dc.contributorHoyos Carvajal, Lilliana María
dc.contributorHoyos Carvajal, Liliana María
dc.creatorPáez Redondo, Alberto Rafael
dc.date.accessioned2021-07-23T16:26:41Z
dc.date.accessioned2022-09-21T19:15:29Z
dc.date.available2021-07-23T16:26:41Z
dc.date.available2022-09-21T19:15:29Z
dc.date.created2021-07-23T16:26:41Z
dc.date.issued2020-09
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79837
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3414434
dc.description.abstractColletotrichum, ascomycete Glomerellales, familia Glomerellaceae, con especies agrupadas en Complejo de especies, subespecies o clados, causa “Antracnosis” en frutales. La biología de la quiescencia-endofitismo (Q/E) en la infección en mango es aún incierta, incluyendo especies asociadas y estrategias de manejo. Se estudió la diversidad de morfotipos Q/E en flores y frutos analizando interacciones con momento fenológico, estrato y órganos del árbol, patogénesis y respuesta a opciones de manejo. La frecuencia de aislamiento, riqueza y diversidad fue mayor en árboles en desarrollo vegetativo (p<0,01) y el estrato bajo de árboles, obteniendo 185 aislamientos, agrupados en 34 morfoespecies que presentaron diferencias estadísticas para variables morfológicas y biológicas (p<0,01); la ocurrencia de infecciones inducidas de Q/E fue mayor en frutos en etapa 709 (p<0,01) y estrato bajo del árbol (p>0,05). Se describió histológicamente el ciclo infectivo de morfoespecies en frutos inmaduros y maduros, evidenciando quiescencia en UMUN 004-moderadamente virulenta y ciclo de 6-7 días, y no quiescencia entre fases biotrófica y necrotrófica en UMUN 021-altamente virulentas y ciclo de 4-5 días. Ocho morfoespecies seleccionadas por patogenicidad contrastante fueron identificadas mediante análisis polifásico usando secuencias de ITS, GADPH, Tub2, CHs-1 y Act; como C. asianum, C. gloeosporioides y C. tropicale del complejo C. gloeosporioides, y C. karstii del complejo C. boninense; estos resultados constituyen el primer registro para Colombia de C. karstii en mango y de C. tropicale como endófito de frutos de mango. La acidificación del pH de soluciones acuosas o fungicidas permitió reducir infecciones por C. asianum en frutos de mango cultivar Azúcar (Tomado de la fuente)
dc.description.abstractColletotrichum, ascomycete Glomerellales, family Glomerellaceae, with species grouped in Complex of species, subspecies or clades, causes "Anthracnose" in fruit trees. Biology of quiescence-endophytism (Q/E) in mango infection is still uncertain, including species and management strategies. Diversity of Q/E morph types in flowers and fruits was studied by analyzing interactions with phenological stage, stratum and tree organs, pathogenesis and response to management. Frequency of isolation, richness and diversity was higher in trees in vegetative development (p <0.01) and the lower stratum of trees. 185 isolates, grouped into 34 morphospecies were isolated and showed statistical differences about morphological and biological variables (p <0, 01); induced infections from Q/E were higher in fruits stage 709 (p <0.01) and lower stratum of the tree (p> 0.05). The infective cycle of morphospecies in immature and mature fruits was histologically described, showing quiescence in UMUN 004-moderately virulent and a cycle of 6-7 days, and no apparent quiescence in UMUN 021-highly virulent and cycle of 4-5 days. Eight morphospecies selected for contrasting pathogenicity were identified by polyphasic analysis using ITS, GADPH, Tub2, CHs-1 and Act sequences; as C. asianum, C. gloeosporioides and C. tropicale from C. gloeosporioides complex, and C. karstii from C. boninense complex; these results constitute the first record for Colombia of C. karstii in mango and C. tropicale as endophyte of mango fruits. The acidification of the pH of aqueous solutions or fungicides made it possible to reduce infections by C. asianum in fruits of Sugar-cultivar (Tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.publisherDepartamento de Agronómicas
dc.publisherFacultad de Ciencias Agrarias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAceves, A. C. M., Domínguez, O. R., Gutiérrez, R. L., Moreno, M. E. O., Escamilla, J. C. M., & Samuels, G. J. (2001). Especies de Trichoderma en suelos cultivados con mango afectados por Escoba de bruja y su potencial inhibitorio sobre Fusarium oxysporum y F. subglutinans. Revista Mexicana de Fitopatología, 19(2), 154-160. Adikaram, N. I. M. A. L., Karunanayake, C. H. A. T. H. U. R. I. K. A., Sinniah, G. A. N. G. A., Vithanage, I. K., & Yakandawala, D. E. E. P. T. H. I. (2015). Fungal quiescence in fruit: an attempt to avoid toxic substances?. J. Mycopathol. Res, 53, 1-7. Afanador-Kafuri, L., González, A., Gañán, L., Mejía, J. F., Cardona, N., & Alvarez, E. (2014). Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease, 98(11), 1503-1513. doi: 10.1094/PDIS-07-13-0752-RE. Afzal, H., Shazad, S., Qamar, S., & Nisa, S. Q. U. (2013). Morphological identification of Aspergillus species from the soil of Larkana District (Sindh, Pakistan). Asian J. Agric. Sci, 1(105), e17. AGRONET. (2020). Estadísticas Agropecuarias. Tomado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx (13 de marzo de 2020). Albarouki, E., & Deising, H. B. (2013). Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Molecular Plant-microbe Interactions, 26(6), 695-708. doi: 10.1094/MPMI-01-13-0003-R. Alkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205(2), 801-815. doi: 10.1111/nph.13087. Alonso, J. G. G., Alonso, O. G., Ángel, D. N., Ortiz, D. T., Mejía, E. Z., Sánchez, F. D., & Huerta, H. V. (2003). Evaluación de resistencia a Imazalil, Prochloraz y Azoxystrobin en aislamientos de Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. y control de la Antracnosis del mango. Revista Mexicana de Fitopatología, 21(3), 379-383. https://www.redalyc.org/pdf/612/61221321.pdf. Álvarez, E., Gañán, L., Rojas-Triviño, A., Mejía, J. F., Llano, G. A., & González, A. (2014). Diversity and pathogenicity of Colletotrichum species isolated from soursop in Colombia. European Journal of Plant Pathology, 139(2), 325-338. doi: 10.1007/s10658-014-0388-7. Amil-Ruiz, F., Garrido-Gala, J., Gadea, J., Blanco-Portales, R., Muñoz-Mérida, A., Trelles, O. ... & Mercado, J. Á. (2016). Partial activation of SA-and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Frontiers in Plant Science, 7, 1036.doi: 10.3389/fpls.2016.01036 Assefa, S., Keane, M. T., Otto D. T., Newbold, C., & Berriman, M. (2009) ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968-1969. doi: 10.1093/bioinformatics/btp347. Barad, S., Sela, N., Dubey, A. K., Kumar, D., Luria, N., Ment, D. ... & Prusky, D. (2017). Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi–SlPH tomato line with reduced fruit acidity and higher pH. BMC genomics, 18(1), 579. doi: 10.1186/s12864-017-3961-6. Bhattacherjee, A. K., & Pandey, B. K. (2010). Dissipation of carbendazim in mango after pre-and post-harvest treatments. The Journal of Plant Protection Sciences, 1, 65-70. http://www.aappbckv.org/journal/archive/Ch%208%20Dissipation%20of%20(8).pdf. Bi, F., Barad, S., Ment, D., Luria, N., Dubey, A., Casado, V. ... & Prusky, D. (2016). Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Molecular Plant Pathology, 17(8), 1178-1195. https://doi.org/10.1111/mpp.12355. Cabrera, L., Rojas, P., Rojas, S., Pardo-De la Hoz, C. J., Mideros, M. F., Danies, G.,… Restrepo, S. (2018). Most Colletotrichum species associated with tree tomato (Solanum betaceum) and mango (Mangifera indica) crops are not host-specific. Plant Pathology, 67(5), 1022–1030. doi: 10.1111/ppa.12829. Chillet, M., Hubert, O., & De Lapeyre de Bellaire, L. (2006). Relationship between ripening and the development of banana anthracnose caused by Colletotrichum musae (Berck. and Curt.) Arx. Journal of phytopathology, 154(3), 143-147. doi: 10.1111/j.1439- 0434.2006.01074.x. Crous, P. W., Braun, U., Schubert, K., & Groenewald, J. Z. (2007). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33–56. doi:10.3114/sim.2007.58.02. Damm, U., Cannon, P. F., Liu, F., Barreto, R. W., Guatimosim, E., & Crous, P. W. (2013). The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds. Fungal Diversity, 61(1), 29-59. doi: 10.1007/s13225-013-0255-4 Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45. http://www.fungaldiversity.org/fdp/sfdp/FD39-3.pdf Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772. doi: 10.1038/nmeth.2109. De Oliveira Costa, V. S., Michereff, S. J., Martins, R. B., Gava, C. A. T., Mizubuti, E. S. G., & Câmara, M. P. S. (2010). Species of Botryosphaeriaceae associated on mango in Brazil. European Journal of Plant Pathology, 127(4), 509–519. doi: 10.1007/s10658-010-9616-y . De Souza, A., Delphino Carboni, R. C., Wickert, E., de Macedo Lemos, E. G., & de Goes, A. (2013). Lack of host specificity of Colletotrichum spp. isolates associated with Anthracnose symptoms on mango in Brazil. Plant Pathology, 62(5), 1038-1047. doi:10.1111/ppa.12021. Diéguez-Uribeondo, J., Förster, H., Soto-Estrada, A., & Adaskaveg, J. E. (2005). Subcuticular-intracellular hemibiotrophic and intercellular necrotrophic development of Colletotrichum acutatum on almond. Phytopathology, 95(7), 751-758. doi: 10.1094/PHYTO-95-0751. Do Chi, T., & Kunasakdakul, K. (2013). Inhibition of Colletotrichum gloeosporioides and control of postharvest Anthracnose disease on mango fruit using propionic acid combined with bee-carnauba wax emulsion. Journal of Agricultural Science (Toronto), 5(12), 110- 116. https://www.cabdirect.org/cabdirect/abstract/20143008828 Eloy, Y. R., Vasconcelos, I. M., Barreto, A. L., Freire-Filho, F. R., & Oliveira, J. T. (2015). H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp.]. Fungal Biology, 119(8), 747-757.doi: 10.1016/j.funbio.2015.05.001. Fernando, T. H. P. S., Jayasinghe, C. K., & Wijesundera, R. L. C. (2000). Factors affecting spore production, germination and viability of Colletotrichum acutatum isolates from Hevea brasiliensis. Mycological Research, 104(6), 681-685. doi: 10.1017/S0953756200002483. Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R. J., Narusaka, Y. ... & Shirasu, K. (2013). Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist, 197(4), 1236-1249. doi: 10.1111/nph.12085 Guidarelli, M., Zoli, L., Orlandini, A., Bertolini, P., & Baraldi, E. (2014). The mannose‐binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Molecular Plant Pathology, 15(8), 832-840. doi: 10.1111/mpp.12143. Gonçalves, A. E., Velho, A. C., & Stadnik, M. J. (2016). Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple. European Journal of Plant Pathology, 146(3), 497-506. doi: 10.1007/s10658- 016-0934-6. Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R. ... & Henrissat, B. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature communications, 7, 11362. Han, Y. C., Zeng, X. G., Xiang, F. Y., Zhang, Q. H., Cong, G. U. O., Chen, Ff. Y., & Gu, Y. C. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. Journal of Integrative Agriculture, 17(6), 1391-1400. doi: 10.1016/S2095-3119(17)61854-9. He, L., Li, X., Gao, Y., Li, B., Mu, W., & Liu, F. (2019). Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China. Plant disease, 103(1), 34-43. doi: 10.1094/PDIS-04-18-0597-RE Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E. ... & Lumbsch, H. T. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509-547. doi: 0.1016/j.mycres.2007.03.004. Huser, A., Takahara, H., Schmalenbach, W., & O'Connell, R. (2009). Discovery of pathogenicity genes in the crucifer Anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Molecular Plant-Microbe Interactions, 22(2), 143-156. doi: 10.1094/MPMI -22-2-0143.014-0480-z Korn, M., Schmidpeter, J., Dahl, M., Mueller, S., Voll, L. M., & Koch, C. (2015). A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS One, 10(5), e0125960. doi: 10.1371/journal.pone.0125960. Lin, C., Liu, X., Shi, T., Li, C., & Huang, G. (2018). The Colletotrichum gloeosporioides perilipin homologue CAP 20 regulates functional appressorial formation and fungal virulence. Journal of Phytopathology, 166(3), 216-225. doi: 10.1111/jph.12678 Nagaraju, R. S., Sriram, R. H., & Achur, R. (2020). Antifungal activity of Carbendazimconjugated silver nanoparticles against Anthracnose disease caused by Colletotrichum gloeosporioides in mango. Journal of Plant Pathology, 102(1), 39-46. doi: 10.1007/s42161-019-00370-y.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBiología y manejo de estados quiescentes de Colletotrichum spp. en mango cultivar Azúcar, en el departamento del Magdalena, Colombia
dc.typeTesis


Este ítem pertenece a la siguiente institución