dc.contributor | Paycha, Sylvie | |
dc.contributor | Neira Jiménez, Carolina | |
dc.creator | López Castaño, Juan Daniel | |
dc.date.accessioned | 2021-02-24T15:39:02Z | |
dc.date.available | 2021-02-24T15:39:02Z | |
dc.date.created | 2021-02-24T15:39:02Z | |
dc.date.issued | 2020-08-18 | |
dc.identifier | López-Castaño, J. D. (2020) A distributional approach to asymptotics of the Spectral Action. Master thesis, Universidad Nacional de Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79294 | |
dc.description.abstract | La acción espectral es el concepto natural y apropiado para hablar de una acción en el espacio de triplas espectrales, y fue introducido por primera vez por Chamseddine y Connes en 1997. Después de incluir definiciones y resultados que conciernen a la teoría de Cesàro para distribuciones y análisis asintótico, discutimos la expansión asintótica de la acción espectral en el sentido distribucional para una tripla espectral conmutativa, siguiendo a Estrada, Gracia-Bondía y Várilly. | |
dc.description.abstract | The spectral action is the natural and appropriate notion of an action on the space of spectral triples, and it was introduced by Chamseddine and Connes in 1997. After including some definitions and results concerning the Cesàro theory of distributions and asymptotic analysis, we discuss the asymptotic expansion of the spectral action in the distributional sense for a commutative spectral triple following Estrada, Gracia-Bondía and Várilly. | |
dc.language | eng | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | N. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer Berlin Heidelberg, 2003. ISBN: 9783540200628. URL:
https://books.google.com.co/books?id=\_e2FjvLbO94C (see p. 81). | |
dc.relation | Ali H. Chamseddine and Alain Connes. “The spectral action principle”. In: Comm. Math. Phys. 186.3 (1997), pp. 731–750. ISSN: 0010-3616. DOI: 10.1007/s002200050126. URL: https://doi.org/10.1007/s002200050126 (see pp. 9, 67, 71). | |
dc.relation | Ali H. Chamseddine, Alain Connes, and Matilde Marcolli. “Gravity and the standard model with neutrino mixing”. In: Adv. Theor. Math. Phys. 11.6 (2007), pp. 991–1089. ISSN: 1095-0761. URL: http://projecteuclid.org/euclid.atmp/1198095373 (see p. 9). | |
dc.relation | Alain Connes and Matilde Marcolli. Noncommutative geometry, quantum fields and motives. Vol. 55. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008, pp. xxii+785. ISBN: 978-0-8218-4210-2 (see pp. 9, 64, 71). | |
dc.relation | Alain Connes and Matilde Marcolli. Noncommutative geometry, quantum fields and motives. Vol. 55. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008, pp. xxii+785. ISBN: 978-0-8218-4210-2 (see pp. 10, 69, 75). | |
dc.relation | Alain Connes. “On the spectral characterization of manifolds”. In: J. Noncommut. Geom. 7.1 (2013), pp. 1–82. ISSN: 1661-6952. DOI:10.4171/JNCG/108. URL: https://doi.org/10.4171/JNCG/108 (see p. 66). | |
dc.relation | Alain Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994, pp. xiv+661. ISBN: 0-12-185860-X (see pp. 9, 63). | |
dc.relation | R. Estrada, J. M. Gracia-Bondía, and J. C. Várilly. “On summability of distributions and spectral geometry”. In: Comm. Math. Phys. 191.1 (1998), pp. 219–248. ISSN: 0010-3616. DOI: 10.1007/s002200050266. URL: https://doi.org/10.1007/s002200050266 (see pp. 9, 10, 19, 30, 49, 54, 58, 75). | |
dc.relation | M. Eckstein and B. Iochum. Spectral Action in Noncommutative Geometry. SpringerBriefs in Mathematical Physics. Springer International Publishing, 2018. ISBN: 9783319947884. URL: https://books.google.com.co/books?id=nnWADwAAQBAJ (see p. 15). | |
dc.relation | Ricardo Estrada and Ram P. Kanwal. A distributional approach to asymptotics. Second. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Theory and applications. Birkhäuser Boston, Inc., Boston, MA, 2002, pp. xvi+451. ISBN: 0-8176-4142-4. DOI: 10.1007/978-0-8176-8130-2. URL:
https://doi.org/10.1007/978-0-8176-8130-2 (see pp. 9, 13, 19, 34, 37, 39). | |
dc.relation | R Estrada, R. P Kanwal, and Michael James Lighthill. “A distributional theory for asymptotic expansions”. In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 428.1875 (1990), pp. 399–430. DOI: 10.1098/rspa.1990.0041. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1990.0041. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1990.0041 (see pp. 34, 48, 58). | |
dc.relation | Ricardo Estrada. “The Cesàro behaviour of distributions”. In: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454.1977 (1998), pp. 2425–2443. ISSN: 1364-5021. DOI: 10.1098/rspa.1998.0265. URL: https://doi.org/10.1098/rspa.1998.0265 (see pp. 9, 13, 26, 28, 34). | |
dc.relation | Boris V. Fedosov et al. “The noncommutative residue for manifolds with boundary”. In: J. Funct. Anal. 142.1 (1996), pp. 1–31. ISSN: 0022-1236. DOI: 10.1006/jfan.1996.0142. URL: https://doi.org/10.1006/jfan.1996.0142 (see pp. 77, 79, 80). | |
dc.relation | G.B. Folland. Real Analysis: Modern Techniques and Their Applications. A Wiley-Interscience publication. Wiley, 1999. ISBN: 9780471317166. URL: https://books.google.com.co/books?id=uPkYAQAAIAAJ (see p. 31). | |
dc.relation | Wentao Fan, Farzad Fathizadeh, and Matilde Marcolli. “Spectral action for Bianchi type-IX cosmological models”. In: J. High Energy Phys. 10 (2015), 085, front matter+28. ISSN: 1126-6708. DOI:10.1007/JHEP10(2015)085. URL: https://doi.org/10.1007/JHEP10(2015)085 (see p. 9). | |
dc.relation | G.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series. Prentice Hall, 2002. ISBN: 9780130652652. URL: https://books.google.com.co/books?id=iatzQgAACAAJ (see p. 26). | |
dc.relation | José M. Gracia-Bondía, Joseph C. Várilly, and Héctor Figueroa. Elements of noncommutative geometry. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2001, pp. xviii+685. ISBN: 0-8176-4124-6. DOI: 10.1007/978-1-4612-0005-5. URL: https://doi.org/10.1007/978-1-4612-0005-5 (see pp. 9, 66, 81, 84, 85). | |
dc.relation | Peter B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Second. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995, pp. x+516. ISBN: 0-8493-7874-4 (see pp. 9, 68, 69). | |
dc.relation | A. Grossmann, G. Loupias, and E. M. Stein. “An algebra of pseudodifferential operators and quantum mechanics in phase space”. In: Ann. Inst. Fourier (Grenoble) 18.fasc., fasc. 2 (1968), 343–368, viii (1969). ISSN: 0373-0956. URL: http://www.numdam.org/item?id=AIF_1968__18_2_343_0 (see pp. 34, 35). | |
dc.relation | Gerd Grubb. Distributions and operators. Vol. 252. Graduate Texts in Mathematics. Springer, New York, 2009, pp. xii+461. ISBN: 978-0-387-84894-5 (see pp. 9, 13, 19, 20, 21, 25, 35, 77, 78, 79). | |
dc.relation | G. H. Hardy. Divergent series. With a preface by J. E. Littlewood and a note by L. S. Bosanquet, Reprint of the revised (1963) edition. Éditions Jacques Gabay, Sceaux, 1992, pp. xvi+396. ISBN: 2-87647-131-0 (see pp. 13, 15, 16, 18, 19, 87). | |
dc.relation | B. Iochum, C. Levy, and D. V. Vassilevich. “Global and local aspects of spectral actions”. In: J. Phys. A 45.37 (2012), pp. 374020, 19. ISSN: 1751-8113. DOI: 10.1088/1751-8113/45/37/374020. URL: https://doi.org/10.1088/1751-8113/45/37/374020 (see p. 9). | |
dc.relation | Anthony W. Knapp. Representation Theory of Semisimple Groups: An Overview Based on Examples (PMS-36). REV - Revised. Princeton University Press, 1986. ISBN: 9780691084015. URL: http://www.jstor.org/stable/j.ctt1bpm9sn (see p. 44). | |
dc.relation | H. Blaine Lawson Jr. and Marie-Louise Michelsohn. Spin geometry. Vol. 38. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989, pp. xii+427. ISBN: 0-691-08542-0 (see pp. 81, 84) | |
dc.relation | Matilde Marcolli, Elena Pierpaoli, and Kevin Teh. “The spectral action and cosmic topology”. In: Comm. Math. Phys. 304.1 (2011), pp. 125–174. ISSN: 0010-3616. DOI: 10.1007/s00220-011-1211-3. URL: https://doi.org/10.1007/s00220-011-1211-3 (see p. 9). | |
dc.relation | Karl-Hermann Neeb. “On differentiable vectors for representations of infinite dimensional Lie groups”. In: Journal of Functional Analysis 259.11 (2010), pp. 2814 –2855. ISSN: 0022-1236. DOI: https://doi.org/10.1016/j.jfa.2010.07.020. URL: http://www.sciencedirect.com/science/article/pii/S0022123610003095 (see p. 46). | |
dc.relation | S. Paycha. Regularised Integrals, Sums, and Traces: An Analytic Point of View. University lecture series. American Mathematical Society, 2012. ISBN: 9780821890356. URL: https://books.google.com.co/books?id=ut0tnQAACAAJ (see p. 56). | |
dc.relation | Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Second. Functional analysis. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980, pp. xv+400. ISBN: 0-12-585050-6 (see pp. 41, 42, 43, 44). | |
dc.relation | Mairi Sakellariadou. “Noncommutative geometry spectral action as a framework for unification: introduction and phenomenological/cosmological consequences”. In: Internat. J. Modern Phys. D 20.5 (2011), pp. 785–804. ISSN: 0218-2718. DOI: 10.1142/S021827181101913X. URL: https://doi.org/10.1142/S021827181101913X (see p. 9). | |
dc.relation | Heikkilä Seppo and Talvila Erik. “Distributions, their primitives and integrals with applications to distributional differential equations”. In: Dynamic Systems and Applications 22 (June 2013), pp. 207–249 (see p. 26). | |
dc.relation | R. T. Seeley. “Complex powers of an elliptic operator”. In: Proc. Symp. Pure Math. 10 (1967), pp. 288–307 (see p. 53). | |
dc.relation | K. Yosida. Functional Analysis. Classics in Mathematics. Springer Berlin Heidelberg, 2012. ISBN: 9783642618598. URL: https://books.google.com.co/books?id=yj4mBQAAQBAJ (see p. 46). | |
dc.relation | A. H. Zemanian. “The Distributional Laplace and Mellin Transformations”. In: SIAM Journal on Applied Mathematics 14.1 (1966), pp. 41–59. DOI: 10.1137/0114004. eprint: https://doi.org/10.1137/0114004. URL: https://doi.org/10.1137/0114004 (see p. 72). | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | A distributional approach to asymptotics of the Spectral Action | |
dc.type | Otro | |