dc.contributor | Camacho Rodríguez, Bernardo | |
dc.contributor | Silva Cote, Ingrid | |
dc.contributor | Godoy Silva, Rubén Darío | |
dc.contributor | Salguero López, Gustavo Andrés | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Ramos Murillo, Ana Isabel | |
dc.date.accessioned | 2021-01-25T19:07:23Z | |
dc.date.available | 2021-01-25T19:07:23Z | |
dc.date.created | 2021-01-25T19:07:23Z | |
dc.date.issued | 2020-09-19 | |
dc.identifier | Ramos, A. (2020). Non-viral gene modification of mesenchymal stem cells in a tridimensional biocompatible scaffold [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78907 | |
dc.description.abstract | La necesidad creciente de tejidos y órganos para reemplazo y/o reparación impulsó el desarrollo de nuevas disciplinas como la ingeniería de tejidos, que combina el uso de células, andamios y moléculas biológicamente activas para reparar o restablecer la función de los tejidos. Una aproximación para regular la liberación de las moléculas biológicamente activas en los andamios de ingeniería de tejidos consiste en el uso de terapia génica, que hace referencia a la introducción de material genómico exógeno (ARN o ADN) en las células con el fin de generar un beneficio terapéutico.
La combinación de la terapia génica y la ingeniería de tejidos da lugar a la obtención de andamios que se conocen bajo el nombre de matrices activadas génicamente o GAMs, por sus siglas en inglés (Gene Activated Matrices). La presente tesis de doctorado consistió en el desarrollo de una matriz activada génicamente, basada en andamios preparados a partir de plasma humano crioconcentrado, combinado con células estromales mesenquimales derivadas de la gelatina de Wharton (WJ-MSC) y complejos de polietilenimina y ADN plasmídico. | |
dc.description.abstract | The ever-increasing need for tissues and organs for replacement and / or repair prompted the development of new disciplines such as tissue engineering, which combines the use of biologically active cells, scaffolds, and molecules to repair or restore tissue function. An approach to regulate the release of biologically active molecules in tissue engineering scaffolds consists in the use of gene therapy, which refers to the introduction of exogenous genomic material (RNA or DNA) into cells to generate a therapeutic benefit.
The combination of gene therapy and tissue engineering gives rise to scaffolds that are known under the name of Gene Activated Matrices (GAMs). The present doctoral thesis consisted in the development of a GAM, based on scaffolds prepared from cryoconcentrated human plasma, combined with mesenchymal stromal cells derived from Wharton's jelly (WJ-MSC) and complexes of polyethyleneimine and plasmid DNA. | |
dc.language | eng | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Ahmed, T. A. E., R. Ringuette, V. A. Wallace and M. Griffith (2015). "Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells." Frontiers in bioengineering and biotechnology 2: 85-85. | |
dc.relation | Aleksander-Konert, E., P. Paduszynski, A. Zajdel, Z. Dzierzewicz and A. Wilczok (2016). "In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels." Cell Mol Biol Lett 21: 11. | |
dc.relation | Almeida-Porada, G., A. J. Atala and C. D. Porada (2020). "Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery." Molecular therapy. Methods & clinical development 16: 204-224. | |
dc.relation | Alves da Silva, M., A. Martins, A. R. Costa-Pinto, N. Monteiro, S. Faria, R. L. Reis and N. M. Neves (2017). "Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors." Biotechnol J 12(12). | |
dc.relation | Asgharian, A., M. Banan and H. Najmabadi (2014). "Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line." Cell journal 15(4): 372-377. | |
dc.relation | Bhuvanalakshmi, G., F. Arfuso, A. P. Kumar, A. Dharmarajan and S. Warrier (2017). "Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators." Stem Cell Research & Therapy 8(1): 185. | |
dc.relation | Bijan Nejad, D., S. Azandeh, R. Habibi, E. Mansouri, V. Bayati and K. Ahmadi Angali (2017). "Investigation of the role of alginate containing high guluronic acid on osteogenic differentiation capacity of human umbilical cord Wharton's jelly mesenchymal stem cells." J Microencapsul 34(8): 732-743. | |
dc.relation | Bono, N., F. Ponti, D. Mantovani and G. Candiani (2020). "Non-viral in vitro gene delivery: It is now time to set the bar!" Pharmaceutics 12(1): 183. | |
dc.relation | Canha-Gouveia, A., A. Rita Costa-Pinto, A. M. Martins, N. A. Silva, S. Faria, R. A. Sousa, A. J. Salgado, N. Sousa, R. L. Reis and N. M. Neves (2015). "Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells." Biofabrication 7(3): 035009. | |
dc.relation | Caplan, A. I. (2019). Chapter 15 - Mesenchymal Stem Cells in Regenerative Medicine. Principles of Regenerative Medicine (Third Edition). A. Atala, R. Lanza, A. G. Mikos and R. Nerem. Boston, Academic Press: 219-227. | |
dc.relation | Chahla, J., S. Mannava, M. E. Cinque, A. G. Geeslin, D. Codina and R. F. LaPrade (2017). "Bone Marrow Aspirate Concentrate Harvesting and Processing Technique." Arthroscopy techniques 6(2): e441-e445. | |
dc.relation | Davies, J. E., J. T. Walker and A. Keating (2017). "Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells." STEM CELLS Translational Medicine 6(7): 1620-1630. | |
dc.relation | Delyagina, E., A. Schade, D. Scharfenberg, A. Skorska, C. Lux, W. Li and G. Steinhoff (2014). "Improved transfection in human mesenchymal stem cells: Effective intracellular release of pDNA by magnetic polyplexes." Nanomedicine 9(7): 999-1017. | |
dc.relation | Denu, R. A., S. Nemcek, D. D. Bloom, A. D. Goodrich, J. Kim, D. F. Mosher and P. Hematti (2016). "Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable." Acta haematologica 136(2): 85-97. | |
dc.relation | Ding, D. C., Y. H. Chang, W. C. Shyu and S. Z. Lin (2015). "Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy." Cell Transplant 24(3): 339-347. | |
dc.relation | El Omar, R., J. Beroud, J. F. Stoltz, P. Menu, E. Velot and V. Decot (2014). "Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies?" Tissue Eng Part B Rev 20(5): 523-544. | |
dc.relation | Fox, S. J., M. H. Fazil, C. Dhand, M. Venkatesh, E. T. Goh, S. Harini, C. Eugene, R. R. Lim, S. Ramakrishna, S. S. Chaurasia, R. W. Beuerman, C. S. Verma, N. K. Verma, X. J. Loh and R. Lakshminarayanan (2016). "Insight into membrane selectivity of linear and branched polyethylenimines and their potential as biocides for advanced wound dressings." Acta Biomater 37: 155-164. | |
dc.relation | Galipeau, J. (2018). Chapter 99 - Mesenchymal Stromal Cells. Hematology (Seventh Edition). R. Hoffman, E. J. Benz, L. E. Silberstein et al., Elsevier: 1559-1567. | |
dc.relation | Gazit, Z., G. Pelled, D. Sheyn, D. C. Yakubovich and D. Gazit (2019). Chapter 14 - Mesenchymal Stem Cells. Principles of Regenerative Medicine (Third Edition). A. Atala, R. Lanza, A. G. Mikos and R. Nerem. Boston, Academic Press: 205-218. | |
dc.relation | Gholami, L., H. R. Sadeghnia, M. Darroudi and R. K. Oskuee (2014). "Evaluation of genotoxicity and cytotoxicity induced by different molecular weights of polyethylenimine/DNA nanoparticles." Turkish Journal of Biology 38(3): 380-387. | |
dc.relation | González-Domínguez, I., N. Grimaldi, L. Cervera, N. Ventosa and F. Gòdia (2019). "Impact of physicochemical properties of DNA/PEI complexes on transient transfection of mammalian cells." New Biotechnology 49: 88-97. | |
dc.relation | Guan, F., S. Ma, X. Shi, X. Ma, L. Chi, S. Liang, Y. Cui, Z. Wang, N. Yao, S. Guan and B. Yang (2014). "Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton's jelly in vitro." Sci China Life Sci 57(2): 181-187. | |
dc.relation | Hall, A., L. Parhamifar, M. K. Lange, K. D. Meyle, M. Sanderhoff, H. Andersen, M. Roursgaard, A. K. Larsen, P. B. Jensen, C. Christensen, J. Bartek and S. M. Moghimi (2015). "Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis." Biochim Biophys Acta 1847(3): 328-342. | |
dc.relation | Hassan Famian, M., S. Montazer Saheb and A. Montaseri (2017). "Conditioned Medium of Wharton's Jelly Derived Stem Cells Can Enhance the Cartilage Specific Genes Expression by Chondrocytes in Monolayer and Mass Culture Systems." Adv Pharm Bull 7(1): 123-130. | |
dc.relation | Heo, J. S., Y. Choi, H. S. Kim and H. O. Kim (2016). "Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue." Int J Mol Med 37(1): 115-125. | |
dc.relation | Herrmann, M., M. Hildebrand, U. Menzel, N. Fahy, M. Alini, S. Lang, L. Benneker, S. Verrier, M. J. Stoddart and J. J. Bara (2019). "Phenotypic Characterization of Bone Marrow Mononuclear Cells and Derived Stromal Cell Populations from Human Iliac Crest, Vertebral Body and Femoral Head." Int J Mol Sci 20(14). | |
dc.relation | Karadas, O., D. Yucel, H. Kenar, G. Torun Kose and V. Hasirci (2014). "Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells." J Tissue Eng Regen Med 8(7): 534-545. | |
dc.relation | Kelly, A. M., S. A. Plautz, J. Zempleni and A. K. Pannier (2016). "Glucocorticoid cell priming enhances transfection outcomes in adult human mesenchymal stem cells." Molecular Therapy 24(2): 331-341. | |
dc.relation | Kil, K., M. Y. Choi and K. H. Park (2016). "In Vitro Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Auditory Hair Cells and Neurons." J Int Adv Otol 12(1): 37-42. | |
dc.relation | Kim, K. K., D. Sheppard and H. A. Chapman (2018). "TGF-beta1 Signaling and Tissue Fibrosis." Cold Spring Harb Perspect Biol 10(4). | |
dc.relation | Kljenak, A. and M. Tominac Trcin (2016). "Fibrin gel as a scaffold for skin substitute - production and clinical experience." 55(2): 279-289. | |
dc.relation | Kobolak, J., A. Dinnyes, A. Memic, A. Khademhosseini and A. Mobasheri (2016). "Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche." Methods 99: 62-68. | |
dc.relation | Kushnerev, E., S. G. Shawcross, S. Sothirachagan, F. Carley, A. Brahma, J. M. Yates and M. C. Hillarby (2016). "Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System." Invest Ophthalmol Vis Sci 57(13): 5192-5199. | |
dc.relation | Kwolek, U., D. Jamróz, M. Janiczek, M. Nowakowska, P. Wydro and M. Kepczynski (2016). "Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes." Langmuir 32(19): 5004-5018. | |
dc.relation | Lian, J., S. Lv, C. Liu, Y. Liu, S. Wang, X. Guo, F. Nan, H. Yu, X. He, G. Sun and X. Ma (2016). "Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells." Stem Cells International 2016: 12. | |
dc.relation | Lin, Y. L., C. P. Chen, C. M. Lo and H. S. Wang (2016). "Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton's jelly mesenchymal stem cells into cardiac progenitor cells." J Biomed Mater Res A 104(9): 2234-2242. | |
dc.relation | Liu, S., K. D. Hou, M. Yuan, J. Peng, L. Zhang, X. Sui, B. Zhao, W. Xu, A. Wang, S. Lu and Q. Guo (2014). "Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage." J Biosci Bioeng 117(2): 229-235. | |
dc.relation | Liu, S., Y. Jia, M. Yuan, W. Guo, J. Huang, B. Zhao, J. Peng, W. Xu, S. Lu and Q. Guo (2017). "Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model." BioMed Research International 2017: 12. | |
dc.relation | Mak, J., C. L. Jablonski, C. A. Leonard, J. F. Dunn, E. Raharjo, J. R. Matyas, J. Biernaskie and R. J. Krawetz (2016). "Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model." Sci Rep 6: 23076. | |
dc.relation | Marasini, S., D.-Y. Chang, J.-H. Jung, S.-J. Lee, H. L. Cha, H. Suh-Kim and S.-S. Kim (2017). "Effects of Adenoviral Gene Transduction on the Stemness of Human Bone Marrow Mesenchymal Stem Cells." Molecules and cells 40(8): 598-605. | |
dc.relation | Marino, L., M. A. Castaldi, R. Rosamilio, E. Ragni, R. Vitolo, C. Fulgione, S. G. Castaldi, B. Serio, R. Bianco, M. Guida and C. Selleri (2019). "Mesenchymal Stem Cells from the Wharton's Jelly of the Human Umbilical Cord: Biological Properties and Therapeutic Potential." International journal of stem cells 12(2): 218-226. | |
dc.relation | Marmotti, A., S. Mattia, F. Castoldi, A. Barbero, L. Mangiavini, D. E. Bonasia, M. Bruzzone, F. Dettoni, R. Scurati and G. M. Peretti (2017). "Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study." Stem cells international 2017: 1732094-1732094. | |
dc.relation | Marquez-Curtis, L. A., A. Janowska-Wieczorek, L. E. McGann and J. A. W. Elliott (2015). "Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects." Cryobiology 71(2): 181-197. | |
dc.relation | Melone, L., B. Rossi, N. Pastori, W. Panzeri, A. Mele and C. Punta (2015). "TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation." ChemPlusChem 80(9): 1408-1415. | |
dc.relation | Meng, X. M., D. J. Nikolic-Paterson and H. Y. Lan (2016). "TGF-beta: the master regulator of fibrosis." Nat Rev Nephrol 12(6): 325-338. | |
dc.relation | Mohammadian, M., E. Abasi and A. Akbarzadeh (2016). "Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy." Artificial Cells, Nanomedicine, and Biotechnology 44(5): 1206-1211. | |
dc.relation | Mollapour Sisakht, M., M. A. Nilforoushzadeh, J. Verdi, H. R. Banafshe, Z. Safaei Naraghi and S. A. Mortazavi-Tabatabaei (2019). "Fibrin-collagen hydrogel as a scaffold for dermoepidermal skin substitute, preparation and characterization." Journal of Contemporary Medical Sciences 5(1). | |
dc.relation | Monnery, B. D., M. Wright, R. Cavill, R. Hoogenboom, S. Shaunak, J. H. G. Steinke and M. Thanou (2017). "Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity." Int J Pharm 521(1-2): 249-258. | |
dc.relation | Murray, I. R. and B. Péault (2015). "Q&A: Mesenchymal stem cells - where do they come from and is it important?" BMC biology 13: 99-99. | |
dc.relation | Paduszynski, P., E. Aleksander-Konert, A. Zajdel, A. Wilczok, K. Jelonek, A. Witek and Z. Dzierzewicz (2016). "Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds." Cell Mol Biol Lett 21: 14. | |
dc.relation | Park, J. S., S. Suryaprakash, Y. H. Lao and K. W. Leong (2015). "Engineering mesenchymal stem cells for regenerative medicine and drug delivery." Methods 84: 3-16. | |
dc.relation | Pereira, R. C., A. R. Costa-Pinto, A. M. Frias, N. M. Neves, H. S. Azevedo and R. L. Reis (2017). "In vitro chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes." Journal of Tissue Engineering and Regenerative Medicine 11(6): 1876-1887. | |
dc.relation | Pittenger, M. F., D. E. Discher, B. M. Péault, D. G. Phinney, J. M. Hare and A. I. Caplan (2019). "Mesenchymal stem cell perspective: cell biology to clinical progress." npj Regenerative Medicine 4(1): 22. | |
dc.relation | Prabst, K., H. Engelhardt, S. Ringgeler and H. Hubner (2017). "Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin." Methods Mol Biol 1601: 1-17. | |
dc.relation | Rabbani, S., M. Soleimani, M. Imani, M. Sahebjam, A. Ghiaseddin, S. M. Nassiri, J. Majd Ardakani, M. Tajik Rostami, A. Jalali, B. Mousanassab, M. Kheradmandi and S. H. Ahmadi Tafti (2017). "Regenerating Heart Using a Novel Compound and Human Wharton Jelly Mesenchymal Stem Cells." Arch Med Res 48(3): 228-237. | |
dc.relation | Remant, K. C., C. Kucharski and H. Uludağ (2015). "Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells." Journal of Materials Chemistry B 3(19): 3972-3982. | |
dc.relation | Reppel, L., J. Schiavi, N. Charif, L. Leger, H. Yu, A. Pinzano, C. Henrionnet, J. F. Stoltz, D. Bensoussan and C. Huselstein (2015). "Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering." Stem Cell Res Ther 6: 260. | |
dc.relation | Rohban, R. and T. R. Pieber (2017). "Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential." Stem cells international 2017: 5173732-5173732. | |
dc.relation | Sadlik, B., G. Jaroslawski, M. Puszkarz, A. Blasiak, T. Oldak, D. Gladysz and G. P. Whyte (2017). "Cartilage Repair in the Knee Using Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells Embedded Onto Collagen Scaffolding and Implanted Under Dry Arthroscopy." Arthroscopy techniques 7(1): e57-e63. | |
dc.relation | Schlimp, C. J., A. Khadem, A. Klotz, C. Solomon, G. Hochleitner, M. Ponschab, H. Redl and H. Schöchl (2015). "Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer." The journal of trauma and acute care surgery 78(4): 830-836. | |
dc.relation | Sheykhhasan, M., R. T. Qomi and M. Ghiasi (2015). "Fibrin Scaffolds Designing in order to Human Adipose-derived Mesenchymal Stem Cells Differentiation to Chondrocytes in the Presence of TGF-beta3." Int J Stem Cells 8(2): 219-227. | |
dc.relation | Spotnitz, W. D. (2014). "Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective." ISRN Surg 2014: 203943. | |
dc.relation | Stefańska, K., K. Ożegowska, G. Hutchings, M. Popis, L. Moncrieff, C. Dompe, K. Janowicz, W. Pieńkowski, P. Gutaj and J. A. Shibli (2020). "Human Wharton’s Jelly—Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials." Journal of Clinical Medicine 9(4): 1102. | |
dc.relation | Tanthaisong, P., S. Imsoonthornruksa, A. Ngernsoungnern, P. Ngernsoungnern, M. Ketudat-Cairns and R. Parnpai (2017). "Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors." PLOS ONE 12(1): e0168059. | |
dc.relation | Vasandan, A. B., S. R. Shankar, P. Prasad, V. Sowmya Jahnavi, R. R. Bhonde and S. Jyothi Prasanna (2014). "Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament." Journal of cellular and molecular medicine 18(2): 344-354. | |
dc.relation | Verdi, J., A. Tan, A. Shoae-Hassani and A. M. Seifalian (2014). "Endometrial stem cells in regenerative medicine." J Biol Eng 8: 20. | |
dc.relation | Viswanathan, S., Y. Shi, J. Galipeau, M. Krampera, K. Leblanc, I. Martin, J. Nolta, D. G. Phinney and L. Sensebe (2019). "Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature." Cytotherapy 21(10): 1019-1024. | |
dc.relation | Walker, J. T., A. Keating and J. E. Davies (2019). Stem Cells: Umbilical Cord/Wharton’s Jelly Derived. Cell Engineering and Regeneration. J. M. Gimble, D. Marolt, R. Oreffo, H. Redl and S. Wolbank. Cham, Springer International Publishing: 1-28. | |
dc.relation | Wang, J., B. Sun, L. Tian, X. He, Q. Gao, T. Wu, S. Ramakrishna, J. Zheng and X. Mo (2017). "Evaluation of the potential of rhTGF- beta3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord." Mater Sci Eng C Mater Biol Appl 70(Pt 1): 637-645. | |
dc.relation | Wang, T., M. L. Larcher, L. Ma and N. R. Veedu (2018). "Systematic Screening of Commonly Used Commercial Transfection Reagents towards Efficient Transfection of Single-Stranded Oligonucleotides." Molecules 23(10). | |
dc.relation | Wang, Y., C. You, R. Wei, J. Zu, C. Song, J. Li and J. Yan (2017). "Modification of Human Umbilical Cord Blood Stem Cells Using Polyethylenimine Combined with Modified TAT Peptide to Enhance BMP-2 Production." BioMed Research International 2017: 2971413-2971413. | |
dc.relation | Weisel, J. W. and R. I. Litvinov (2017). "Fibrin Formation, Structure and Properties." Sub-cellular biochemistry 82: 405-456. | |
dc.relation | Weiss, N., B. Schenk, M. Bachler, C. Solomon, D. Fries and M. Hermann (2017). "FITC-linked Fibrin-Binding Peptide and real-time live confocal microscopy as a novel tool to visualize fibrin(ogen) in coagulation." J Clin Transl Res 3(2): 276-282. | |
dc.relation | Widowati, W., E. Afifah, T. Mozef, F. Sandra, R. Rizal, A. Amalia, Y. Arinta, I. Bachtiar and H. Murti (2018). "Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model." Iranian Journal of Basic Medical Sciences 21(7): 745-752. | |
dc.relation | Williams, C., E. Budina, W. L. Stoppel, K. E. Sullivan, S. Emani, S. M. Emani and L. D. Black, 3rd (2015). "Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering." Acta biomaterialia 14: 84-95. | |
dc.relation | Wobma, H. and G. Vunjak-Novakovic (2016). "Tissue Engineering and Regenerative Medicine 2015: A Year in Review." Tissue Eng Part B Rev 22(2): 101-113. | |
dc.relation | Worgall, S. and R. G. Crystal (2014). Chapter 34 - Gene Therapy. Principles of Tissue Engineering (Fourth Edition). R. Lanza, R. Langer and J. Vacanti. Boston, Academic Press: 657-686. | |
dc.relation | Zhang, C., F.-G. Wu, P. Hu and Z. Chen (2014). "Interaction of Polyethylenimine with Model Cell Membranes Studied by Linear and Nonlinear Spectroscopic Techniques." The Journal of Physical Chemistry C 118(23): 12195-12205. | |
dc.relation | Zhang, J., G.-H. Liu, J. Qu and M. Song (2020). "Treating osteoarthritis via gene therapy with rejuvenation factors." Gene Therapy: 1-3. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Non-viral gene modification of mesenchymal stem cells in a tridimensional biocompatible scaffold | |
dc.type | Otro | |