotechnology Advances, 34(8), 1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001 | |
dc.relation | Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., … Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808–1816. https://doi.org/10.1016/j.renene.2019.07.091 | |
dc.relation | Alinia, R., Zabihi, S., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 107(1), 61–66. https://doi.org/10.1016/j.biosystemseng.2010.07.002 | |
dc.relation | Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 152, 450–456. https://doi.org/10.1016/j.biortech.2013.11.038 | |
dc.relation | An, S., Li, W., Liu, Q., Xia, Y., Zhang, T., Huang, F., … Chen, L. (2019). Combined dilute hydrochloric acid and alkaline wet oxidation pretreatment to improve sugar recovery of corn stover. Bioresource Technology, 271(August 2018), 283–288. https://doi.org/10.1016/j.biortech.2018.09.126 | |
dc.relation | Arévalo Celis, L. del P. (2006). Implementación del código de conducta florverde en los niveles 1 y 2 de los programas de manejo de suelos y residuos en Flores San Juan S.A.,C.I. | |
dc.relation | Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344. https://doi.org/10.1016/j.biortech.2016.12.073 | |
dc.relation | Asociación Colombiana de Exportadores de Flores. (2010). Reporte GRI Global Reporting Initiative del sector floricultor colombiano asociado en Asocolflores. Retrieved from http://cecodes.org.co/reportes/archivos/asocolflores/ReporteGRIAsocolflores.pdf | |
dc.relation | Asociación Colombiana de Exportadores de Flores. (2018). Boletín estadístico Enero 2018. Bogotá D.C. | |
dc.relation | Asociación Colombiana de Exportadores de Flores. (2019). Boletín de exportación de flores cortadas enero - junio 2019. Retrieved from https://asocolflores.org/es/ya-se-encuentran-disponibles-los-boletines-a-junio-2019/ | |
dc.relation | ASTM INTERNATIONAL. (2013). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (Vol. 1998). https://doi.org/10.1520/E0872-82R13.2 | |
dc.relation | Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy, 33(12), 1680–1686. https://doi.org/10.1016/j.biombioe.2009.09.001 | |
dc.relation | Bär, J., Phongpreecha, T., Singh, S. K., Kral Yilmaz, M., Foster, C. E., Crowe, J. D., & Hodge, D. B. (2018). Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Conversion and Biorefinery, 8(4), 813–824. https://doi.org/10.1007/s13399-018-0330-x | |
dc.relation | Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2019). Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol. Bioresource Technology Reports, 6(January), 123–130. https://doi.org/10.1016/j.biteb.2019.02.013 | |
dc.relation | Borand, M. N., & Karaosmanoǧlu, F. (2018). Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. Journal of Renewable and Sustainable Energy, 10(3), 033104. https://doi.org/10.1063/1.5025876 | |
dc.relation | Brosse, N., Hazwan Hussin, M., & Abdul Rahim, A. (2017). Organosolv Processes. In Advances in biochemical engineering/biotechnology (Vol. 166, pp. 153–176). https://doi.org/10.1007/10 | |
dc.relation | Cai, D., Li, P., Luo, Z., Qin, P., Chen, C., Wang, Y., … Tan, T. (2016). Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresource Technology, 211, 117–124. https://doi.org/10.1016/j.biortech.2016.03.076 | |
dc.relation | Chang, K. L., Thitikorn-amorn, J., Hsieh, J. F., Ou, B. M., Chen, S. H., Ratanakhanokchai, K., … Chen, S. T. (2011). Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 35(1), 90–95. https://doi.org/10.1016/j.biombioe.2010.08.027 | |
dc.relation | Chávez-Sifontes, M. (2019). La biomasa: fuente alternativa de combustibles y compuestos químicos. Anales de Química - RSEQ, 115(5), 399–407. Retrieved from http://analesdequimica.com/115-5/1155-chavez.pdf | |
dc.relation | Cheng, J., Su, H., Zhou, J., Song, W., & Cen, K. (2011). Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093–2101. https://doi.org/10.1016/j.ijhydene.2010.11.021 | |
dc.relation | Choi, J. H., Jang, S. K., Kim, J. H., Park, S. Y., Kim, J. C., Jeong, H., … Choi, I. G. (2019). Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renewable Energy, 130, 952–960. https://doi.org/10.1016/j.renene.2018.05.052 | |
dc.relation | Chundawat, S. P. S., Chang, L., Gunawan, C., Balan, V., McMahan, C., & Dale, B. E. (2012). Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Industrial Crops and Products, 37(1), 486–492. https://doi.org/10.1016/j.indcrop.2011.07.025 | |
dc.relation | Cybulska, I., Brudecki, G. P., Zembrzuska, J., Schmidt, J. E., Lopez, C. G. B., & Thomsen, M. H. (2017). Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Applied Energy, 185, 1040–1050. https://doi.org/10.1016/j.apenergy.2016.01.094 | |
dc.relation | Dahunsi, S. O., Adesulu-Dahunsi, A. T., Osueke, C. O., Lawal, A. I., Olayanju, T. M. A., Ojediran, J. O., & Izebere, J. O. (2019). Biogas generation from Sorghum bicolor stalk: Effect of pretreatment methods and economic feasibility. Energy Reports, 5, 584–593. https://doi.org/10.1016/j.egyr.2019.04.002 | |
dc.relation | de la Torre, M. J., Moral, A., Hernandez, D. M., Cabeza, E., & Tijero, A. (2013). Organosolv lignin for biofuel. Industrial Crops & Products, 45, 58–63. https://doi.org/10.1016/j.indcrop.2012.12.002 | |
dc.relation | Ebrahimi, M., Villaflores, O. B., Ordono, E. E., & Caparanga, A. R. (2017). Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresource Technology, 228, 264–271. https://doi.org/10.1016/j.biortech.2016.12.106 | |
dc.relation | El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003. https://doi.org/10.1016/j.polymdegradstab.2010.03.012 | |
dc.relation | Ferreira, J. A., & Taherzadeh, M. J. (2020). Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource Technology, 299(December 2019), 122695. https://doi.org/10.1016/j.biortech.2019.122695 | |
dc.relation | Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001 | |
dc.relation | Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088 | |
dc.relation | Goh, C. S., Tan, H. T., Lee, K. T., & Brosse, N. (2011). Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 35(9), 4025–4033. https://doi.org/10.1016/j.biombioe.2011.06.034 | |
dc.relation | Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033 | |
dc.relation | Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of Samples for Compositional Analysis. Golden, Colorado. | |
dc.relation | Hesami, S. M., Zilouei, H., Karimi, K., & Asadinezhad, A. (2015). Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Industrial Crops and Products, 76, 449–455. https://doi.org/10.1016/j.indcrop.2015.07.018 | |
dc.relation | Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., & Mittelbach, M. (2019). Influence of Ethanol Organosolv Pulping Conditions on Physicochemical Lignin Properties of European Larch. International Journal of Chemical Engineering, 2019, 10 pages. https://doi.org/10.1155/2019/1734507 | |
dc.relation | Hu, H., Zhang, Y., Liu, X., Huang, Z., Chen, Y., Yang, M., … Feng, Z. (2014). Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation. Polymer Bulletin, 71(2), 453–464. https://doi.org/10.1007/s00289-013-1070-5 | |
dc.relation | Jang, M. O., & Choi, G. (2018). Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 134, 30–43. https://doi.org/10.1016/j.bej.2018.03.002 | |
dc.relation | Jang, S. K., Kim, H. Y., Jeong, H. S., Kim, J. Y., Yeo, H., & Choi, I. G. (2016). Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renewable Energy, 87, 599–606. https://doi.org/10.1016/j.renene.2015.10.045 | |
dc.relation | Jiang, Z., Zhao, P., & Hu, C. (2018). Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. Bioresource Technology, 256(January), 466–477. https://doi.org/10.1016/j.biortech.2018.02.061 | |
dc.relation | Jing, Q., & Lu, X. (2007). Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chinese Journal of Chemical Engineering, 15(5), 666–669. https://doi.org/10.1016/s1004-9541(07)60143-8 | |
dc.relation | Joffres, B., Laurenti, D., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2013). Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review. Oil and Gas Science and Technology, 68(4), 753–763. https://doi.org/10.2516/ogst/2013132 | |
dc.relation | Karunanithy, C., & Muthukumarappan, K. (2011). Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochemical Engineering Journal, 54(2), 71–82. https://doi.org/10.1016/j.bej.2011.02.001 | |
dc.relation | Kataria, R., Mol, A., Schulten, E., Happel, A., & Mussatto, S. I. (2017). Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Industrial Crops and Products, 106, 48–58. https://doi.org/10.1016/j.indcrop.2016.08.050 | |
dc.relation | Kim, D. E., & Pan, X. (2010). Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Industrial and Engineering Chemistry Research, 49(23), 12156–12163. https://doi.org/10.1021/ie101671r | |
dc.relation | Kim, H. Y., Jeong, H. S., Lee, S. Y., Choi, J. W., & Choi, I. G. (2015). Pd-catalyst assisted organosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer. Fuel, 153, 40–47. https://doi.org/10.1016/j.fuel.2015.02.102 | |
dc.relation | Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48. https://doi.org/10.1016/j.biortech.2015.08.085 | |
dc.relation | Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose : Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie, 44, 3358–3393. https://doi.org/10.1002/anie.200460587 | |
dc.relation | Koo, B. W., Park, N., Jeong, H. S., Choi, J. W., Yeo, H., & Choi, I. G. (2011). Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. Journal of Industrial and Engineering Chemistry, 17(1), 18–24. https://doi.org/10.1016/j.jiec.2010.10.003 | |
dc.relation | Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0137-9 | |
dc.relation | Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111 | |
dc.relation | Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325. https://doi.org/10.1016/j.biortech.2015.06.150 | |
dc.relation | Lee, H. R., Lee, H. W., Lee, Y. W., Kazlauskas, R. J., & Park, T. H. (2017). Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid. Biomass and Bioenergy, 105, 190–196. https://doi.org/10.1016/j.biombioe.2017.07.004 | |
dc.relation | Lee, J. M., Jameel, H., & Venditti, R. A. (2010). A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(14), 5449–5458. https://doi.org/10.1016/j.biortech.2010.02.055 | |
dc.relation | Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403. https://doi.org/10.1016/j.cej.2009.10.061 | |
dc.relation | Li, M.-F., Sun, S.-N., Xu, F., & Sun, R.-C. (2012). Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals and Materials: A Biorefinery Processing Perspective. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science (Vol. 9783642284, pp. 341–379). https://doi.org/10.1007/978-3-642-28418-2 | |
dc.relation | Li, M. F., Yang, S., & Sun, R. C. (2016). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980. https://doi.org/10.1016/j.biortech.2015.10.004 | |
dc.relation | Lizasoain, J., Rincón, M., Theuretzbacher, F., Enguídanos, R., Nielsen, P. J., Potthast, A., … Bauer, A. (2016). Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass and Bioenergy, 95, 84–91. https://doi.org/10.1016/j.biombioe.2016.09.021 | |
dc.relation | Ma, H., Liu, W. W., Chen, X., Wu, Y. J., & Yu, Z. L. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100(3), 1279–1284. https://doi.org/10.1016/j.biortech.2008.08.045 | |
dc.relation | Martín-Sampedro, R., Santos, J. I., Fillat, Ú., Wicklein, B., Eugenio, M. E., & Ibarra, D. (2019). Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 126, 18–29. https://doi.org/10.1016/j.ijbiomac.2018.12.158 | |
dc.relation | McDonough, T. (1993). The chemistry of organosolv delignification. TAPPI Journal, 76, 186–193. | |
dc.relation | McMillan, J. D. (1994). Pretreatment of Lignocellulosic Biomass. In Enzymatic Conversion of Biomass for Fuels Production (pp. 292–324). https://doi.org/10.1021/bk-1994-0566.ch015 | |
dc.relation | Meng, X., Bhagia, S., Wang, Y., Zhou, Y., Pu, Y., Dunlap, J. R., … Yoo, C. G. (2020). Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Industrial Crops and Products, 146(August 2019), 112144. https://doi.org/10.1016/j.indcrop.2020.112144 | |
dc.relation | Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 120, 159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046 | |
dc.relation | Miles-Barrett, D. M., Neal, A. R., Hand, C., Montgomery, J. R. D., Panovic, I., Ojo, O. S., … Westwood, N. J. (2016). The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Organic and Biomolecular Chemistry, 14(42), 10023–10030. https://doi.org/10.1039/c6ob01915c | |
dc.relation | Mittal, A., Chatterjee, S. G., Scott, G. M., & Amidon, T. E. (2009). Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science, 64(13), 3031–3041. https://doi.org/10.1016/j.ces.2009.03.011 | |
dc.relation | Montané, D., Salvadó, J., Torras, C., & Farriol, X. (2002). High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass and Bioenergy, 22(4), 295–304. https://doi.org/10.1016/S0961-9534(02)00007-7 | |
dc.relation | Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b | |
dc.relation | Morales De La Rosa, S. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos (Universidad Autónoma de Madrid). Retrieved from http://digital.csic.es/bitstream/10261/132717/1/morales_de_la_rosa_silvia.pdf | |
dc.relation | Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548–565. https://doi.org/10.1016Zj/rser.2015.06.032 | |
dc.relation | Mou, H., & Wu, S. (2016). Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 220, 637–640. https://doi.org/10.1016/j.biortech.2016.08.072 | |
dc.relation | Mulakhudair, A. R., Hanotu, J., & Zimmerman, W. (2017). Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 105, 147–154. https://doi.org/10.1016/j.biombioe.2017.06.018 | |
dc.relation | Muurinen, E. (2000). Organosolv pulping- a review and distillation study related to peroxyacid pulping. https://doi.org/10.1016/0960-8524(91)90105-S | |
dc.relation | Ni, Y., & Hu, Q. (1995). Alcell® lignin solubility in ethanol–water mixtures. Journal of Applied Polymer Science, 57(12), 1441–1446. https://doi.org/10.1002/app.1995.070571203 | |
dc.relation | Orduña Ortega, J., Mora Vargas, J. A., Perrone, O. M., Metzker, G., Gomes, E., da Silva, R., & Boscolo, M. (2020). Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars. Industrial Crops and Products, 145(October 2019), 111959. https://doi.org/10.1016/j.indcrop.2019.111959 | |
dc.relation | Organization of the Petroleum Exporting Countries. (2019). World oil outlook 2040. | |
dc.relation | Orozco, A., Ahmad, M., Rooney, D., & Walker, G. (2007). Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection, 85(5 B), 446–449. https://doi.org/10.1205/psep07003 | |
dc.relation | Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66(1), 170–177. https://doi.org/10.1016/j.indcrop.2014.12.023 | |
dc.relation | Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., … Saddler, J. (2006). Bioconversion of Hybrid Poplar to Ethanol and Co-Products Using an Organosolv Fractionation Process: Optimization of Process Yields. Biotechnology and Bioengineering, 94(5), 851–861. https://doi.org/10.1002/bit.20905 | |
dc.relation | Pan, X., Xie, D., Yu, R. W., Lam, D., & Saddler, J. N. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 46(8), 2609–2617. https://doi.org/10.1021/ie061576l | |
dc.relation | Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. https://doi.org/10.1002/bit.21883 | |
dc.relation | Park, Y. C., & Kim, J. S. (2012). Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 47(1), 31–35. https://doi.org/10.1016/j.energy.2012.08.010 | |
dc.relation | Parlamento Europeo y Consejo de la Unión Europea. Directiva 2009/28/CE del Parlamento Europeo y del Consejo de 23 de abril de 2009. , Diario Oficial de la Unión Europea § (2009). | |
dc.relation | Pereira, L., Alves, L., Marabezi, K., & Da Silva, A. (2011). Delignification of sugarcane bagasse using glycerol – water mixtures to produce pulps for saccharification. 102, 10040–10046. https://doi.org/10.1016/j.biortech.2011.08.050 | |
dc.relation | Pérez Jiménez, J. A. (2008). Estudio del pretratamiento con agua caliente en fase líquida de la paja de trigo para su conversión biológica a etanol. Universidad de Jaén. | |
dc.relation | Poletto, M., Pistor, V., & Zattera, A. J. (2013). Structural Characteristics and Thermal Properties of Native Cellulose. Intech, 25. https://doi.org/http://dx.doi.org/10.5772/50452 | |
dc.relation | Procolombia. (2019). ¿Cómo funciona el sector floricultor en Colombia? Retrieved from https://www.colombiatrade.com.co/noticias/como-funciona-el-sector-floricultor-en-colombia# | |
dc.relation | Pronyk, C., & Mazza, G. (2010). Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Industrial and Engineering Chemistry Research, 49(14), 6367–6375. https://doi.org/10.1021/ie1003625 | |
dc.relation | Quesada-Medina, J., López-Cremades, F. J., & Olivares-Carrillo, P. (2010). Organosolv extraction of lignin from hydrolyzed almond shells and application of the δ-value theory. Bioresource Technology, 101(21), 8252–8260. https://doi.org/10.1016/j.biortech.2010.06.011 | |
dc.relation | Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. Universidad Nacional de Colombia. | |
dc.relation | Ravindran, R., & Jaiswal, A. K. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 199, 92–102. https://doi.org/10.1016/j.biortech.2015.07.106 | |
dc.relation | Romaní, A., Ruiz, H. A., Pereira, F. B., Domingues, L., & Teixeira, J. A. (2013). Fractionation of Eucalyptus globulus Wood by Glycerol−Water Pretreatmen: Optimization and Modeling. Industrial and Engineering Chemistry Research, 52, 14342–14352. https://doi.org/dx.doi.org/10.1021/ie402177f | |
dc.relation | Romaní, A., Ruiz, H. A., Teixeira, J. A., & Domingues, L. (2016). Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 95, 1–9. https://doi.org/10.1016/j.renene.2016.03.106 | |
dc.relation | Romero, I., Ruiz, E., Castro, E., & Moya, M. (2010). Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design, 88(5–6), 633–640. https://doi.org/10.1016/j.cherd.2009.10.007 | |
dc.relation | Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16. https://doi.org/10.1016/j.biombioe.2017.03.011 | |
dc.relation | Sannigrahi, P., & Ragauskas, A. J. (2013). Fundamentals of Biomass Pretreatment by Fractionation. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, 201–222. https://doi.org/10.1002/9780470975831.ch10 | |
dc.relation | Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review Of Plant Biology, 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315 | |
dc.relation | Schmetz, Q., Maniet, G., Jacquet, N., Teramura, H., Ogino, C., Kondo, A., & Richel, A. (2016). Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Industrial Crops and Products, 94, 308–317. https://doi.org/10.1016/j.indcrop.2016.09.003 | |
dc.relation | Schwiderski, M., Kruse, A., Grandl, R., & Dockendorf, D. (2014). Comparison of the influence of a Lewis acid AlCl3 and a Brønsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 16(3), 1569–1578. https://doi.org/10.1039/c3gc42050g | |
dc.relation | Semerci, I., & Güler, F. (2018). Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops and Products, 125(August), 588–595. https://doi.org/10.1016/j.indcrop.2018.09.046 | |
dc.relation | Shahabazuddin, M., Sarat Chandra, T., Meena, S., Sukumaran, R. K., Shetty, N. P., & Mudliar, S. N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology, 263(February), 199–206. https://doi.org/10.1016/j.biortech.2018.04.027 | |
dc.relation | Sifontes, C. &, & Domine, M. E. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances En Ciencias e Ingenería, 4(4), 15–46. https://doi.org/http://www.exeedu.com/publishing.cl/av_cienc_ing/2013/Vol4/Nro4/3-ACI1184-13-full.pdf | |
dc.relation | Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., & Shrivastava, A. K. (2008). Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24(5), 667–673. https://doi.org/10.1007/s11274-007-9522-4 | |
dc.relation | Singh, Y. D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490–500. https://doi.org/10.1016/j.renene.2016.11.039 | |
dc.relation | Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., … Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42621 | |
dc.relation | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass. In National Renewable Energy Laboratory (NREL). https://doi.org/NREL/TP-510-42619 | |
dc.relation | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of Structural Carbohydrates and Lignin in Biomass (Vol. 2011). https://doi.org/NREL/TP-510-42618 | |
dc.relation | Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass. In Technical Report NREL/TP-510-42619. https://doi.org/NREL/TP-510-42621 | |
dc.relation | Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews Genetics, 9(6), 433–443. https://doi.org/10.1038/nrg2336 | |
dc.relation | Studer, M. H., DeMartini, J. D., Davis, M. F., Sykes, R. W., Davison, B., Keller, M., … Wyman, C. E. (2011). Lignin content in natural populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6300–6305. https://doi.org/10.1073/pnas.1009252108 | |
dc.relation | Sun, D., Sun, S. C., Wang, B., Sun, S. F., Shi, Q., Zheng, L., … Sun, R. C. (2020). Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses. Bioresource Technology, 297(October 2019), 122471. https://doi.org/10.1016/j.biortech.2019.122471 | |
dc.relation | Sun, F. F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., … Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361. https://doi.org/10.1016/j.biortech.2015.03.051 | |
dc.relation | Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99(18), 8856–8863. https://doi.org/10.1016/j.biortech.2008.04.049 | |
dc.relation | Thoresen, P. P., Matsakas, L., Rova, U., & Christakopoulos, P. (2020). Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology, 306(March), 123189. https://doi.org/10.1016/j.biortech.2020.123189 | |
dc.relation | Tsegaye, B., Balomajumder, C., & Roy, P. (2020). Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy, 148, 923–934. https://doi.org/10.1016/j.renene.2019.10.176 | |
dc.relation | Unidad de Planeación Minero Energética. (2019). Plan Energetico Nacional 2020-2050. Retrieved from https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx | |
dc.relation | Vallejos, M. E., Zambon, M. D., Area, M. C., & da silva Curvelo, A. A. (2015). Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Industrial Crops and Products, 65, 349–353. https://doi.org/10.1016/j.indcrop.2014.11.018 | |
dc.relation | Wang, B., Shen, X. J., Wen, J. L., Xiao, L., & Sun, R. C. (2017). Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. International Journal of Biological Macromolecules, 97, 447–459. https://doi.org/10.1016/j.ijbiomac.2017.01.069 | |
dc.relation | Weingarten, R., Cho, J., Conner, W. C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423–1429. https://doi.org/10.1039/c003459b | |
dc.relation | Wells, J. M., Drielak, E., Surendra, K. C., & Kumar Khanal, S. (2020). Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresource Technology, 300(December 2019), 122593. https://doi.org/10.1016/j.biortech.2019.122593 | |
dc.relation | Wijaya, Y. P., Putra, R. D. D., Widyaya, V. T., Ha, J. M., Suh, D. J., & Kim, C. S. (2014). Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221–231. https://doi.org/10.1016/j.biortech.2014.04.084 | |
dc.relation | Xu, F., Sun, J. X., Sun, R., Fowler, P., & Baird, M. S. (2006). Comparative study of organosolv lignins from wheat straw. Industrial Crops and Products, 23(2), 180–193. https://doi.org/10.1016/j.indcrop.2005.05.008 | |
dc.relation | Yáñez-S, M., Matsuhiro, B., Nuñez, C., Pan, S., Hubbell, C. A., Sannigrahi, P., & Ragauskas, A. J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 110, 184–194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026 | |
dc.relation | Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40. https://doi.org/10.1002/bbb.49 | |
dc.relation | Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590. https://doi.org/10.1016/j.biortech.2011.04.092 | |
dc.relation | Yuan, X., Duan, Y., He, L., Singh, S., Simmons, B., & Cheng, G. (2017). Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering. Bioresource Technology, 232, 113–118. https://doi.org/10.1016/j.biortech.2017.02.014 | |
dc.relation | Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33. https://doi.org/10.1016/j.biortech.2015.08.102 | |
dc.relation | Zhang, R., Lu, X., Sun, Y., Wang, X., & Zhang, S. (2011). Modeling and optimization of dilute nitric acid hydrolysis on corn stover. Journal of Chemical Technology and Biotechnology, 86(2), 306–314. https://doi.org/10.1002/jctb.2529 | |
dc.relation | Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367–375. https://doi.org/10.1007/s10295-007-0293-6 | |
dc.relation | Zhang, Z., Harrison, M. D., Rackemann, D. W., Doherty, W. O. S., & O’Hara, I. M. (2016). Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chemistry, 18(2), 360–381. https://doi.org/10.1039/c5gc02034d | |
dc.relation | Zhang, Z., Wong, H. H., Albertson, P. L., Doherty, W. O. S., & O’Hara, I. M. (2013). Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology, 138, 14–21. https://doi.org/10.1016/j.biortech.2013.03.065 | |
dc.relation | Zhao, M. jiao, Xu, Q. qin, Li, G. min, Zhang, Q. zhi, Zhou, D., Yin, J. zhong, & Zhan, H. shu. (2019). Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. Journal of Energy Chemistry, 31, 39–45. https://doi.org/10.1016/j.jechem.2018.05.003 | |
dc.relation | Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11, 567–590. https://doi.org/10.1002/bbb.1768 | |
dc.relation | Zhao, X., Zhou, Y., & Liu, D. (2012). Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 105, 160–168. https://doi.org/10.1016/j.biortech.2011.11.075 | |
dc.relation | Zhou, Z., Lei, F., Li, P., & Jiang, J. (2018). Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 115(11), 2683–2702. https://doi.org/10.1002/bit.26788 | |
dc.relation | Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64(3), 474–485. https://doi.org/10.1016/j.ces.2008.09.026 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv | |
dc.type | Otro | |