dc.relation | Aceves, A. C. M., Domínguez, O. R., Gutiérrez, R. L., Moreno, M. E. O., Escamilla, J. C. M., & Samuels, G. J. (2001). Especies de Trichoderma en suelos cultivados con mango afectados por Escoba de bruja y su potencial inhibitorio sobre Fusarium oxysporum y F. subglutinans. Revista Mexicana de Fitopatología, 19(2), 154-160.
Adikaram, N. I. M. A. L., Karunanayake, C. H. A. T. H. U. R. I. K. A., Sinniah, G. A. N. G. A., Vithanage, I. K., & Yakandawala, D. E. E. P. T. H. I. (2015). Fungal quiescence in fruit: an attempt to avoid toxic substances?. J. Mycopathol. Res, 53, 1-7.
Afanador-Kafuri, L., González, A., Gañán, L., Mejía, J. F., Cardona, N., & Alvarez, E. (2014). Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease, 98(11), 1503-1513. doi: 10.1094/PDIS-07-13-0752-RE.
Afzal, H., Shazad, S., Qamar, S., & Nisa, S. Q. U. (2013). Morphological identification of Aspergillus species from the soil of Larkana District (Sindh, Pakistan). Asian J. Agric. Sci, 1(105), e17. AGRONET. (2020). Estadísticas Agropecuarias. Tomado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx (13 de marzo de 2020).
Albarouki, E., & Deising, H. B. (2013). Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Molecular Plant-microbe Interactions, 26(6), 695-708. doi: 10.1094/MPMI-01-13-0003-R.
Alkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205(2), 801-815. doi: 10.1111/nph.13087.
Alonso, J. G. G., Alonso, O. G., Ángel, D. N., Ortiz, D. T., Mejía, E. Z., Sánchez, F. D., & Huerta, H. V. (2003). Evaluación de resistencia a Imazalil, Prochloraz y Azoxystrobin en aislamientos de Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. y control de la Antracnosis del mango. Revista Mexicana de Fitopatología, 21(3), 379-383.
https://www.redalyc.org/pdf/612/61221321.pdf.
Álvarez, E., Gañán, L., Rojas-Triviño, A., Mejía, J. F., Llano, G. A., & González, A. (2014). Diversity and pathogenicity of Colletotrichum species isolated from soursop in Colombia. European Journal of Plant Pathology, 139(2), 325-338. doi: 10.1007/s10658-014-0388-7.
Amil-Ruiz, F., Garrido-Gala, J., Gadea, J., Blanco-Portales, R., Muñoz-Mérida, A., Trelles, O. ... & Mercado, J. Á. (2016). Partial activation of SA-and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Frontiers in Plant Science, 7, 1036.doi: 10.3389/fpls.2016.01036
Assefa, S., Keane, M. T., Otto D. T., Newbold, C., & Berriman, M. (2009) ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968-1969. doi: 10.1093/bioinformatics/btp347.
Barad, S., Sela, N., Dubey, A. K., Kumar, D., Luria, N., Ment, D. ... & Prusky, D. (2017). Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi–SlPH tomato line with reduced fruit acidity and higher pH. BMC genomics, 18(1), 579. doi: 10.1186/s12864-017-3961-6.
Bhattacherjee, A. K., & Pandey, B. K. (2010). Dissipation of carbendazim in mango after pre-and post-harvest treatments. The Journal of Plant Protection Sciences, 1, 65-70. http://www.aappbckv.org/journal/archive/Ch%208%20Dissipation%20of%20(8).pdf.
Bi, F., Barad, S., Ment, D., Luria, N., Dubey, A., Casado, V. ... & Prusky, D. (2016). Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Molecular Plant Pathology, 17(8), 1178-1195. https://doi.org/10.1111/mpp.12355.
Cabrera, L., Rojas, P., Rojas, S., Pardo-De la Hoz, C. J., Mideros, M. F., Danies, G.,… Restrepo, S. (2018). Most Colletotrichum species associated with tree tomato (Solanum betaceum) and mango (Mangifera indica) crops are not host-specific. Plant Pathology, 67(5), 1022–1030. doi: 10.1111/ppa.12829.
Chillet, M., Hubert, O., & De Lapeyre de Bellaire, L. (2006). Relationship between ripening and the development of banana anthracnose caused by Colletotrichum musae (Berck. and Curt.) Arx. Journal of phytopathology, 154(3), 143-147. doi: 10.1111/j.1439- 0434.2006.01074.x.
Crous, P. W., Braun, U., Schubert, K., & Groenewald, J. Z. (2007). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33–56. doi:10.3114/sim.2007.58.02.
Damm, U., Cannon, P. F., Liu, F., Barreto, R. W., Guatimosim, E., & Crous, P. W. (2013). The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds. Fungal Diversity, 61(1), 29-59. doi: 10.1007/s13225-013-0255-4
Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45. http://www.fungaldiversity.org/fdp/sfdp/FD39-3.pdf
Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772. doi: 10.1038/nmeth.2109.
De Oliveira Costa, V. S., Michereff, S. J., Martins, R. B., Gava, C. A. T., Mizubuti, E. S. G., & Câmara, M. P. S. (2010). Species of Botryosphaeriaceae associated on mango in Brazil. European Journal of Plant Pathology, 127(4), 509–519. doi: 10.1007/s10658-010-9616-y .
De Souza, A., Delphino Carboni, R. C., Wickert, E., de Macedo Lemos, E. G., & de Goes, A. (2013). Lack of host specificity of Colletotrichum spp. isolates associated with Anthracnose symptoms on mango in Brazil. Plant Pathology, 62(5), 1038-1047. doi:10.1111/ppa.12021.
Diéguez-Uribeondo, J., Förster, H., Soto-Estrada, A., & Adaskaveg, J. E. (2005). Subcuticular-intracellular hemibiotrophic and intercellular necrotrophic development of Colletotrichum acutatum on almond. Phytopathology, 95(7), 751-758. doi: 10.1094/PHYTO-95-0751.
Do Chi, T., & Kunasakdakul, K. (2013). Inhibition of Colletotrichum gloeosporioides and control of postharvest Anthracnose disease on mango fruit using propionic acid combined with bee-carnauba wax emulsion. Journal of Agricultural Science (Toronto), 5(12), 110- 116. https://www.cabdirect.org/cabdirect/abstract/20143008828
Eloy, Y. R., Vasconcelos, I. M., Barreto, A. L., Freire-Filho, F. R., & Oliveira, J. T. (2015). H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp.]. Fungal Biology, 119(8), 747-757.doi: 10.1016/j.funbio.2015.05.001.
Fernando, T. H. P. S., Jayasinghe, C. K., & Wijesundera, R. L. C. (2000). Factors affecting spore production, germination and viability of Colletotrichum acutatum isolates from Hevea brasiliensis. Mycological Research, 104(6), 681-685. doi: 10.1017/S0953756200002483.
Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R. J., Narusaka, Y. ... & Shirasu, K. (2013). Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist, 197(4), 1236-1249. doi: 10.1111/nph.12085
Guidarelli, M., Zoli, L., Orlandini, A., Bertolini, P., & Baraldi, E. (2014). The mannose‐binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Molecular Plant Pathology, 15(8), 832-840. doi: 10.1111/mpp.12143.
Gonçalves, A. E., Velho, A. C., & Stadnik, M. J. (2016). Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple. European Journal of Plant Pathology, 146(3), 497-506. doi: 10.1007/s10658- 016-0934-6.
Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R. ... & Henrissat, B. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature communications, 7, 11362.
Han, Y. C., Zeng, X. G., Xiang, F. Y., Zhang, Q. H., Cong, G. U. O., Chen, Ff. Y., & Gu, Y. C. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. Journal of Integrative Agriculture, 17(6), 1391-1400. doi: 10.1016/S2095-3119(17)61854-9.
He, L., Li, X., Gao, Y., Li, B., Mu, W., & Liu, F. (2019). Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China. Plant disease, 103(1), 34-43. doi: 10.1094/PDIS-04-18-0597-RE
Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E. ... & Lumbsch, H. T. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509-547. doi: 0.1016/j.mycres.2007.03.004.
Huser, A., Takahara, H., Schmalenbach, W., & O'Connell, R. (2009). Discovery of pathogenicity genes in the crucifer Anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Molecular Plant-Microbe Interactions, 22(2), 143-156. doi: 10.1094/MPMI -22-2-0143.014-0480-z
Korn, M., Schmidpeter, J., Dahl, M., Mueller, S., Voll, L. M., & Koch, C. (2015). A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS One, 10(5), e0125960. doi: 10.1371/journal.pone.0125960.
Lin, C., Liu, X., Shi, T., Li, C., & Huang, G. (2018). The Colletotrichum gloeosporioides perilipin homologue CAP 20 regulates functional appressorial formation and fungal virulence. Journal of Phytopathology, 166(3), 216-225. doi: 10.1111/jph.12678
Nagaraju, R. S., Sriram, R. H., & Achur, R. (2020). Antifungal activity of Carbendazimconjugated silver nanoparticles against Anthracnose disease caused by Colletotrichum gloeosporioides in mango. Journal of Plant Pathology, 102(1), 39-46. doi: 10.1007/s42161-019-00370-y. | |