dc.contributor | Galindo Valbuena, Hugo Martín | |
dc.contributor | Mayorga Betancourt, Manuel Alejandro | |
dc.creator | Suárez Suárez, Luz Adriana | |
dc.date.accessioned | 2022-08-31T19:54:34Z | |
dc.date.accessioned | 2022-09-21T19:12:36Z | |
dc.date.available | 2022-08-31T19:54:34Z | |
dc.date.available | 2022-09-21T19:12:36Z | |
dc.date.created | 2022-08-31T19:54:34Z | |
dc.date.issued | 2022-07-07 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82225 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3414073 | |
dc.description.abstract | En este estudio, se sintetizaron aluminosilicatos de finos de cantera (residuos mineros), los cuales fueron utilizados para la adsorción y remoción de asfáltenos. La conversión del residuo se realizó mediante hidrólisis alcalina hidrotérmica, para la producción del silicato donor. Posteriormente se hizo una síntesis de los precipitados de aluminosilicatos amorfos mediante copolimerización con microondas. Estos fueron caracterizados antes y después por técnicas como Difracción de Rayos X, Fluorescencia de Rayos X e Infrarrojo. Los asfáltenos fueron obtenidos de crudos pesados-colombianos mediante el método de precipitación IP 43. Una vez obtenidos, se procedió a construir las isotermas de adsorción, para ello. Una vez ajustados los puntos experimentales se ajustaron al modelo de Langmuir. | |
dc.description.abstract | Aluminosilicates from quarry fines (mining waste) were synthesized, used for the adsorption
and removal of asphaltenes. The residue conversion carries t by hydrothermal alkaline
hydrolysis to produce the donor silicate. Subsequently, a synthesis of the amorphous
aluminosilicate precipitates heat by microwave copolymerization. These characterize before
and after by techniques such as X-ray Diffraction, X-ray Fluorescence, and Infrared. The
asphaltenes were obtained from heavy Colombian crude oils employing the IP 43
precipitation method. It gets that the solids adsorbed and conformed to the Langmuir model. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | |
dc.publisher | Departamento de Ingeniería Química y Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Adans, Y. F., Martins, A. R., Coelho, R. E., Das Virgens, C. F., Ballarini, A. D., & Carvalho, L. S. (2016). A simple way to produce γ-Alumina from aluminum cans by precipitation reactions. Materials Research, 19(5), 977–982. https://doi.org/10.1590/1980-5373-MR-2016-0310 | |
dc.relation | Bai, Y., Sui, H., Liu, X., He, L., Li, X., & Thormann, E. (2019). E ff ects of the N , O , and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface : A molecular dynamics simulation. 240(October 2018), 252–261. https://doi.org/10.1016/j.fuel.2018.11.135 | |
dc.relation | Del, G., Del, D., Zamira, L., & Castro, T. (2018). “caracterización mineralógica y microestructural de los agregados petreos perteneciente a una cantera del municipio de guamal del departamento del meta” “.
Delgado Villanueva, A., & Loayza, A. A. (2020). | |
dc.relation | Delgado Villanueva, A., & Loayza, A. A. (2020). Modelamiento y evaluación del nivel de calidad del aire mediante el análisis de Grey Clustering, estudio de caso Lima Metropolitana. Tecnia, 30(1), 114–120. https://doi.org/10.21754/tecnia.v30i1.588 | |
dc.relation | Deng, H., & Ge, Y. (2015). Formation of NaP zeolite from fused fly ash for the removal of Cu(II) by an improved hydrothermal method. RSC Advances, 5(12), 9180–9188. https://doi.org/10.1039/c4ra15196h | |
dc.relation | Distrito, E., & Arroyave, A. C. (2011). Situación actual de la explotación de canteras en el Distrito Capital. Ingeniería e Investigación, 0(46), 45–55. | |
dc.relation | Duarte, A. L., DaBoit, K., Oliveira, M. L. S., Teixeira, E. C., Schneider, I. L., & Silva, L. F. O. (2018). Hazardous elements and amorphous nanoparticles in historical estuary | |
dc.relation | Gonçalves, M. C. (2018). Sol-gel silica nanoparticles in medicine: A natural choice. design, synthesis and products. Molecules, 23(8), 1–26. https://doi.org/10.3390/molecules2308202 | |
dc.relation | Hong, X., Yu, H., Xu, H., Wang, X., Jin, X., Wu, H., & Wang, F. (2022). Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. Journal of Molecular Liquids, 359, 119312. https://doi.org/10.1016/j.molliq.2022.119312 | |
dc.relation | Hosseinpour, N., Khodadadi, A. A., Bahramian, A., & Mortazavi, Y. (2013). Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 29(46), 14135–14146. https://doi.org/10.1021/la402979h | |
dc.relation | Internacional, M. C. (2020). 1,2* ,. (15), 8–19. | |
dc.relation | Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082 | |
dc.relation | Kim, Y. (2015). Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage. Chemosphere, 119, 803–811. https://doi.org/10.1016/j.chemosphere.2014.08.034 | |
dc.relation | López-Delgado, A., Fillali, L., Jiménez, J. A., & López-Andrés, S. (2012). Synthesis of α-alumina from a less common raw material. Journal of Sol-Gel Science and Technology, 64(1), 162–169. https://doi.org/10.1007/s10971-012-2843-2 | |
dc.relation | López Juvinao, D. D., Torres Ustate, L. M., & Moya Camacho, F. O. (2020). Tecnologías, procesos y problemática ambiental en la Minería de arcilla. Investigación e Innovación En Ingenierías, 8(2), 20–43. https://doi.org/10.17081/invinno.8.2.3857 | |
dc.relation | Mullins, O. C. (2010). The Modified Yen Model †. (6), 2179–2207. https://doi.org/10.1021/ef900975e | |
dc.relation | Mullins, O. C. (2011). The Asphaltenes. Annual Review of Analytical Chemistry, 4(1), 393–418. https://doi.org/10.1146/annurev-anchem-061010-113849 | |
dc.relation | Musyoka, N. M., Petrik, L. F., Gitari, W. M., Balfour, G., & Hums, E. (2012). Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 47(3), 337–350. https://doi.org/10.1080/10934529.2012.645779 | |
dc.relation | Ortiz, A. M. (2013). económicos del sector minero en Colombia : encadenamientos sectoriales. | |
dc.relation | Peralta, L., & Eduardo, R. (2011). La energía solar fotovoltaica como factor de desarrollo en zonas rurales de Colombia. caso: vereda Carupana, municipio de Tauramena, departamento de Casanare. | |
dc.relation | Quang, D. V., Kim, J. K., Park, J. K., Park, S. H., Elineema, G., Sarawade, P. B., & Kim, H. T. (2012). Effect of the gelation on the properties of precipitated silica powder produced by acidizing sodium silicate solution at the pilot scale. Chemical Engineering Journal, 209, 531–536. https://doi.org/10.1016/j.cej.2012.08.028 | |
dc.relation | Ramos-Arroyo, Y. R., Prol-Ledesma, R. M., & Siebe-Grabach, C. (2004). Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México. Posibles escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geologicas, 21(2), 268–284. | |
dc.relation | Reid, C., Bécaert, V., Aubertin, M., Rosenbaum, R. K., & Deschênes, L. (2009). Life cycle assessment of mine tailings management in Canada. Journal of Cleaner Production, 17(4), 471–479. https://doi.org/10.1016/j.jclepro.2008.08.014 | |
dc.relation | Sarawade, P. B., Kim, J. K., Hilonga, A., Quang, D. V., & Kim, H. T. (2011). Effect of drying technique on the physicochemical properties of sodium silicate-based mesoporous precipitated silica. Applied Surface Science, 258(2), 955–961. https://doi.org/10.1016/j.apsusc.2011.09.035 | |
dc.relation | Sayehi, M., Tounsi, H., Garbarino, G., Riani, P., & Busca, G. (2020). Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management, 103, 146–158. https://doi.org/10.1016/j.wasman.2019.12.013 | |
dc.relation | Shayan, N. N., & Mirzayi, B. (2015). Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy and Fuels, 29(3), 1397–1406. https://doi.org/10.1021/ef502494d | |
dc.relation | Shojaei, B., Miri, R., Bazyari, A., & Thompson, L. T. (2022). Asphaltene adsorption on MgO , CaO , SiO 2 , and Al 2 O 3 nanoparticles synthesized via the Pechini-type Sol − Gel method. 321(April). | |
dc.relation | Souza, M. T., Simão, L., Montedo, O. R. K., Raupp Pereira, F., & de Oliveira, A. P. N. (2019). Aluminum anodizing waste and its uses: An overview of potential applications and market opportunities. Waste Management, 84, 286–301. https://doi.org/10.1016/j.wasman.2018.12.003 | |
dc.relation | Spiecker, P. M., Gawrys, K. L., & Kilpatrick, P. K. (2003). Aggregation and solubility behavior of asphaltenes and their subfractions. Journal of Colloid and Interface Science, 267(1), 178–193. https://doi.org/10.1016/S0021-9797(03)00641-6 | |
dc.relation | Tanaka, H., & Fujii, A. (2009). Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process. Advanced Powder Technology, 20(5), 473–479. https://doi.org/10.1016/j.apt.2009.05.004 | |
dc.relation | Trejo, F., Ancheyta, J., & Rana, M. S. (2009). Structural characterization of asphaltenes obtained from hydroprocessed crude oils by SEM and TEM. Energy and Fuels, 23(1), 429–439. https://doi.org/10.1021/ef8005405 | |
dc.relation | Valente, T., Grande, J. A., de la Torre, M. L., Santisteban, M., & Cerón, J. C. (2013). Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Applied Geochemistry, 39, 11–25. https://doi.org/10.1016/j.apgeochem.2013.09.014 | |
dc.relation | Yang, J., Tang, Y., Yang, K., Rouff, A. A., Elzinga, E. J., & Huang, J. H. (2014). Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. Journal of Hazardous Materials, 264(October), 498–504. https://doi.org/10.1016/j.jhazmat.2013.09.063 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2022 | |
dc.title | Síntesis de aluminosilicatos amorfos nanoparticulados a partir de residuos mineros para su aplicación como adsorbentes de asfaltenos | |
dc.type | Tesis | |