dc.contributorVega Castro, Nohora Angélica
dc.contributorPuyana Hegedus, Mónica
dc.contributorGrupo de Investigación en Proteinas Grip
dc.creatorDuarte Tayo, Angie Patricia
dc.date.accessioned2022-03-25T17:05:54Z
dc.date.available2022-03-25T17:05:54Z
dc.date.created2022-03-25T17:05:54Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81388
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl estudio en lectinas de algas es menor comparado con vegetales o animales, sin embargo, se han estudiado principalmente en algas rojas (Phylum Rhodophyta). Por otra parte, la purificación de estas moléculas es dispendiosa dada la cantidad de pigmentos que contienen sus extractos proteicos. En este estudio se llevaron a cabo ensayos de purificación de las lectinas del alga roja Tricleocarpa cylindrica, dado que previamente se detectó su actividad aglutinante; por otra parte, se ha reportado que estas lectinas tienen diferentes actividades biológicas que las postulan como moléculas de gran interés farmacológico. Inicialmente se realizó un tratamiento con acetona a la harina del alga para eliminar interferentes que producen hemólisis de eritrocitos, por precipitación con sulfato de amonio se detectó únicamente actividad aglutinante en la fracción del 50-80%s, los ensayos de inhibición con carbohidratos mostraron reconocimiento principalmente por D-glucosa. Aglutinó preferentemente eritrocitos de humano tipo B con cantidades de 0.6 g de proteína pura, similar a lo reportado para lectinas de otras especies de algas rojas. La lectina de Tricleocarpa cylindrica (LTC) se purificó con una combinación de métodos cromatográficos, que incluyeron intercambio iónico, afinidad y un paso final con HPLC. Esta nueva proteína se caracterizó por ser una glicoproteína con un peso molecular de 29 kDa por SDS PAGE, un punto isoeléctrico ácido (5.7) y alta estabilidad en un rango de pH de 3.0-7.4 y temperatura hasta los 58ºC. (Texto tomado de la fuente)
dc.description.abstractLectins from marine algae have not been studied such as vegetables or animals, even though, their study is centered in red algae (Phylum Rhodophyta). Furthermore, purification of these proteins is difficult due to pigments in saline extracts. In this study, purification of the lectins from the red algae Tricleocarpa cylindrica were carried out because hemagglutination activity was detected previously; additionally, these lectins could be molecules of great pharmacological potential for its various biological activities. First, removal of pigments was achieved by washing the algae flour with cool acetone to avoid hemolysis, precipitation assays from PBS extracts showed that the whole lectin was obtained in the fractions precipitated with ammonium sulphate 50-80%s. The lectin was able to agglutinate human RBCs from B and O donors; although it agglutinated preferentially B erythrocytes with a minimum lectin quantity of 0.6 g, like other species studied. Several purification procedures were assayed which included DEAE-sephadex, affinity chromatography, and the last step on HPLC. It led to obtaining a pure lectin having high specific agglutination activity (SAA). The PI showed a unique band at pH 5.7, in SDS-PAGE a band around 29 kDa, thermal stability (58 0C), and activity in the pH range 3.0-7.4.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlam, T. (2018). Extraction of Natural Colors from Marine Algae. Journal of Agricultural and Marine Sciences, 23, 81–91. https://doi.org/10.24200/jams.vol23iss1pp81-91
dc.relationAlexandre, K. B., Gray, E. S., Lambson, B. E., Moore, P. L., Choge, I. A., Mlisana, K., Karim, S. S. A., McMahon, J., O’Keefe, B., Chikwamba, R., & Morris, L. (2010). Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin. Virology, 402(1), 187–196. https://doi.org/10.1016/J.VIROL.2010.03.021
dc.relationAlpuche, J., Pereyra, A., Agundis, C., Rosas, C., Pascual, C., Slomianny, M. C., Vázquez, L., & Zenteno, E. (2005). Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochimica et Biophysica Acta (BBA) - General Subjects, 1724(1–2), 86–93. https://doi.org/10.1016/J.BBAGEN.2005.04.014
dc.relationAnam, C., Chasanah, E., Perdhana, B. P., Fajarningsih, N. D., Yusro, N. F., Sari, A. M., Nursiwi, A., Praseptiangga, D., & Yunus, A. (2017). Cytotoxicity of Crude Lectins from Red Macroalgae from the Southern Coast of Java Island, Gunung Kidul Regency, Yogyakarta, Indonesia. IOP Conference Series: Materials Science and Engineering, 193(1), 012017. https://doi.org/10.1088/1757-899X/193/1/012017
dc.relationBarre, A., Damme, E. J. M. V., Simplicien, M., Benoist, H., & Rougé, P. (2020). Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Marine Drugs 2020, Vol. 18, Page 543, 18(11), 543. https://doi.org/10.3390/MD18110543
dc.relationBarre, A., Simplicien, M., Benoist, H., Van Damme, E. J. M., & Rougé, P. (2019). Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Marine Drugs, 17(8), 440. https://doi.org/10.3390/md17080440
dc.relationBenevides, N., Holanda, M., Melo, F., Freitas, A., & Sampaio, A. (1998). Purification and Partial Characterisation of the Lectin from the Marine Red Alga Enantiocladia duperreyi (C. Agardh) Falkenberg. Botanica Marina, 41(5), 521–526. https://doi.org/10.1515/BOTM.1998.41.1-6.521
dc.relationBenevides, N., Holanda, M., Melo, F., Pereira, M., Monteiro, A., & Freitas, A. (2001). Purification and Partial Characterization of the Lectin from the Marine Green Alga Caulerpa cupressoides (Vahl) C. Agardh. Botanica Marina, 44(1), 17–22. https://doi.org/10.1515/BOT.2001.003
dc.relationBenevides, N., Leite, A., & Ponte, A. (1996). Atividade hemaglutinante na alga vermelha Solieria filiformis. Revista Brasileira de Fisiologia Vegetal, 6(2), 117–122.
dc.relationBitencourt, F. D. S., Figueiredo, J. G., Mota, M. R. L., Bezerra, C. C. R., Silvestre, P. P., Vale, M. R., Nascimento, K. S., Sampaio, A. H., Nagano, C. S., Saker-Sampaio, S., Farias, W. R. L., Cavada, B. S., Assreuy, A. M. S., & De Alencar, N. M. N. (2008). Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377(2), 139–148. https://doi.org/10.1007/S00210-008-0262-2
dc.relationBleakley, S., & Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 6(5), 1–34. https://doi.org/10.3390/FOODS6050033
dc.relationBollag, D., & Edelstein, S. (1994). Protein Methods. Wiley-Liss. 162-171 p.
dc.relationBonnardel, F., Haslam, S., Dell, A., Feizi, T., Liu, Y., Tajadura, V., Akune, Y., Sykes, L., Bennett, P., MacIntyre, D., Lisacek, F., & Imberty, A. (2021a). Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. Biofilms and Microbiomes, 7(1), 1–10. https://doi.org/10.1038/s41522-021-00220-9
dc.relationBonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021b). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548. https://doi.org/10.1093/NAR/GKAA1019
dc.relationBoonsri, N., Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K. (2016). Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. Journal of Applied Phycology, 29(3), 1597–1608. https://doi.org/10.1007/S10811-016-0969-2
dc.relationBoyd, W. C., Almodóvar, L. R., & Boyd, L. G. (1966). Agglutinins in Marine Algae for Human Erythrocytes. Transfusion, 6(1), 82–83. https://doi.org/10.1111/j.1537-2995.1966.tb04699.x
dc.relationCalvete, J. J., Costa, F. H. F., Saker-Sampaio, S., Murciano, M. P. M., Nagano, C. S., Cavada, B. S., Grangeiro, T. B., Ramos, M. V., Bloch, C., Silveira, S. B., Freitas, B. T., & Sampaio, A. H. (2000). The amino acid sequence of the agglutinin isolated from the red marine alga Bryothamnion triquetrum defines a novel lectin structure. Cellular and Molecular Life Sciences, 57(2). https://doi.org/10.1007/PL00000696
dc.relationCarneiro, R. F., Duarte, P. L., Chaves, R. P., da Silva, S. R., Feitosa, R. R., de Sousa, B. L., da Silva Alves, A. W., de Vasconcelos, M. A., da Rocha, B. A. M., Teixeira, E. H., Sampaio, A. H., & Nagano, C. S. (2020). New lectins from Codium isthmocladum Vickers show unique amino acid sequence and antibiofilm effect on pathogenic bacteria. Journal of Applied Phycology, 32(6), 4263–4276. https://doi.org/10.1007/S10811-020-02198-X
dc.relationCatanzaro, E., Calcabrini, C., Bishayee, A., & Fimognari, C. (2019). Antitumor Potential of Marine and Freshwater Lectins. Marine Drugs, 18(1). https://doi.org/10.3390/MD18010011
dc.relationChaves, R., da Silva, S., da Silva, J., Carneiro, R., de Sousa, B., Abreu, J. O., de Carvalho, F., Rocha, C., Farias, W., de Sousa, O., Silva, A., Sampaio, A., & Nagano, C. (2018a). Meristiella echinocarpa lectin (MEL): a new member of the OAAH-lectin family. Journal of Applied Phycology, 30(4), 2629–2638. https://doi.org/10.1007/S10811-018-1473-7
dc.relationChaves, R., da Silva, S., Nascimento, L., Carneiro, R., Silva, A., Sampaio, A., Sousa, B., Cabral, M., Videira, P., Teixeira, E., & Nagano, C. (2018b). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International Journal of Biological Macromolecules, 107(Pt A), 1320–1329. https://doi.org/10.1016/J.IJBIOMAC.2017.09.116
dc.relationClausen, H., & Hakomori, S. (1989). ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sanguinis, 56(1), 1–20. https://doi.org/10.1111/J.1423-0410.1989.TB03040.X
dc.relationCortés, J., Zárate, A. M., Figueroa, J. D., Medina, J., Fuentes-Lemus, E., Rodríguez-Fernández, M., Aliaga, M., & López-Alarcón, C. (2020). Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Analytical Biochemistry, 608, 113904. https://doi.org/10.1016/J.AB.2020.113904
dc.relationCummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan-Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048
dc.relationDe Coninck, T., & Van Damme, E. (2021). Review: The multiple roles of plant lectins. Plant Science, 313, 111096. https://doi.org/10.1016/J.PLANTSCI.2021.111096
dc.relationDe Souza, G. A., Ferreira, B. S., Dias, J. M., Queiroz, K. S., Branco, A. T., Bressan, R. E., Oliveira, J. G., & Garcia, A. B. (2003). Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Science, 164(4), 623–628. https://doi.org/10.1016/S0168-9452(03)00014-1
dc.relationDelatorre, P., Rocha, B., Gadelha, C., Santi, T., Cajazeiras, J., Souza, E., Nascimento, K., Freire, V., Sampaio, A., Azevedo, W., & Cavada, B. (2006). Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. Journal of Structural Biology, 154(3), 280–286. https://doi.org/10.1016/J.JSB.2006.03.011
dc.relationDinh, H. Le, Hori, K., & Quang, N. H. (2008). Screening and preliminary characterization of hemagglutinins in Vietnamese marine algae. Journal of Applied Phycology, 21(1), 89–97. https://doi.org/10.1007/S10811-008-9330-8
dc.relationDo Nascimento, L., Carneiro, R., Da Silva, S., Da Silva, B., Arruda, F., Carneiro, V., Do Nascimento, K., Saker, S., Da Silva, V., Porto, A., Cavada, B., Sampaio, A., Teixeira, E., & Nagano, C. (2012). Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Marine Drugs, 10(9), 1936–1954. https://doi.org/10.3390/md10091936
dc.relationDomingo, M. (2018). Caracterización y aplicaciones potenciales de una columna monolítica funcionalizada con magnetita. Universidad Politécnica de Valencia. Tesis de Pregrado. 52 p.
dc.relationDomínguez, A. (2008). Regulación de la expresión y función de las lectinas mieloides DC-SIGN y LSECtin. Univesidad Complutense de Madrid, Departamento de Bioquímica y Biología Molecular. Tesis Doctoral. 134 p.
dc.relationDumontier, R., Mareck, A., Mati-Baouche, N., Lerouge, P., & Bardor, M. (2018). Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals. Microalgal Biotechnology. https://doi.org/10.5772/INTECHOPEN.73401
dc.relationDuong, K. C., & Gabelli, S. B. (2014). Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 541, 85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0
dc.relationElayabharathi, T., Vinoliya, J., & Bai, S. (2020). Characterization of a novel O-acetyl sialic acid specific lectin from the hemolymph of the marine crab, Atergatis integerrimus (Lamarck, 1818). Fish & Shellfish Immunology, 106, 1131–1138. https://doi.org/10.1016/J.FSI.2020.07.039
dc.relationElumalai, P., Rubeena, A. S., Arockiaraj, J., Wongpanya, R., Cammarata, M., Ringø, E., & Vaseeharan, B. (2019). The Role of Lectins in Finfish: A Review. Revieew in Fisherires Science & Aquaculture, 27(2), 152–169. https://doi.org/10.1080/23308249.2018.1520191
dc.relationEnglard, S., & Seifter, S. (1990). Precipitation techniques. Methods in Enzymology, 182(C), 285–300. https://doi.org/10.1016/0076-6879(90)82024-V
dc.relationFajarningsih, N., Intaqta, N., Praseptiangga, D., & Anam, C. (2019). Extraction and Partial Characterization of Lectin from Indonesian Brown Algae Padina australis and Padina minor. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14, 103–111. https://doi.org/10.15578/squalen.v14i3.400
dc.relationFigueiredo, J. G., Bitencourt, F. S., Cunha, T. M., Luz, P. B., Nascimento, K. S., Mota, M. R. L., Sampaio, A. H., Cavada, B. S., Cunha, F. Q., & Alencar, N. M. N. (2010). Agglutinin isolated from the red marine alga Hypnea cervicornis J. Agardh reduces inflammatory hypernociception: involvement of nitric oxide. Pharmacology, Biochemistry, and Behavior, 96(4), 371–377. https://doi.org/10.1016/J.PBB.2010.06.008
dc.relationFontenelle, T. P. C., Lima, G. C., Mesquita, J. X., Lopes, J. L. de S., de Brito, T. V., Vieira Junior, F. das C., Sales, A. B., Aragao, K. S., Souza, M. H. L. P., Barbosa, A. L. D. R., & Freitas, A. L. P. (2018). Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. International Journal of Biological Macromolecules, 112, 1122–1130. https://doi.org/10.1016/j.ijbiomac.2018.02.058
dc.relationFricke, A., Nguyen, X. V., Stuhr, M., Hoang, T. D., Dao, V. H., Tran, M. D., Pham, T. S., Le, H. C., Le, M. H., Pham, Q. L., Schmid, M., Kunzmann, A., Gärdes, A., von Hagen, J., & Teichberg, M. (2021). Subtidal macrophyte diversity and potentials in Nha Trang Bay - baseline data for monitoring a rising natural resource. Estuarine, Coastal and Shelf Science, 259, 107460. https://doi.org/10.1016/j.ecss.2021.107460 https://doi.org/10.1016/J.ECSS.2021.107460
dc.relationFujii, Y., Gerdol, M., Hasan, I., Koide, Y., Matsuzaki, R., Ikeda, M., Rajia, S., Ogawa, Y., Kawsar, S. M. A., & Ozeki, Y. (2018). Phylogeny and properties of a novel lectin family with β-trefoil folding in mussels. Trends in Glycoscience and Glycotechnology, 30(177), E195–E208. https://doi.org/10.4052/tigg.1717.1E
dc.relationFujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Methods in Molecular Biology (Clifton, N.J.), 1200, 579–606. https://doi.org/10.1007/978-1-4939-1292-6_46
dc.relationFukuda, Y., Sugahara, T., Ueno, M., Fukuta, Y., Ochi, Y., Akiyama, K., Miyazaki, T., Masuda, S., Kawakubo, A., & Kato, K. (2006). The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anti-Cancer Drugs, 17(8), 943–947. https://doi.org/10.1097/01.cad.0000224458.13651.b4
dc.relationGalland, A. V., Fleurence, J., Lamghari, R., Luçon, M., Rouxel, C., Barbaroux, O., Bronowicki, J. P., Villaume, C., & Guéant, J. L. (1999). Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). The Journal of Nutritional Biochemistry, 10(6), 353–359. https://doi.org/10.1016/S0955-2863(99)00014-5
dc.relationGoldring, J. P. D. (2012). Protein Quantification Methods to Determine Protein Concentration Prior to Electrophoresis. Methods in Molecular Biology, 869, 29–35. https://doi.org/10.1007/978-1-61779-821-4_3
dc.relationGondim, A. C. S., Roberta Da Silva, S., Mathys, L., Noppen, S., Liekens, S., Holanda Sampaio, A., Nagano, C. S., Renata Costa Rocha, C., Nascimento, K. S., Cavada, B. S., Sadler, P. J., & Balzarini, J. (2019). Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm, 10(3), 390–398. https://doi.org/10.1039/c8md00508g
dc.relationHammarston, S., & Kabat, E. (1969). Purification and Characterization of a Blood-Group A Reactive Hemagglutinin from the Snail Helix pomatia and a Study of Its Combining Site. Biochemistry, 8(7), 2696–2705. https://doi.org/doi:10.1021/bi00835a002
dc.relationHan, J. W., Yoon, K. S., Klochkova, T. A., Hwang, M.-S., & Kim, G. H. (2010). Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa. Journal of Applied Phycology, 23(4), 745–753. https://doi.org/10.1007/S10811-010-9575-X
dc.relationHara, A., Imamura, A., Ando, H., Ishida, H., & Kiso, M. (2014). A New Chemical Approach to Human ABO Histo-Blood Group Type 2 Antigens. Molecules, 19(1), 414. https://doi.org/10.3390/MOLECULES19010414
dc.relationHayes, M. (2020). Measuring Protein Content in Food: An Overview of Methods. Foods, 9(10). https://doi.org/10.3390/FOODS9101340
dc.relationHeljo, V. P., Filipe, V., Romeijn, S., Jiskoot, W., & Juppo, A. M. (2013). Stability of Rituximab in Freeze-Dried Formulations Containing Trehalose or Melibiose Under Different Relative Humidity Atmospheres. Journal of Pharmaceutical Sciences, 102(2), 401–414. https://doi.org/10.1002/JPS.23392
dc.relationHermanson, G., Mallia, A., & Smith, P. (1992). Immobilized affinity ligand techniques. In Immobilized affinity ligand techniques. Academic Press. 88-90 p.
dc.relationHichrom. (2018). Chromatography ranges acquired from Grace manufactured by Hichrom in the UK. In Catálogo Hichrom Limited (pp. 1–28). Hichrim Limited. www.hichrom.com
dc.relationHidalgo, D. (2017). Detección , purificación y caracterización parcial de lectinas presentes en algas marinas colombianas. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 125 p.
dc.relationHori, K., Matsubara, K., & Miyazawa, K. (2000). Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(2), 226–236. https://doi.org/10.1016/s0304-4165(00)00008-8
dc.relationHori, K., Miyazawa, K., & Ito, K. (1981). Hemagglutinins in Marine Algae. Bulletin of the Japanese Society of Scientific Fisheries, 47(6), 793–798. https://www.jstage.jst.go.jp/article/suisan1932/47/6/47_6_793/_pdf/-char/en
dc.relationHori, K., Miyazawa, K., & Ito, K. (1990). Some common properties of lectins from marine algae. Hydrobiologia, 204–205(1), 561–566. https://doi.org/10.1007/BF00040287
dc.relationHori, K., Sato, Y., Ito, K., Fujiwara, Y., Iwamoto, Y., Makino, H., & Kawakubo, A. (2007). Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology, 17(5), 479–491. https://doi.org/10.1093/GLYCOB/CWM007
dc.relationHuisman, J. (2006). Algae of Australia: Nemaliales (1st ed., Vol. 1). CSIRO Publishing. ISBN: 9780643093782. 164 p.
dc.relationHung, L. D., & Trinh, P. T. H. (2020). Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. Journal of Natural Medicines 2020 75:1, 75(1), 223–231. https://doi.org/10.1007/S11418-020-01455-0
dc.relationHung, L. D., Sato, Y., & Hori, K. (2011). High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte). Phytochemistry, 72(9), 855–861. https://doi.org/10.1016/J.PHYTOCHEM.2011.03.009
dc.relationHwang, H. J., Han, J. W., Jeon, H., Cho, K., Kim, J. hee, Lee, D. S., & Han, J. W. (2020). Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules, 10(2), 333. https://doi.org/10.3390/BIOM10020333
dc.relationHwang, H. J., Han, J. W., Jeon, H., & Han, J. W. (2018a). Induction of recombinant lectin expression by an artificially constructed tandem repeat structure: A case study using Bryopsis plumosa mannose-binding lectin. Biomolecules, 8(4), 146. https://doi.org/10.3390/biom8040146
dc.relationHwang, H. J., Han, J. W., Kim, G. H., & Han, J. W. (2018b). Functional expression and characterization of the recombinant n-acetyl-glucosamine/n-acetyl-galactosamine-specific marine algal lectin BPL3. Marine Drugs, 16(1), 13. https://doi.org/10.3390/md16010013
dc.relationImberty, A. (2011). Synthesis and biological applications of glycoconjugates: Bacterial lectins and adhesins: Structures, Ligands and Functions. In O. Renaudet & N. Spinelli (Eds.), Synthesis and Biological Applications of Glycoconjugates, (1), 3–11. Bentham Science Publishers Ltd. https://doi.org/10.2174/97816080527761110101
dc.relationIngram, G. (1985). Lectins and lectin-like molecules in lower plants. I. Marine algae (review). Developmental and Comparative Immunology, 9(1), 1–10. https://doi.org/10.1016/0145-305X(85)90054-0
dc.relationJang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932G
dc.relationJiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10(1), 1–24. https://doi.org/10.1186/1471-2148-10-79
dc.relationJung, M. G., Lee, K. P., Choi, H. G., Kang, S. H., Klochkova, T. A., Han, J. W., & Kim, G. H. (2010). Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. Journal of Applied Phycology, 22(6), 793–802. https://doi.org/10.1007/S10811-010-9521-Y
dc.relationJunkunlo, K., Prachumwat, A., Tangprasittipap, A., Senapin, S., Borwornpinyo, S., Flegel, T., & Sritunyalucksana, K. (2012). A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV). Developmental and Comparative Immunology, 37(3–4), 334–341. https://doi.org/10.1016/J.DCI.2011.12.010
dc.relationKamiya, H., Ogata, K., & Hori, K. (1982). Isolation and Characterization of a New Agglutinin in the Red Alga Palmaria palmata (L.) O. Kuntze. Botanica Marina, 25(11), 537–540. https://doi.org/10.1515/BOTM.1982.25.11.537
dc.relationKamiya, H., Shimomi, K., & Shimizu, Y. (1980). Marine biopolymers with cell specificity--III--Agglutinins in the red alga Cystoclonium purpureum: isolation and characterization. Journal of Natural Products, 43(1), 136–139. https://doi.org/10.1021/NP50007A012
dc.relationKawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1997). The marine red alga Eucheuma serra J. Agardh, a high yielding source of two isolectins. Journal of Applied Phycology, 9(4), 331–338. https://doi.org/10.1023/A:1007915006334
dc.relationKawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1999). Occurrence of highly yielded lectins homologous within the genus Eucheuma. Journal of Applied Phycology, 11(2), 149–156. https://doi.org/10.1023/A:1008062127564
dc.relationKelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant Activity of Hawaiian Marine Algae. Marine Drugs, 10(2), 403–416. https://doi.org/10.3390/MD10020403
dc.relationKim, G. H., Klochkova, T. A., Yoon, K. S., Song, Y. S., & Lee, K. P. (2006). Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 42(1), 86–95. https://doi.org/10.1111/j.1529-8817.2006.00162.x
dc.relationKlyosov, A, Witczak, Z., Platt, D. (2008). Galectins. John Wiley & Sons, Inc. ISBN: 978-0-470-37318-7. 296 p.
dc.relationKozlowski, L. P. (2017). Proteome-pI: proteome isoelectric pointdatabase. Nucleic Acids Research, 45(Database issue), D1112. https://doi.org/10.1093/NAR/GKW978
dc.relationKumar, K., Reddy, G., Reddy, B., Shekar, P., Sumanthi, J., & Chandra, K. (2012). Biological role of lectins: A review. Journal of Orofacial Sciences, 4(1), 20. https://doi.org/10.4103/0975-8844.99883
dc.relationKumar, S., & Barros, U. (2020). Purification and Partial Characterization of a Haemagglutinin from Ulva fasciata. Current Science, 118(4), 621–625. https://doi.org/10.18520/CS/V118/I4/621-625
dc.relationLaemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680A0
dc.relationLambin, J., Demirel Asci, S., Dubiel, M., Tsaneva, M., Verbeke, I., Wytynck, P., De Zaeytijd, J., Smagghe, G., Subramanyam, K., & Van Damme, E. J. M. (2020). OsEUL Lectin Gene Expression in Rice: Stress Regulation, Subcellular Localization and Tissue Specificity. Frontiers in Plant Science, 11, 185. https://doi.org/10.3389/FPLS.2020.00185/BIBTEX
dc.relationLe, H. D., Sato, T., Shibata, H., & Hori, K. (2009). Biochemical comparison of lectins among three different color strains of the red alga Kappaphycus alvarezii. Fisheries Science, 75(3), 723–730. https://doi.org/10.1007/s12562-009-0088-y
dc.relationLebreton, A., Bonnardel, F., Dai, Y. C., Imberty, A., Martin, F. M., & Lisacek, F. (2021). A comprehensive phylogenetic and bioinformatics survey of lectins in the fungal kingdom. Journal of Fungi, 7(6), 453. https://doi.org/10.3390/JOF7060453/S1
dc.relationLeiner, Irvin, Sharon, Nathan, Goldstein, I. (1986). The Lectins: Properties, Functions, and Applications in Biology and Medicine. Elsevier. ISBN: 0124499457 9780124499454. 600 p.
dc.relationLeite, Y., Silva, L., Amorim, R., Freire, E., de Melo, D., Grangeiro, T., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochimica et Biophysica Acta, 1724(1–2), 137–145. https://doi.org/10.1016/J.BBAGEN.2005.03.017
dc.relationLiao, J. H., Chien, C. T. H., Wu, H. Y., Huang, K. F., Wang, I., Ho, M. R., Tu, I. F., Lee, I. M., Li, W., Shih, Y. L., Wu, C. Y., Lukyanov, P. A., Hsu, S. T. D., & Wu, S. H. (2016). A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. Journal of the American Chemical Society, 138(14), 4787–4795. https://doi.org/10.1021/jacs.6b00111
dc.relationLiener, Irvin, Nathan, Sharon, Goldstein, I. (1986). The lectins. Biochemical Education, 7(1), 19. https://doi.org/10.1016/0307-4412(79)90018-9
dc.relationLima, M., Carneiro, M., Nascimento, A., Grangeiro, T., Holanda, M., Amorim, R., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the cattle tick Boophilus microplus (Acari: Ixodidae). Journal of Agricultural and Food Chemistry, 53(16), 6414–6419. https://doi.org/10.1021/JF0509660
dc.relationLindberg, L., Johansson, S., Liu, J., Grufman, P., & Holgersson, J. (2011). Is there a clinical need for a diagnostic test allowing detection of chain type-specific anti-A and anti-B? Transfusion, 51(3), 494–503. https://doi.org/10.1111/J.1537-2995.2010.02870.X
dc.relationLindberg, L., Theinert, K., Liu, J., & Holgersson, J. (2012). Adsorption of chain type-specific ABO antibodies on Sepharose-linked A and B tetrasaccharides. Transfusion, 52(11), 2356–2367. https://doi.org/10.1111/J.1537-2995.2012.03706.X
dc.relationLomonte, B., & Calvete, J. J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 12. https://doi.org/10.1186/S40409-017-0117-8
dc.relationLourenço, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. da S., & Marquez, U. M. L. (2002). Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. https://doi.org/10.1046/J.1440-1835.2002.00278.X
dc.relationLovrien, R., & Matulis, D. (2001). Selective precipitation of proteins. Current Protocols in Protein Science, Chapter 4(1). https://doi.org/10.1002/0471140864.PS0405S07
dc.relationLuo, T., Yang, H., Li, F., Zhang, X., & Xu, X. (2006). Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Developmental and Comparative Immunology, 30(7), 607–617. https://doi.org/10.1016/J.DCI.2005.10.004
dc.relationMalini, M., Jansi, M., Margret, M., & Anooj, E. (2019). Characterization of lectin from Colpomenia sinuosa and the effect of physicochemical parameters on haemagglutination activity. A Journal of Composition Theory, XII(VII), 247–257. ISSN : 0731-6755.
dc.relationMancera, J. E., Pinto, G., & Vilardy, S. (2013). Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: importancia relativa del Upwelling y Outwelling. Boletín de Investigaciones Marinas y Costeras, 42(2), 329–260. ISSN 0122-9761.
dc.relationMarchalonis, J.J., Edelman, J. M. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. Journal of Molecular Biology, 32(2), 453–465. https://doi.org/10.1016/0022-2836(68)90022-3
dc.relationMathieu, E., Mati, N., Walet, M.-L., Lerouge, P., & Bardor, M. (2020). N- and O-Glycosylation Pathways in the Microalgae Polyphyletic Group. Frontiers in Plant Science, 11, 2027. https://doi.org/10.3389/FPLS.2020.609993
dc.relationMedina, G., Gibbs, R. V., Calvete, J. J., & Carpenter, B. G. (2007). Micro-heterogeneity and molecular assembly of the haemagglutinins from the red algae Bryothamnion seaforthii and B. triquetrum from the Caribbean Sea. European Journal of Phycology, 42(1), 105–112. https://doi.org/10.1080/09670260601012438
dc.relationMelo, F. R., Benevides, N. M. B., Pereira, M. G., Holanda, M. L., Mendes, F. N. P., Oliveira, S. R. M., Freitas, A. L. P., & Silva, L. M. C. M. (2004). Purification and partial characterisation of a lectin from the red marine alga Vidalia obtusiloba C. Agardh. Revista Brasileira de Botânica, 27(2), 263-269. https://doi.org/10.1590/S0100-84042004000200006
dc.relationMerck. (2017). Cromolith HPLC columns: Race through sepasations with revolutionary technology. In Catálogo Cromolith HPLC columns (pp. 1–52). Merck. http://www.supelco.com.tw/B-new-03-chromolith.pdf
dc.relationMesquita, J. X., de Brito, T. V., Fontenelle, T. P. C., Damasceno, R. O. S., de Souza, M. H. L. P., de Souza Lopes, J. L., Beltramini, L. M., Barbosa, A. L. dos R., & Freitas, A. L. P. (2021). Lectin from red algae Amansia multifida Lamouroux: Extraction, characterization and anti-inflammatory activity. International Journal of Biological Macromolecules, 170, 532–539. https://doi.org/10.1016/J.IJBIOMAC.2020.12.203
dc.relationMillet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/J.ANTIVIRAL.2016.07.011
dc.relationMishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/j.fct.2019.110827
dc.relationMitchell, C. A., Ramessar, K., & O’Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral Research, 142, 37-54. https://doi.org/10.1016/J.ANTIVIRAL.2017.03.007
dc.relationMolchanova, V., Chernikov, O., Chikalovets, I., & Lukyanov, P. (2010). Purification and partial characterization of the lectin from the marine red alga Tichocarpus crinitus (Gmelin) Rupr. (Rhodophyta). Botanica marina, 53(1), 69–78. https://doi.org/10.1515/BOT.2010.001
dc.relationMotohashi, S., Jimbo, M., Naito, T., Suzuki, T., Sakai, R., & Kamiya, H. (2017). Isolation, amino acid sequences, and plausible functions of the galacturonic acid-binding egg lectin of the sea hare Aplysia kurodai. Marine Drugs, 15(6), 1–14. https://doi.org/10.3390/md15060161
dc.relationMoulaei, T., Shenoy, S. R., Giomarelli, B., Thomas, C., McMahon, J. B., Dauter, Z., O’Keefe, B. R., & Wlodawer, A. (2010). Monomerization of Viral Entry Inhibitor Griffithsin Elucidates the Relationship between Multivalent Binding to Carbohydrates and anti-HIV Activity. Structure, 18(9), 1104-1115. https://doi.org/10.1016/J.STR.2010.05.016
dc.relationMu, J., Hirayama, M., Sato, Y., Morimoto, K., & Hori, K. (2017). A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Marine Drugs, 15(8), 255. https://doi.org/10.3390/md15080255
dc.relationMuthana, S., Gulley, J., Hodge, J., Schlom, J., & Gildersleeve, J. (2015). ABO blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget, 6(31), 32244–32256. https://doi.org/10.18632/ONCOTARGET.4993
dc.relationNagano, C. (2007). Estudios estructurales de lectinas de algas marinas y de vegetales superiores. Universidad de Valencia. Tesis Doctotal, 171 p.
dc.relationNagano, C., Debray, H., Nascimento, K. S., Pinto, V. P. T., Cavada, B. S., Saker-Sampaio, S., Farias, W. R. L., Sampaio, A. H., & Calvete, J. J. (2005a). HCA and HML isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis define a novel lectin family. Protein Science, 14(8), 2167–2176. https://doi.org/10.1110/PS.051498505
dc.relationNagano, C., Moreno, F., Bloch Jr, C., Prates, M., Calvete, J., Saker-Sampaio, S., Farias, W., Tavares, T., Nascimento, K., Grangeiro, T., Cavada, B., & Sampaio, A. (2005b). Purification and Characterization of a new Lectin from the Red Marine Alga Hypnea Musciformis. Protein & Peptide Letters, 9(2), 159–165. https://doi.org/10.2174/0929866023408931
dc.relationNaganuma, T., Hoshino, W., Shikanai, Y., Sato, R., Liu, K., Sato, S., Muramoto, K., Osada, M., Yoshimi, K., & Ogawa, T. (2014). Novel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins. PLOS ONE, 9(11), e112326. https://doi.org/10.1371/JOURNAL.PONE.0112326
dc.relationNascimento, K., Nagano, C., Nunes, E., Rodrigues, R., Goersch, G., Cavada, B., Calvete, J., Saker, S., Farias, W., & Sampaio, A. (2006). Isolation and characterization of a new agglutinin from the red marine alga Hypnea cervicornis J. Agardh. Biochemistry and Cell Biology, 84(1), 49–54. https://doi.org/10.1139/O05-152
dc.relationNeves, S. A., Freitas, A. L. P., Sousa, B. W., Rocha, M. I. A., Correia, M. V. O., Sampaio, D. A., & Viana, G. S. B. (2007). Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Brazilian Journal of Medical and Biological Research, 40(1), 127–134. https://doi.org/10.1590/S0100-879X2007000100016
dc.relationNiu, J., Wang, G., Lü, F., Zhou, B., & Peng, G. (2009). Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides. Chinese Journal of Oceanology and Limnology, 27(3), 502–512. https://doi.org/10.1007/s00343-009-9157-4
dc.relationNizet, V., Varki, A., & Aebi, M. (2017). Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. Essentials of Glycobiology. https://doi.org/10.1101/GLYCOBIOLOGY.3E.037
dc.relationOgawa, T., Watanabe, M., Naganuma, T., & Muramoto, K. (2011). Diversified Carbohydrate-Binding Lectins from Marine Resources. Journal of Amino Acids, 2011, 1–20. https://doi.org/10.4061/2011/838914
dc.relationOkuyama, S., Nakamura-Tsuruta, S., Tateno, H., Hirabayashi, J., Matsubara, K., & Hori, K. (2009). Strict binding specificity of small-sized lectins from the red alga Hypnea japonica for core (α1-6) fucosylated N-glycans. Bioscience, Biotechnology and Biochemistry, 73(4), 912–920. https://doi.org/10.1271/bbb.80881
dc.relationOliveira, S., Nascimento, A., Lima, M., Leite, Y., & Benevides, N. (2002). Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel & Hommers. Brazilian Journal of Botany, 25(4), 397–403. https://doi.org/10.1590/S0100-84042002012000003
dc.relationOmokawa, Y., Miyazaki, T., Walde, P., Akiyama, K., Sugahara, T., Masuda, S., Inada, A., Ohnishi, Y., Saeki, T., & Kato, K. (2010). In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. International Journal of Pharmaceutics, 389(1–2), 157–167. https://doi.org/10.1016/j.ijpharm.2010.01.033
dc.relationOsório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., Alves, R. C., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 7(2), 33. https://doi.org/10.3390/SEPARATIONS7020033
dc.relationPan, S., Tang, J., & Gu, X. (2010). Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Veterinary Immunology and Immunopathology, 133(2–4), 154–164. https://doi.org/10.1016/J.VETIMM.2009.07.015
dc.relationParseptiangga, D. (2015). Algal lectins and their potential uses. Squalen Bulletin of Marine & Fisheries Postharvest & Biotechnology, 10(2), 89–98. https://doi.org/http://dx.doi.org/10.15578/squalen.v10i2.125
dc.relationPereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32(3), 1. https://doi.org/10.1007/S10811-020-02143-Y
dc.relationPeumans, W. J., Van Damme, E. J. M., Barre, A., & Rougé, P. (2001). Classification of plant lectins in families of structurally and evolutionary related proteins. Advances in Experimental Medicine and Biology, 491, 27–54. https://doi.org/10.1007/978-1-4615-1267-7_3
dc.relationPinto, R., de Castro, F., de Santiago-Aguiar, R., & Ponte, M. (2018). Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Research, 31, 454–462. https://doi.org/10.1016/J.ALGAL.2018.02.021
dc.relationPinto, V., Debray, H., Dus, D., Teixeira, E., De Oliveira, T., Carneiro, V., Teixeira, A., Filho, G., Nagano, C., Nascimento, K. S., Sampaio, A. H., & Cavada, B. S. (2009). Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells. Advances in Pharmacological Sciences, 2009, 1-9. https://doi.org/10.1155/2009/862162
dc.relationPita, R., Anadón, A., & Martínez-Larrañaga, M. R. (2004). Ricina: una fitotoxina de uso potencial como arma. Revista de Toxicología, 51–63. ISSN: 0212-7113.
dc.relationQuintana, J. I., Delgado, S., Núñez-Franco, R., Cañada, F. J., Jiménez-Osés, G., Jiménez-Barbero, J., & Ardá, A. (2021). Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 9, 664097. https://doi.org/10.3389/FCHEM.2021.664097
dc.relationRamírez, J. S., Franco, A., García, L. M., & López, D. A. (2010). La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la zona costera del departamento del magdalena, caribe colombiano. Boletin de Investigaciones Marinas y Costeras, 39(2), 233–263. https://doi.org/10.25268/BIMC.INVEMAR.2010.39.2.150
dc.relationRavn, V., & Dabelsteen, E. (2000). Tissue distribution of histo-blood group antigens. APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 108(1), 1–28. https://doi.org/10.1034/J.1600-0463.2000.D01-1.X
dc.relationRozo, G. (2019). Algas del Caribe Colombiano: Fuente alternativa de alimentos, nutracéuticos y biomateriales. Universidad de Bogotá Jorge Tadeo Lozano, Departamento de Ciencias Biológicas y Ambientales. Tesis Doctoral, 113 p.
dc.relationRüdiger, H. (2008). Structure and Function of Plant Lectins In Glycosciences (Hans, J. & Sigrun, G. eds.). 415–438p. https://doi.org/10.1002/9783527614738.CH23
dc.relationSáez, P., Michałowski, T., Navas, M. J., Asuero, A. G., & Wybraniec, S. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Critical Reviews in Analytical Chemistry, 43(4), 178–223. https://doi.org/10.1080/10408347.2012.751786
dc.relationSampaio, A., Rogers, C., & Barwell, C. (1998b). A galactose-specific lectin from the red marine alga Ptilota filicina. Phytochemistry, 48(5), 765–769. https://doi.org/10.1016/S0031-9422(97)00966-7
dc.relationSampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Costa, F. H., & Ramos, M. (1998a). A new isolation procedure and further characterisation of the lectin from the red marine alga Ptilota serrata. Journal of Applied Phycology, 10(6), 539–546. https://doi.org/10.1023/A:1008061327247
dc.relationSampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Nascimento, K., Nagano, C., & Farias, W. (2002). New affinity procedure for the isolation and further characterization of the blood group B specific lectin from the red marine alga Ptilota plumosa. Journal of Applied Phycology, 14(6), 489–495. https://doi.org/10.1023/A:1022327010736
dc.relationSansone, C., & Brunet, C. (2020). Marine Algal Antioxidants. Antioxidants, 9(3), 206. https://doi.org/10.3390/ANTIOX9030206
dc.relationSato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., & Hori, K. (2011a). High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. The Journal of Biological Chemistry, 286(22), 19446–19458. https://doi.org/10.1074/JBC.M110.216655
dc.relationSato, Y., Morimoto, K., Hirayama, M., & Hori, K. (2011b). High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochemical and Biophysical Research Communications, 405(2), 291–296. https://doi.org/10.1016/J.BBRC.2011.01.031
dc.relationSchägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
dc.relationSchiener, P., Black, K. D., Stanley, M. S., & Green, D. H. (2014). The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology, 27(1), 363–373. https://doi.org/10.1007/S10811-014-0327-1
dc.relationSehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koča, J., & Rose, A. S. (2021). Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 49(W1), W431–W437. https://doi.org/10.1093/NAR/GKAB314
dc.relationSharon, N. (1987). Bacterial lectins, cell-cell recognition and infectious disease. FEBS Letters, 217(2), 145–157. https://doi.org/10.1016/0014-5793(87)80654-3
dc.relationSharon, N., & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53–62. https://doi.org/10.1093/glycob/cwh122
dc.relationSharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020-6605-4. 454 p.
dc.relationShiomi, K., Kamiya, H., & Shimizu, Y. (1979). Purification and characterization of an agglutinin in the red alga agardhiella tenera. Biochimica et Biophysica Acta (BBA) - Protein Structure, 576(1), 118–127. https://doi.org/10.1016/0005-2795(79)90490-2
dc.relationShiomi, K., Yamanaka, H., & Kichuchi, T. (1980). Biochemical Properties of Hemagglutinins in the Red Alga Serraticardia maxima. The Japanese Society of Fisheries Science, 46(11), 1369–1373. https://doi.org/10.2331/SUISAN.46.1369
dc.relationShiomi, K., Yamanaka, H., & Kikuchi, T. (1981). Purification and Physicochemical Properties of a Hemagglutinin (GVA-1) in the Red Alga Gracilaria verrucosa. J-STAGE, 47(8), 1079–1084. https://doi.org/10.2331/SUISAN.47.1079
dc.relationSilva, L., Lima, V., Holanda, M., Pinheiro, P., Rodrigues, J., Lima, M., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biological & Pharmaceutical Bulletin, 33(5), 830–835. https://doi.org/10.1248/BPB.33.830
dc.relationSilva, S. (2013). Purificação e caracterização de CiL-2, uma nova lectina isolada da alga marinha verde Codium isthmocladum Vickers. Universidade Federal do Ceará, Departamento de Engenharia de Pesca. Tesis de Mestría, 72 p.
dc.relationSingh, R. S., Thakur, S. R., & Bansal, P. (2015). Algal lectins as promising biomolecules for biomedical research. Critical Reviews in Microbiology, 41(1), 77–88. https://doi.org/10.3109/1040841X.2013.798780
dc.relationSingh, R. S., & Walia, A. K. (2018). Lectins from red algae and their biomedical potential. Journal of Applied Phycology, 30(3), 1833–1858. https://doi.org/10.1007/s10811-017-1338-5
dc.relationSmith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7
dc.relationStepanchenko, N. S., Novikova, G. V., & Moshkov, I. E. (2011). Protein quantification. Russian Journal of Plant Physiology, 58(4), 737–742. https://doi.org/10.1134/S1021443711040182
dc.relationSun, J., Wang, L., Wang, B., Guo, Z., Liu, M., Jiang, K., Tao, R., & Zhang, G. (2008). Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis. Fish & Shellfish Immunology, 25(3), 290–297. https://doi.org/10.1016/J.FSI.2008.06.001
dc.relationSun, L., Wang, S., Gong, X., Zhao, M., Fu, X., & Wang, L. (2009). Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expression and Purification, 64(2), 146–154. https://doi.org/10.1016/J.PEP.2008.09.013
dc.relationSwamy, J. M., Sastry, V. M., & Surolia, A. (1985). Prediction and comparison of the secondary structure of legume lectins. Journal of Biosciences, 9(3–4), 203–212. https://doi.org/10.1007/BF02702696
dc.relationTan, C. H., Tan, K. Y., Yap, M. K. K., & Tan, N. H. (2017). Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: Unveiling a deeply conserved atypical toxin arsenal. Scientific Reports, 7, 12. https://doi.org/10.1038/SREP43237
dc.relationTasumi, S., Yang, W. J., Usami, T., Tsutsui, S., Ohira, T., Kawazoe, I., Wilder, M. N., Aida, K., & Suzuki, Y. (2004). Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Developmental and Comparative Immunology, 28(4), 325–335. https://doi.org/10.1016/J.DCI.2003.08.006
dc.relationTaylor, M. E., Drickamer, K., Schnaar, R. L., Etzler, M. E., & Varki, A. (2017). Discovery and Classification of Glycan-Binding Proteins In Essentials of Glycobiology (Chapter 27). https://doi.org/10.1101/GLYCOBIOLOGY.3E.028
dc.relationTeixeira, E., Sousa, F., do Nascimento, K., Carneiro, V., Nagano, C., da Silva, B., Sampaio, A., & Cavada, B. (2012). Biological applications of plants and algae lectins: an overview In Comprehensive Studies on Glycobiology and Glycotechnology (C. Chang Ed.) (354 p.). IntechOpen. https://doi.org/10.5772/50632
dc.relationThompson, M., Owen, L., Wilkinson, K., Wood, R., & Damant, A. (2002). A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127(12), 1666–1668. https://doi.org/10.1039/B208973B
dc.relationTorres, J. (2010). Purificación y caracterización parcial de mucina citoplasmática utilizando la lectina de Salvia bogotensis / Partial purification and characterization of citoplasmatic mucin using the Salvia bogotensis lectin. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 82 p.
dc.relationTsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437
dc.relationTsutsui, S., Komatsu, Y., Sugiura, T., Araki, K., & Nakamura, O. (2011). A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. Journal of Biochemistry, 150(5), 501–514. https://doi.org/10.1093/JB/MVR085
dc.relationVan Damme, E. (2021). 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal 2021, 1–15. https://doi.org/10.1007/S10719-021-10015-X
dc.relationVanderlei, E., Patoilo, K., Lima, N., Lima, A., Rodrigues, J., Silva, L., Lima, M., Lima, V., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. International Immunopharmacology, 10(9), 1113–1118. https://doi.org/10.1016/J.INTIMP.2010.06.014
dc.relationVarki, A, Etzler, M. E., Cummings, R. D., & Esko, J. D. (2009). Discovery and Classification of Glycan-Binding Proteins. In Essentials of Glycobiology, second edition. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK1923/
dc.relationVarki, Ajit, Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2017). Essentials of glycobiology, third edition. Cold Spring Harbor Laboratory Press.
dc.relationVarki, Ajit, & Kornfeld, S. (2017). Historical Background and Overview. In Essentials of Glycobiology, third edition. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.001
dc.relationVasta, G. R., Nita-Lazar, M., Giomarelli, B., Ahmed, H., Du, S., Cammarata, M., Parrinello, N., Bianchet, M. A., & Amzel, L. M. (2011). Structural and functional diversity of the lectin repertoire in teleost fish: Relevance to innate and adaptive immunity. Developmental & Comparative Immunology, 35(12), 1388–1399. https://doi.org/10.1016/J.DCI.2011.08.011
dc.relationVattuone, M. A., Prado, F. E., Sayago, J. E., & Rodolfo Sampietro, A. (1991). Effect of lectins on Ricinus invertase. Phytochemistry, 30(2), 419–422. https://doi.org/10.1016/0031-9422(91)83696-I
dc.relationVerhaest, M., Lammens, W., Le Roy, K., De Coninck, B., De Ranter, C. J., Van Laere, A., Van Den Ende, W., & Rabijns, A. (2006). X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallographica Section D: Biological Crystallography, 62(12), 1555–1563. https://doi.org/10.1107/S0907444906044489
dc.relationVimala, T. P. T. V. (2015). Estimation of Pigments from Seaweeds by Using Acetone and DMSO. International Journal of Science and Research (IJSR), 4(10), 1850–1854. ISSN: 2319-7064
dc.relationWang, S., Zhong, F., Zhang, Y., Wu, Z., Lin, Q., & Xie, L. (2004). Molecular characterization of a new lectin from the marine alga Ulva pertusa. Acta Biochimica et Biophysica Sinica, 36(2), 111–117. https://doi.org/10.1093/ABBS/36.2.111
dc.relationWang, X., & Wang, J. (2013). Diversity and multiple functions of lectins in shrimp immunity. Developmental & Comparative Immunology, 39(1–2), 27–38. https://doi.org/10.1016/J.DCI.2012.04.009
dc.relationWang, Y., Bu, L., Yang, L., Li, H., & Zhang, S. (2016). Identification and functional characterization of fish-egg lectin in zebrafish. Fish & Shellfish Immunology, 52, 23–30. https://doi.org/10.1016/J.FSI.2016.03.016
dc.relationWells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949. https://doi.org/10.1007/S10811-016-0974-5
dc.relationWidmann, M., Trodler, P., & Pleiss, J. (2010). The Isoelectric Region of Proteins: A Systematic Analysis. PLoS ONE, 5(5), e10546. https://doi.org/10.1371/JOURNAL.PONE.0010546
dc.relationWiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology 2000 34:2, 34(2), 119–126. https://doi.org/10.1023/A:1009911418606
dc.relationWingfield, P. T. (1998). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 13(1), A.3F.1-A.3F.8. https://doi.org/10.1002/0471140864.PSA03FS13
dc.relationWingfield, P. T. (2001). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, APPENDIX 3, Appendix. https://doi.org/10.1002/0471140864.PSA03FS13
dc.relationWingfield, P. T. (2016). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 84(1), A.3F.1-A.3F.9. https://doi.org/10.1002/0471140864.PSA03FS84
dc.relationWiriyadamrikul, J., Geraldino, P. J. L., Huisman, J. M., Lewmanomont, K., & Boo, S. M. (2019). Molecular diversity of the calcified red algal genus Tricleocarpa (Galaxauraceae, Nemaliales) with the description of T. jejuensis and T. natalensis. Phycologia, 52(4), 338–351. https://doi.org/https://doi.org/10.2216/13-155.1
dc.relationWu, M., Tong, C., Wu, Y., Liu, S., & Li, W. (2016). A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities. Food Chemistry, 201, 7–13. https://doi.org/10.1016/J.FOODCHEM.2016.01.061
dc.relationXu, W.-T., Wang, X.-W., Zhang, X.-W., Zhao, X.-F., Yu, X.-Q., & Wang, J.-X. (2010). A new C-type lectin (FcLec5) from the Chinese white shrimp Fenneropenaeus chinensis. Amino Acids, 39(5), 1227–1239. https://doi.org/10.1007/S00726-010-0558-7
dc.relationYang, Y., Zhang, M., Alalawy, A. I., Almutairi, F. M., Al-Duais, M. A., Wang, J., & Salama, E. S. (2021). Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation, 24. https://doi.org/10.1016/J.ETI.2021.101848
dc.relationYoon, K. S., Lee, K. P., Klochkova, T. A., & Kim, G. H. (2008). Molecular characterization of the lectin, Bryohealin, involved in the protoplast regeneration in the marine alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 44(1), 103–112. https://doi.org/10.1111/J.1529-8817.2007.00457.X
dc.relationZhang, Y., Qiu, L., Song, L., Zhang, H., Zhao, J., Wang, L., Yu, Y., Li, C., Li, F., Xing, K., & Huang, B. (2009). Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 26(1), 183–192. https://doi.org/10.1016/J.FSI.2008.03.008
dc.relationZhao, Z.-Y., Yin, Z.-X., Xu, X.-P., Weng, S.-P., Rao, X.-Y., Dai, Z.-X., Luo, Y.-W., Yang, G., Li, Z.-S., Guan, H.-J., Li, S.-D., Chan, S.-M., Yu, X.-Q., & He, J.-G. (2009). A Novel C-Type Lectin from the Shrimp Litopenaeus vannamei Possesses Anti-White Spot Syndrome Virus Activity . Journal of Virology, 83(1), 347–356. https://doi.org/10.1128/JVI.00707-08
dc.relationZimba, P. V. (2012). An improved phycobilin extraction method. Harmful Algae, 17, 35–39. https://doi.org/10.1016/J.HAL.2012.02.009
dc.relationZiółkowska, N. E., Shenoy, S. R., O’Keefe, B. R., & Wlodawer, A. (2007). Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine. Protein Science : A Publication of the Protein Society, 16(7), 1485. https://doi.org/10.1110/PS.072889407
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución