dc.contributor | Melo Martínez, Oscar Orlando | |
dc.creator | Toloza Delgado, Jurgen Daniel | |
dc.date.accessioned | 2021-01-19T23:24:13Z | |
dc.date.available | 2021-01-19T23:24:13Z | |
dc.date.created | 2021-01-19T23:24:13Z | |
dc.date.issued | 2020-01-18 | |
dc.identifier | Toloza, J. (2020) Modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos espaciales [Tesis de Maestría en Ciencias - Estadística, Universidad Nacional de Colombia] Repositorio Institucional | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78835 | |
dc.description.abstract | In this thesis, two spatial econometrics methodologies are proposed to estimate jointly the mean and the variance of the dependent variable, which have a spatial dependence whenare used in semiparametric autoregressive models. The proposed algorithms are based on the theory of generalized additive models for location, scale and shape; these methodologies allow to include nonparametric smoothing terms in the mean and variance of the considered models. The methods have a remarkable prediction capacity when they are compared in terms of the mean square error. In addition, they have a noteworthy estimation of the spatial autoregressive term, when they are compared with traditional ways of estimation (Anselin, 1988) and contemporary proposals of other authors (Basile & Mínguez, 2018). The proposed methodologies are applied in the construction of a hedonic price model for the cities of Bogotá and Boston. The results of the applications are notable due to their capacity of modelling the variability of housing prices in both locations. | |
dc.description.abstract | Dentro del contexto de la econometría espacial se proponen dos metodologías que permiten la modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos con dependencia espacial en la variable dependiente. Los algoritmos desarrollados se fundamentan en los modelos aditivos generalizados para localización, escala y forma; los cuales permiten la inclusión de términos no paramétricos tanto en la media como la varianza. Se encuentra que los dos métodos propuestos tienen una destacable capacidad predictiva en términos del error cuadrático medio. Adicionalmente, evidencian una notable mejora en la estimación del parámetro espacial autorregresivo, respecto a otros métodos tradicionales (Anselin, 1988) y algunos desarrollos recientes (Basile & Mínguez, 2018). Las metodologías se emplean en la construcción de un modelo de precios hedónicos para las ciudades de Boston y Bogotá, destacando como principal resultado la capacidad de modelar la variabilidad del precio de las viviendas en estas localizaciones. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
dc.publisher | Departamento de Estadística | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Aitkin, M. (1987). Modelling variance heterogeneity in normal regression using glim, Journal of the Royal Statistical Society: Series C (Applied Statistics) 36(3): 332–339. | |
dc.relation | Anselin, L. (1988). Spatial Econometrics: Methods and Models, Springer Science & Business Media. Dordrecht. | |
dc.relation | Anselin, L. (2009). Spatial regression, The SAGE handbook of spatial analysis 1: 255–276. | |
dc.relation | Anselin, L. & Bera, A. (1998). Introduction to spatial econometrics, Handbook of applied economic statistics 237. | |
dc.relation | Anselin, L. & Lozano, N. (2009). Spatial hedonic models, Palgrave handbook of econometrics, Springer, pp. 1213–1250. New York. | |
dc.relation | Arbia, G. (2006). Spatial econometrics: statistical foundations and applications to regional convergence, Springer Science & Business Media. Berlín. | |
dc.relation | Azomahou, T. & Lahatte, A. (2000). On the inconsistency of the ols estimator for spatial autoregressive models, Technical report. | |
dc.relation | Basile, R., Durbán, M., Mínguez, R., Montero, J. M. & Mur, J. (2014). Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities, Journal of Economic Dynamics and Control 48: 229–245. | |
dc.relation | Basile, R. & Mínguez, R. (2018). Advances in spatial econometrics: parametric vs. semiparametric spatial autoregressive models, The economy as a complex spatial system, Springer, pp. 81–106. | |
dc.relation | Bodson, P. & Peeters, D. (1975). Estimation of the coefficients of a linear regression in the presence of spatial autocorrelation. an application to a belgian labour-demand function, Environment and Planning A 7(4): 455–472. | |
dc.relation | Borrego, J. (2018). Modelos de regresión para datos espaciales. | |
dc.relation | Case, A. C., Rosen, H. S. & Hines Jr, J. R. (1993). Budget spillovers and fiscal policy interdependence: Evidence from the states, Journal of Public Economics 52(3): 285–307. | |
dc.relation | Cellmer, R., Kobylinska, K. & Be lej, M. (2019). Application of hierarchical spatial autoregressive models to develop land value maps in urbanized areas, ISPRS International Journal of Geo-Information 8(4): 195. | |
dc.relation | Cepeda, E. (2016). Double generalized linear models, Disponible en http://www.redeabe.org.br/novosinape2016/minicursos/minicurso2.pdf. Online; accessed 26 May 2019. | |
dc.relation | Cepeda, E., Urdinola, B. & Rodríguez, D. (2012). Double generalized spatial econometric models, Communications in Statistics-Simulation and Computation 41(5): 671–685. | |
dc.relation | Clapp, J. M., Kim, H.-J. & Gelfand, A. E. (2002). Predicting spatial patterns of house prices using lpr and bayesian smoothing, Real Estate Economics 30(4): 505–532. | |
dc.relation | Cliff, A. & Ord, K. (1970). Spatial autocorrelation: a review of existing and new measures with applications, Economic Geography 46(sup1): 269–292. | |
dc.relation | Cole, T. & Green, P. (1992). Smoothing reference centile curves: the lms method and penalized likelihood, Statistics in medicine 11(10): 1305–1319. | |
dc.relation | Cressie, N. (1993). Statistics for spatial data, Wiley series in probability and mathematical statistics: Applied probability and statistics, John Wiley. | |
dc.relation | Dacey, M. (1965). A review on measures of contiguity for two and k-color maps, Technical report, Northwestern University. Evanstone. | |
dc.relation | David, H. & Rubinfeld, D. (1978). Hedonic housing prices and the demand for clean air, Journal of environmental economics and management 5(1): 81–102. | |
dc.relation | De Boor, C. (1978). A practical guide to splines, Vol. 27, Springer-Verlag, New York. | |
dc.relation | Durbán, M. (2006). Métodos de suavizado eficientes con p-splines, http://www.est.uc3m.es/durban/esp/web/cursos/Colombia/material/Pspline.pdf. Online; accessed 27 February 2019. | |
dc.relation | Eckey, H.-F., Dreger, C. & Tu¨rck, M. (2006). European regional convergence in a human capital augmented solow model, Technical report, Volkswirtschaftliche Diskussionsbeitrage. | |
dc.relation | Eilers, P. H. & Marx, B. D. (1996). Flexible smoothing with b-splines and penalties, Statistical science pp. 89–102. | |
dc.relation | Fahrmeir, L., Kneib, T., Lang, S. & Marx, B. (2013). Regression: models, methods and applications, Springer Science & Business Media. Berlín. | |
dc.relation | Faraway, J. J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, Chapman and Hall/CRC. Boca Ratón. | |
dc.relation | Geary, R. (1954). The contiguity ratio and statistical mapping, The incorporated statistician 5(3): 115–146. | |
dc.relation | Goulard, M., Laurent, T. & Thomas-Agnan, C. (2017). About predictions in spatial autoregressive models: Optimal and almost optimal strategies, Spatial Economic Analysis 12(2-3): 304–325. | |
dc.relation | Hastie, T. & Tibshirani, R. (1990). Generalized additive models, Chapman and Hall/CRC.
London. | |
dc.relation | Kelejian, H. & Prucha, I. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, The Journal of Real Estate Finance and Economics 17(1): 99–121. | |
dc.relation | Lancaster, K. J. (1966). A new approach to consumer theory, Journal of political economy 74(2): 132–157. | |
dc.relation | Lee, Y., Ronnegard, L. & Noh, M. (2017). Data analysis using hierarchical generalized linear models with R, CRC Press. Boca Ratón. | |
dc.relation | LeSage, J. P. (1999). The theory and practice of spatial econometrics, University of Toledo.
Toledo, Ohio 28(11). | |
dc.relation | LeSage, J. & Pace, R. (2009). Introduction to spatial econometrics, Chapman and Hall/CRC.
Boca Ratón. | |
dc.relation | Liu, S. & Yang, Z. (2015). Modified qml estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality, Regional Science and Urban Economics 52: 50–70. | |
dc.relation | Mínguez, R., Basile, R. & Durbán, M. (2019). An alternative semiparametric model for spatial panel data, Statistical Methods & Applications pp. 1–40. | |
dc.relation | Mínguez, R., Durbán, M. L. & Basile, R. (2016). Spatio-temporal autoregressive semiparametric model for the analysis of regional economic data, Technical report, Dipartimento di Economia e Finanza, LUISS Guido Carli. | |
dc.relation | Montero, J., Mínguez, R. & Durbán, M. (2012). Sar models with nonparametric spatial trends. a p-spline approach, Estadística Española 54(177): 89–111. | |
dc.relation | Montero, J., Mínguez, R. & Fernández, G. (2018). Housing price prediction: parametric versus semi-parametric spatial hedonic models, Journal of Geographical Systems 20(1): 27– 55. | |
dc.relation | Moran, P. (1948). The interpretation of statistical maps, Journal of the Royal Statistical Society. Series B (Methodological) 10(2): 243–251. | |
dc.relation | Moreno, R. & Vayá, E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: la econometría espacial, Vol. 44, Ediciones Universitat Barcelona. | |
dc.relation | Pace, R. K. & Gilley, O. W. (1997). Using the spatial configuration of the data to improve estimation, The Journal of Real Estate Finance and Economics 14(3): 333–340. | |
dc.relation | Pérez, J. A. (2006). Econometría espacial y ciencia regional, Investigación económica 65(258): 129–160. | |
dc.relation | Plant, R. E. (2018). Spatial data analysis in ecology and agriculture using R, CRC Press. | |
dc.relation | R Core Team (2020). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/ | |
dc.relation | Rigby, R. & Stasinopoulos, D. (1996). A semi-parametric additive model for variance heterogeneity, Statistics and Computing 6(1): 57–65. | |
dc.relation | Rigby, R. & Stasinopoulos, M. (2005). Generalized additive models for location, scale and shape, Journal of the Royal Statistical Society: Series C (Applied Statistics) 54(3): 507– 554. | |
dc.relation | Rodríguez, M., Lee, D.-J., Kneib, T., Durbán, M. & Eilers, P. (2015). Fast smoothing parameter separation in multidimensional generalized p-splines: the sap algorithm, Statistics and Computing 25(5): 941–957. | |
dc.relation | Ruppert, D., Wand, M. P. & Carroll, R. J. (2003). Semiparametric regression, Cambridge University Press. New York. | |
dc.relation | Ruttenauer, T. (2019). Spatial regression models: A systematic comparison of different model specifications using monte carlo experiments, Sociological Methods & Research p. 0049124119882467. | |
dc.relation | Sicacha, J. & Cepeda, E. (2018). Package BSPADATA. | |
dc.relation | Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting, Journal of the Royal Statistical Society: Series B (Methodological) 47(1): 1–21. | |
dc.relation | Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. & De Bastiani, F. (2017).
Flexible regression and smoothing: using GAMLSS in R, Chapman and Hall/CRC. | |
dc.relation | Stasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M. & Kiose, D. (2020).
Package gamlss. | |
dc.relation | Vayá, E. (1998). Localización, crecimiento y externalidades regionales. Una propuesta basada en la econometría espacial, Universitat de Barcelona. Barcelona. | |
dc.relation | Ver Hoef, J. M., Peterson, E. E., Hooten, M. B., Hanks, E. M. & Fortin, M.-J. (2018). Spatial autoregressive models for statistical inference from ecological data, Ecological Monographs 88(1): 36–59. | |
dc.relation | Wahba, G. (1990). Spline models for observational data, SIAM. Philadelphia. | |
dc.relation | Wood, S. (2006). On confidence intervals for generalized additive models based on penalized regression splines, Australian & New Zealand Journal of Statistics 48(4): 445–464. | |
dc.relation | Wood, S. (2017). Generalized additive models: An Introduction with R, Chapman and Hall/CRC. Boca Ratón. | |
dc.relation | Wood, S. (2020). Package mgcv, R package version. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos espaciales | |
dc.type | Otro | |