dc.contributor | Álvarez Meza, Andrés Marino | |
dc.contributor | Castellanos Domínguez, César Germán | |
dc.contributor | Grupo de Control y Procesamiento Digital de Señales | |
dc.creator | Pulgarín Giraldo, Juan Diego | |
dc.date.accessioned | 2021-01-25T16:53:05Z | |
dc.date.accessioned | 2022-09-21T19:08:15Z | |
dc.date.available | 2021-01-25T16:53:05Z | |
dc.date.available | 2022-09-21T19:08:15Z | |
dc.date.created | 2021-01-25T16:53:05Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78904 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3413559 | |
dc.description.abstract | Kernels methods provide a powerful and unifying framework to solve nonlinear problems while retaining in many cases, the simplicity of linear solutions. However, in machine learning and kernels methods, data is assumed to be independent and identically-distributed (i.i.d), discarding time information. This work's focus is on the development of a functional representation framework based on reproducing kernel Hilbert spaces (RKHS). It will provide a suitable support for high-dimensional non-stationary spatio-temporal signals. This framework reveals data structures and thus improve multiple kernel learning. Besides, it allows us to analyze multiple RKHSs associated with different time series. Firstly we propose a functional measure by developing filters in RKHS. Secondly, we propose a method to encode multichannel time series dynamics with localized codebooks oriented to classification tasks. Lastly, we present a functional framework to compare multiple probability distributions based on Hilbert embeddings. The proposed framework is tested on both time series classification and human action analysis. This framework offers an innovative analytical and methodological approach to consider both the distribution and the structure of time series, either monochannel or multichannel. | |
dc.description.abstract | Los métodos kernel proporcionan un espacio de trabajo único y potente para resolver problemas no lineales conservando en la mayoría de casos la simplicidad de las soluciones lineales. Sin embargo, en las áreas de aprendizaje de máquina y métodos kernel, los datos se asumen independientes e idénticamente distribuidos (i.i.d), perdiendo información en el tiempo. El énfasis de este trabajo es el desarrollo de un marco de representación funcional basado en espacios de Hilbert con núcleo reproductivo (RKHS) (por sus siglas en inglés: Reproducing Kernel Hilbert Spaces). Este proporcionará un soporte adecuado para señales espacio-temporales no estacionarias de alta dimensión. Este marco revela estructuras en los datos y por lo tanto, mejora el aprendizaje con múltiples núcleos (kernels). Adicionalmente, permite analizar múltiples RKHSs asociados con diferentes series de tiempo. En primer lugar proponemos una medida funcional desarrollando filtros en RKHS. En segundo lugar, proponemos un método para codificar dinámicas de series de tiempo multicanal con diccionarios localizados orientados a tareas de clasificación. Por último, presentamos un marco funcional para comparar distribuciones de probabilidad múltiples basadas en inmersiones de Hilbert. El marco propuesto se prueba tanto en la clasificación de series de tiempo como en el análisis de la movimiento humano. Este marco ofrece un enfoque analítico y metodológico innovador para considerar tanto la distribución como la estructura de las series de tiempo ya sean monocanal o multicanal. | |
dc.language | eng | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | Althloothi, S., Mahoor, M. H., Zhang, X., and Voyles, R. M. (2014). Human activity recognition using multi-features and multiple kernel learning. Pattern Recognition, 47(5):1800 - 1812. | |
dc.relation | Alvarez, M. A., Rosasco, L., and Lawrence, N. D. (2012). Kernels for vector-valued functions: A review. Found. Trends Mach. Learn., 4(3):195-266. | |
dc.relation | Alvarez-Meza, A. M., C ardenas-Peña, D., and Castellanos-Dominguez, G. (2014). Unsupervised kernel function building using maximization of information potential variability. In CIARP 2014, pages 335-342. Springer International Publishing. | |
dc.relation | Anantasech, P. and Ratanamahatana, C. A. (2019). Enhanced weighted dynamic time warping for time series classifi cation. In Third International Congress on Information and Communication Technology, pages 655-664. Springer. | |
dc.relation | Berlinet, A. and Thomas-Agnan, C. (2011). Reproducing kernel Hilbert spaces in probability and statistics. Springer Science & Business Media. | |
dc.relation | Bicego, M. and Murino, V. (2004). Investigating hidden markov models' capabilities in 2d shape classifi cation. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):281-286. | |
dc.relation | Bicego, M., Murino, V., and Figueiredo, M. A. (2004). Similarity-based classification of sequences using hidden markov models. Pattern Recognition, 37(12):2281-2291. | |
dc.relation | Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA. | |
dc.relation | Blanchard, G., Bousquet, O., and Zwald, L. (2007). Statistical properties of kernel principal component analysis. Machine Learning, 66(2-3):259-294. | |
dc.relation | Callejas-Cuervo, M., Alvarez, J., and Alvarez, D. (2016). Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes. In BSN 2016 - 13th Annual Body Sensor Networks Conference, pages 119-123. | |
dc.relation | Callejas-Cuervo, M., Gutierrez, R., and Hernandez, A. (2017). Joint amplitude mems based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study. Journal of Bodywork and Movement Therapies, 21(3):574-581. | |
dc.relation | Callejas-Cuervo, M., Pineda-Rojas, J. A., and Daza-Wittinghan, W. A. (2020). Analysis of ball interception velocity in futsal goalkeepers. Journal of Human Sport and Exercise, 15:S735-S747. | |
dc.relation | Carnegie-Mellon University (2003). CMU graphics lab: Carnegie-Mellon motion capture (mocap) database. http://mocap.cs.cmu.edu. Accessed: 2020-09-14. | |
dc.relation | Chen, B., Zhao, S., Zhu, P., and Principe, J. C. (2012). Quantized kernel least mean square algorithm. IEEE Transactions on Neural Networks and Learning Systems, 23(1):22-32. | |
dc.relation | Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., and Batista, G. (2015). The UCR time series classi fication archive. www.cs.ucr.edu/~eamonn/time_series_data/. | |
dc.relation | Cho, W., Kim, S., and Park, S. (2017). Human action recognition using hybrid method of hidden Markov model and Dirichlet process gaussian mixture model. Advanced Science Letters,
23(3):1652-1655. | |
dc.relation | Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res., 13(1):795-828. | |
dc.relation | Delgado-Garc a, G., Vanrenterghem, J., Muñoz Garc ía, A., Molina-Molina, A., and Soto-Hermoso, V. (2019). Does stroke performance in amateur tennis players depend on functional power generating capacity? Journal of Sports Medicine and Physical Fitness, 59(5):760-766 | |
dc.relation | Duin, R. P. W. and Pekalska, E. (2005). Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications, volume 64 of Machine Perception and Arti ficial Intelligence. World Scienti c Publishing Co., Inc. | |
dc.relation | Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep learning for time series classifi cation: a review. Data Mining and Knowledge Discovery, pages 1-47. | |
dc.relation | Field, M., Stirling, D., and Pan, Z. (2015). Recognizing human motions through mixture modeling of inertial data. Pattern Recognition, 48(8):2394 - 2406. | |
dc.relation | Fukumizu, K., Bach, F., and Gretton, A. (2007). Statistical consistency of kernel canonical correlation analysis. Journal of Machine Learning Research, 8:361-383. | |
dc.relation | Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J. Mach. Learn. Res., 5:73-99. | |
dc.relation | Garci a-Vega, S., Alvarez-Meza, A. M., and Castellanos-Dom inguez, G. (2013). Mocap data segmentation and classi fication using kernel based multi-channel analysis. In Ruiz-Shulcloper, J.
and Sanniti di Baja, G., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - CIARP 2013, Proceedings, pages 495-502, Cham. Springer Berlin
Heidelberg. | |
dc.relation | Gil-Gonzalez, J., Alvarez-Meza, A., and Orozco-Gutierrez, A. (2018). Learning from multiple annotators using kernel alignment. Pattern Recognition Letters, 116:150 - 156. | |
dc.relation | Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel two-sample test. J. Mach. Learn. Res., 13:723-773. | |
dc.relation | Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Jain, S., Simon, H. U., and Tomita, E., editors, Algorithmic
Learning Theory, pages 63-77, Berlin, Heidelberg. Springer Berlin Heidelberg. | |
dc.relation | Han, F., Reily, B., Ho , W., and Zhang, H. (2017). Space-time representation of people based on 3d skeletal data: A review. Computer Vision and Image Understanding, 158:85-105. | |
dc.relation | ITF (2007). ITF coaches education programme level 2 coaching course. Physical conditioning for tournament players. https://en.coaching.itftennis.com/media/24729/24729.PDF. Accessed: 2014-03-30. | |
dc.relation | Jebara, T., Kondor, R., and Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research, 5(Jul):819-844. | |
dc.relation | Jeong, Y.-S., Jeong, M. K., and Omitaomu, O. A. (2011). Weighted dynamic time warping for time series classi fication. Pattern recognition, 44(9):2231-2240. | |
dc.relation | Kadu, H. and Kuo, C.-C. J. (2014). Automatic human mocap data classifi cation. IEEE Transactions on Multimedia, 16(8):2191-2202. | |
dc.relation | Kotsifakos, A. (2014). Case study: Model-based vs. distance-based search in time series databases. In Exploratory Data Analysis (EDA) Workshop in SIAM International Conference on Data
Mining (SDM). | |
dc.relation | Landlinger, J., Lindinger, S., Stoggl, T., Wagner, H., and Muller, E. (2010). Key factors and timing patterns in the tennis forehand of di fferent skill levels. Journal of sports science & medicine,
9:643-651. | |
dc.relation | Marco, V. R., Young, D. M., and Turner, D. W. (1987). The euclidean distance classi fier: an alternative to the linear discriminant function. Communications in Statistics-Simulation and
Computation, 16(2):485-505. | |
dc.relation | Microsoft Research (2009). MSR action data set. http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/. Accessed: 2020-09-14. | |
dc.relation | Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. | |
dc.relation | Niu, G., Dai, B., Yamada, M., and Sugiyama, M. (2014). Information-theoretic semi-supervised metric learning via entropy regularization. Neural computation, 26(8):1717-1762. | |
dc.relation | Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. (2014). Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition. J. Visual
Communication and Image Representation, 25(1):24-38. | |
dc.relation | OptiTrack™(2009). Arena ™motion capture software tutorials. https://youtu.be/gjrsIBf124s?list=PL417F2589E95EFCA9. Accessed: 2020-02-17. | |
dc.relation | Orozco-Alzate, M., Duin, R., and Castellanos-Domínguez, G. (2009). A generalization of dissimilarity representations using feature lines and feature planes. Pattern Recognition Letters,
30(3):242-254. | |
dc.relation | Park, M., Jitkrittum, W., and Sejdinovic, D. (2016). K2-abc: Approximate bayesian computation with kernel embeddings. volume 51 of Proceedings of Machine Learning Research, pages 398-407, Cadiz, Spain. PMLR. | |
dc.relation | Perez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lazaro-Gredilla, M., and Santamaria, I. (2013). Gaussian processes for nonlinear signal processing: An overview of recent advances.
IEEE Signal Processing Magazine, 30(4):40-50. | |
dc.relation | Principe, J. C. (2010). Information theoretic learning: Renyi's entropy and kernel perspectives. pages 1-45, New York, NY. Springer New York. | |
dc.relation | Pulgarin-Giraldo, J. D., Alvarez-Meza, A. M., Melo-Betancourt, L. G., Ramos-Bermudez, S., and Castellanos-Dominguez, G. (2016). A similarity indicator for di fferentiating kinematic performance between qualifi ed tennis players. In Beltran-Castanon, C. A., Nystrom, I., and Famili, F., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - CIARP 2016, Lima, Per u, Proceedings, pages 309-317. Springer International Publishing. | |
dc.relation | Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286. | |
dc.relation | Ravet, T., Tilmanne, J., and d'Alessandro, N. (2014). Hidden markov model based real-time motion recognition and following. In Proceedings of the 2014 International Workshop on Movement and Computing, MOCO '14, page 82:87, New York, NY, USA. ACM. | |
dc.relation | Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. The MIT Press, Cambridge, MA, USA. | |
dc.relation | Shimizu, T., Hachiuma, R., Saito, H., Yoshikawa, T., and Lee, C. (2019). Prediction of future shot direction using pose and position of tennis player. pages 59-66. | |
dc.relation | Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). Algorithmic learning theory: 18th international conference, alt 2007, sendai, japan, october 1-4, 2007. proceedings. pages 13-31,
Berlin, Heidelberg. Springer Berlin Heidelberg. | |
dc.relation | Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. (2012). On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550-1599. | |
dc.relation | Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Sch olkopf, B., and Lanckriet, G. R. (2010). Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res., 11:1517-
1561. | |
dc.relation | Tanisaro, P. and Heidemann, G. (2016). Time series classi fication using time warping invariant echo state networks. In 2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 831-836. IEEE. | |
dc.relation | Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition. Academic Press, Boston, fourth edition edition. | |
dc.relation | Valencia, E. A. and Alvarez, M. A. (2017). Short-term time series prediction using Hilbert space embeddings of autoregressive processes. Neurocomputing, 266:595 - 605. | |
dc.relation | Van Der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625. | |
dc.relation | Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):283-298. | |
dc.relation | Wang, S., Hou, Y., Li, Z., Dong, J., and Tang, C. (2018). Combining convnets with hand-crafted features for action recognition based on an hmm-svm classi er. Multimedia Tools and Applications, 77(15):18983-18998. | |
dc.relation | Whiteside, D., Elliott, B., Lay, B., and Reid, M. (2013). A kinematic comparison of successful and unsuccessful tennis serves across the elite development pathway. Human Movement Science, 32(4):822 - 835. | |
dc.relation | Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement. John Wiley Sons, fourth edition. | |
dc.relation | Wu, Y. (2012). Mining actionlet ensemble for action recognition with depth cameras. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR '12, pages 1290-1297, Washington, DC, USA. IEEE Computer Society. | |
dc.relation | Zafari, A., Milla, R. Z., and Izquierdo-Verdiguier, E. (2020). A multi-scale random forest kernel for land cover classi fication. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. | |
dc.relation | Zago, M., Codari, M., Iaia, F., and Sforza, C. (2017). Multi-segmental movements as a function of experience in karate. Journal of Sports Sciences, 35(15):1515-1522. | |
dc.relation | Zeng, J., Duan, J., and Wu, C. (2010). A new distance measure for hidden markov models. Expert systems with applications, 37(2):1550-1555. | |
dc.relation | Zhang, H.-B., Zhang, Y.-X., Zhong, B., Lei, Q., Yang, L., Du, J.-X., and Chen, D.-S. (2019). A comprehensive survey of vision-based human action recognition methods. Sensors, 19(5). | |
dc.relation | Dai, Z., Alvarez, M., and Lawrence, N. (2017). Efficient modeling of latent information in supervised learning using gaussian processes. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems NIPS 2017, volume 30, pages 5131-5139. Curran Associates, Inc. | |
dc.relation | Fontes, A., Rego, J., Martins, A., Silveira, L., and Principe, J. (2017). Cyclostationary correntropy: Definition and applications. Expert Systems with Applications, 69:110--117. | |
dc.relation | Fukuchi, R., Fukuchi, C., and Duarte, M. (2017). A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ, 2017(5):3298. Figshare dataset available at https://doi.org/10.6084/m9.figshare.4543435.v4 | |
dc.relation | Liu, W., Principe, J. C., and Haykin, S. (2010). Kernel Adaptive Filtering: A Comprehensive Introduction. John Wiley & Sons, Inc., 1st edition. | |
dc.relation | Muandet, K., Fukumizu, K., Sriperumbudur, B., and Schölkopf, B. (2017). Kernel Mean Embedding of Distributions: A Review and Beyond, volume 10:1-2 of Foundations and Trends® in Machine Learning. Now Publishers Inc. | |
dc.relation | Müller, M. (2007). Dynamic time warping. In Information Retrieval for Music and Motion, pages69–84. Springer, Berlin, Heidelberg. | |
dc.relation | Pulgarin-Giraldo, J. D., Alvarez-Meza, A. M., Vaerenbergh, S. V., Santamaria, I., and Castellanos-Dominguez, G. (2019). Analysis and classification of MoCap data by Hilbert space embedding based distance and multikernel learning. In Vera-Rodriguez, R., Fierrez, J., and Morales, A., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - CIARP 2018, Madrid, Spain, Proceedings, pages 186-193, Cham. Springer International Publishing. | |
dc.relation | Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, volume 2 of Adaptive Computation and Machine Learning. The MIT Press. | |
dc.relation | Van Vaerenbergh, S., Lazaro-Gredilla, M., and Santamaria, I. (2012). Kernel recursive least-squares tracker for time-varying regression. IEEE Transactions on Neural Networks and Learning Systems, 23(8):1313-1326. | |
dc.relation | Van Vaerenbergh, S. and Santamaria, I. (2013). A comparative study of kernel adaptive filtering algorithms. In 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pages 181-186. Software available at https://github.com/steven2358/kafbox/ | |
dc.relation | Pulgarin-Giraldo, J.D., Ruales-Torres, A.A., Alvarez-Meza, A.M., Castellanos-Dominguez, G. (2017). Relevant kinematic feature selection to support human action recognition in MoCap data. In Ferrandez-Vicente, J. M., Alvarez-Sanchez, J. R., de la Paz-Lopez. F., Toledo-Moreo, J. and Adeli, H., editors, Biomedical Applications Based on Natural and Artificial Computing – IWINAC 2017, Proceedings, pages 501-509, Cham. Springer International Publishing. | |
dc.relation | Pulgarin-Giraldo, J.D., Alvarez-Meza, A.M., Van Vaerenbergh, S., Santamaria, I., Castellanos-Dominguez, G. (2019). MoCap multichannel time series representation and relevance analysis by kernel adaptive filtering and multikernel learning oriented to action recognition tasks. In Valenzuela, O., Rojas, F., Pomares, H. and Rojas, I., editors, International Conference on Time Series and Forecasting - ITISE 2018, Granada, Spain. Proceedings, pages 1316-1327. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Relevant multichannel time series representation based on functional measures in RKHS | |
dc.type | Otros | |