dc.contributor | Granada García, Sinar David | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Fitosanidad y Control Biológico | |
dc.creator | López Luján, Lorena María | |
dc.date.accessioned | 2020-08-27T16:23:23Z | |
dc.date.available | 2020-08-27T16:23:23Z | |
dc.date.created | 2020-08-27T16:23:23Z | |
dc.date.issued | 2020-08-21 | |
dc.identifier | López, L. (2020). EVALUACIÓN DE HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE Rhynchophorus palmarum (Coleoptera: Curculionidae) PRINCIPAL PLAGA DEL CULTIVO DE COCO (Cocos nucifera L.) EN COLOMBIA. Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78271 | |
dc.description.abstract | La palma de coco (Cocos nucifera L.) es considerada una de las plantas más importantes en términos de seguridad alimentaria en el mundo especialmente para la subsistencia de comunidades costeras del trópico y subtrópico. En Colombia el coco es un sistema productivo en crecimiento del que se generan 145.290 toneladas por año. Pese a esto, se encuentra amenazado por la enfermedad del “anillo rojo”, que es ocasionada por el nemátodo Bursaphelenchus cocophilus cuyo vector es el insecto Rhynchophorus palmarum. El control de esta enfermedad se realiza regulando las poblaciones de R. palmarum con insecticidas sintéticos, ya que ningún método es útil frente al nemátodo; sin embargo, tampoco se ha evidenciado una eficiencia adecuada de los métodos químicos empleados frente al insecto. Los hongos entomopatógenos se han implementado ampliamente como alternativa al uso de insecticidas sintéticos. En este trabajo, se evaluaron hongos entomopatógenos frente a R. palmarum como fundamento para el control de la diseminación de la enfermedad del anillo rojo en palmas de coco. Para esto, se aislaron hongos entomopatógenos a partir de individuos de R. palmarum y muestras de suelos provenientes de cultivos de coco. Estos aislamientos se seleccionaron por su actividad quitinolítica y por su actividad controladora frente a un modelo biológico (Acanthoscelides obtectus), para luego ser evaluados frente a larvas y adultos de R. palmarum. Adicionalmente, se buscaron estrategias para optimizar la propagación de los entomopatógenos más eficaces. Los resultados de producción de enzimas quitinolíticas destacaron seis aislamientos, los cuales se identificaron molecularmente. Dos de estos aislamientos, Beauveria bassiana CSU9 y Trichoderma virens CSC11, presentaron actividad insecticida frente a A. obtectus con Tiempos Letales 50 (LT50) de 5 y 4 días, respectivamente. Las pruebas de infección sobre larvas y adultos de R. palmarum mostraron alta efectividad de B. bassiana CSU9 alcanzando LT50 de 0.76 y 14,37 días, respectivamente. Se validaron las condiciones de fermentación para la producción conidias de B. bassiana CSU9 y se optimizaron las condiciones de producción de conidias en fermentación sólida de T. virens CSC11. El rendimiento máximo de B. bassiana CSU9 se alcanzó el día 4 con una concentración de 2,5 x 109 conidias/mL, y el de T. virens CSC11 al día 8, con 1,6x109 conidias/g. Estos resultados demuestran el potencial que tienen los hongos entomopatógenos nativos para controlar R. palmarum, representando un recurso viable para el desarrollo de productos que puedan ser articulados a programas de manejo integrado de plagas. | |
dc.description.abstract | Coconut palm (Cocos nucifera L.) is considered one of the most important plants in terms of food safety. Coconut in Colombia is a growing production system which generates 145,290 tons per year. Despite this, the crops of this palm are threatened by the "red ring" disease, which is caused by the nematode Bursaphelenchus cocophilus whose vector is the insect Rhynchophorus palmarum. The control of this disease is carried out by the regulation of R. palmarum populations by synthetic insecticides, since no other method is useful against the nematode; however, no clear evidence of the efficiency of the chemical has been proved against the insect. Entomopathogen fungi have been widely implemented as an alternative to the use of synthetic insecticides. In the present work, entomopathogenic fungi against R. palmarum were evaluated as a basis to control the spreading of red ring disease in coconut palms. For this purpose, entomopathogenic fungi were isolated from R. palmarum individuals and soil samples from coconut crops. Fungi isolates were selected based on their chitinolytic activity and bioactivity against a model insect (Acanthoscelides obtectus). The promising isolates were evaluated against larvae and adults of R. palmarum. In addition, strategies were sought to optimize the spread of the most effective entomopathogens. The production results of chitinolytic enzymes highlighted six isolations, which were molecularly identified. Two of these isolates, Beauveria bassiana CSU9 and Trichoderma virens CSC11, presented insecticidal activity against A. obtectus with Lethal Times 50 (LT50) of 5 and 4 days, respectively. The infection tests on larvae and adults of R. palmarum showed high effectiveness of B. bassiana CSU9 reaching LT50 of 0.76 and 14.37 days, respectively. The fermentation conditions for the production of conidia of B. bassiana CSU9 were validated and the production conditions of conidia in solid fermentation of T. virens CSC11 were optimized. The maximum yield of B. bassiana CSU9 was reached on day 4 with a concentration of 2.5 x 109 conidia / mL, and that of T. virens CSC11 on day 8, with 1.6x109 conidia / g. These results demonstrate the potential of native entomopathogenic fungi to control R. palmarum, representing a viable resource for the development of products that can be linked to integrated pest management programs. | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abdel, S., Mahmoud, B., & Abbas, M. (2011). Evaluation of the fungus, Beauveria Bassiana (Bals.) Vuill as a Bio Control Agent against the Red Palm Weevil, Rhynchophorus ferrugineus (Oliv.) (Coleoptera: Curculionidae). Egyptian Jorurnal of Biological Pest Control, 21 (2), 125–129. | |
dc.relation | Abu-Tahon, M. A., & Isaac, G. S. (2019). Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. The Journal of General and Applied Microbiology. https://doi.org/10.2323/jgam.2019.04.006 | |
dc.relation | Acosta, A. (1991). Pudrición de cogollo en palma de aceite: observaciones y manejo. Palmas, 12(2), 49–54. | |
dc.relation | Acuña-Payano, R., Quiroz-Farfán, D., Laynes-Zela, P., Nolasco-Cárdenas, O., & Gutiérrez-Román, A. (2017). Hypothenemus hampei (Coleoptera: Curculionidae) induce in vitro laminarinasa y quitinasa de beauveria bassiana (Hypocreales: Clavicipitaceae). Revista Colombiana de Entomologia, 43(1), 7–13. https://doi.org/10.1186/1476-7120-7-33 | |
dc.relation | AGRONET. (2017). Área Sembrada Y Área Cosechada Del Cultivo De Coco 2007-2017. 0–3. | |
dc.relation | AGRONET. (2018). Área, Producción y Rendimiento Nacional Coco. 26 De Diciembre 2018. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation | Aldana, R., Aldana, J., & Moya, O. (2011). Manejo del picudo Rhynchophorus palmarum. | |
dc.relation | Aldana, R., Aldana, J., Moya, Ó., & Bustillo, A. (2015). El Anillo rojo en palma de aceite (Issue 36). | |
dc.relation | Alfonso, J. Á., & Ramírez, T. (2008). Manuel técnico del cultivo del cocotero (Cocos nucifera L.). | |
dc.relation | Alonso, M. (2015). CLASE INSECTA Orden Coleoptera. Revista IDE@-SEA, 55, 1–18. www.sea-entomologia.org/IDE@ | |
dc.relation | Alvarado, H. L., Montes, L. G., Gomes de Oliveira, H., Bustillo, A. E., & Mesa, E. (2013). Patogenicidad de cepas de Metarhizium anisopliae (L.) y Beauveria bassiana sobre Rhynchophorus palmarum. Revista Palmas, 34(2), 11–20. http://publicaciones.fedepalma.org/index.php/palmas/article/view/10842 | |
dc.relation | Alvarado, H., Montes, L., Gomes, H., Bustillo, A., & Mesa, E. (2013). Patogenicidad de cepas de Metarhizium anisopliae ( L .) y Beauveria bassiana sobre Rhynchophorus palmarum *. Palmas, 34(2), 11–20. | |
dc.relation | Álvaro, R., Pedro, C., Víctor, S., Guzmán, C.-H., Álvarez-García, S., Mayo-Prieto, S., Lorenzana, A., Cardoza, R. E., & Gutiérrez, S. (2018). Effect of trichodiene production by Trichoderma harzianum on Acanthoscelides obtectus. Journal of Stored Products Research, 77, 231–239. https://doi.org/10.1016/j.jspr.2018.05.001 | |
dc.relation | Amutha, M., & Banu, J. (2016). Compatability of Metarhizium anisopliae and Pochonia lecanii with insecticides. Ann. Pl. Protec. Sci, July 2012. | |
dc.relation | Asofrucol. (2014). Fortalecimiento técnico y sociempresarial de productores vinculados a Fedecoco en el municipio de Tumaco -Departamento de Nariño. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Aye, K., & Stevens, W. (2004). Technical note Improved chitin production by pretreatment of shrimp shells. J Chem Technol Biotechnol, 79, 421–425. | |
dc.relation | Bae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005 | |
dc.relation | Berini, F., Caccia, S., Franzetti, E., Congiu, T., Marinelli, F., Casartelli, M., & Tettamanti, G. (2016). Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera. Pest Management Science, 72(5), 980–989. https://doi.org/10.1002/ps.4078 | |
dc.relation | Bhanu Prakash, G. V. S., Padmaja, V., & Siva Kiran, R. R. (2008). Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresource Technology, 99(6), 1530–1537. https://doi.org/10.1016/j.biortech.2007.04.031 | |
dc.relation | Boguś, M. I., Włóka, E., Wrońska, A., Kaczmarek, A., Kazek, M., Zalewska, K., Ligęza-Żuber, M., & Gołębiowski, M. (2017). Cuticle hydrolysis in four medically important fly species by enzymes of the entomopathogenic fungus Conidiobolus coronatus. Medical and Veterinary Entomology, 31(1), 23–35. https://doi.org/10.1111/mve.12202 | |
dc.relation | Bonilla, E. L., & Londoño, J. P. (2018). Evaluación de la eficacia de trampas en el monitoreo y control del picudo negro de las palmas (Rhynchophorus palmarum l), en el sistema de producción de palma de chontaduro y café en el municipio de Riosucio departamento de Caldas. In International Reviews of Immunology (Vol. 66, Issue 1). https://doi.org/10.3109/08830185.2014.902452 | |
dc.relation | Brian, P. W., & Hemming, H. G. (1950). Some nutritional conditions affecting spore production by Trichoderma viride Pers. ex Fries. Transactions of the British Mycological Society, 33(1–2), 132–141. https://doi.org/10.1016/s0007-1536(50)80056-6 | |
dc.relation | Cadena hortofruticola. (2007). CADENA NACIONAL DEL COCO DE COLOMBIA ACUERDO DE COMPETITIVIDAD. 1–36. | |
dc.relation | Calvache, H., Mora, S., & Guevara, L. (1995). Anillo rojo - hoja corta en palma de aceite. Tecnología disponible en Colombia. Palmas, 16, 211–218. | |
dc.relation | Campos, J., & Velásquez, H. (2016). Actividad biológica de dos cepas de Metarhizium anisopliae (Deuteromycota: Hyphomycetes) sobre Rhynchophorus palmarum L. (Coleóptera: Curculionidae) en condiciones del laboratorio. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA “UNAD.” | |
dc.relation | Carballo, M., & Guharay, F. (2004). Control biologicode plagas agrícolas | |
dc.relation | Carr, C. (2009). Aislamiento y selección de hongos antagonistas en plantaciones de banano (musa aaa) para el combate biológico de la sigatoka negra. Instituto Tecnológico de Costa Rica. | |
dc.relation | Carrillo, D., Dunlap, C. A., Avery, P. B., Navarrete, J., Duncan, R. E., Jackson, M. A., Behle, R. W., Cave, R. D., Crane, J., Rooney, A. P., & Peña, J. E. (2015). Entomopathogenic fungi as biological control agents for the vector of the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biological Control, 81, 44–50. https://doi.org/10.1016/j.biocontrol.2014.10.009 | |
dc.relation | Cavalcante, R. S., Lima, H. L. S., Pinto, G. A. S., Gava, C. A. T., & Rodrigues, S. (2008). Effect of moisture on trichoderma conidia production on corn and wheat bran by solid state fermentation. Food and Bioprocess Technology, 1(1), 100–104. https://doi.org/10.1007/s11947-007-0034-x | |
dc.relation | Chand, K., Babu, A., Bordoloi, M., & Ali, A. (2014). Evaluation of Culture Media for Biomass Production of Trichoderma viride (KBN 24) and their Production Economics. American Journal of Agriculture and Forestry, 2(6), 317. https://doi.org/10.11648/j.ajaf.20140206.24 | |
dc.relation | Chen, X., Li, Y., Du, G., & Chen, J. (2008). Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solid-state fermentation. World Journal of Microbiology and Biotechnology, 24(11), 593–599. https://doi.org/10.1007/s11274-008-9805-4 | |
dc.relation | Chinchilla, C. (1988). El síndrome del anillo rojo-hoja pequeña en palma aceitera y cocotero. Palmas, 13(1), 33–56. | |
dc.relation | Chinchilla, C. (2010). Anillo Rojo en Palma Aceitera : Una Guía de Manejo. | |
dc.relation | Dembilio, Ó., Quesada-Moraga, E., Santiago-Álvarez, C., & Jacas, J. A. (2010). Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Invertebrate Pathology, 104(3), 214–221. https://doi.org/10.1016/j.jip.2010.04.006 | |
dc.relation | El-Bokl, M., Baker, R., El-Gammal, H., & Mahmoud, M. (2010). Biological and histopathological effects of some insecticidal agents against red palm weevil Rhynchophorus ferrugineus. Egyptian Academic Journal of Biological Sciences, D. Histology & Histochemistry, 1(1), 7–22. https://doi.org/10.21608/eajbsd.2010.14151 | |
dc.relation | El-Shafie, H. A. F., Faleiro, J. R., Al-Abbad, A. H., Stoltman, L., & Mafra-Neto, A. (2011). Bait-Free Attract and Kill Technology (Hook™ RPW) to Suppress Red Palm Weevil, Rhynchophorus Ferrugineus (Coleoptera: Curculionidae) in Date Palm. Florida Entomologist, 94(4), 774–778. https://doi.org/10.1653/024.094.0407 | |
dc.relation | El-Shafie, H., Faleiro, J. R., Abo-El-Saad, M., & Aleid, S. (2013). A meridic diet for laboratory rearing of Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Scientific Research and Essays, 8(39), 1924–1932. https://doi.org/10.5897/SRE2013.5502 | |
dc.relation | Esser, R., & Meredith, J. (1987). Red ring nematode. Agric. & Consumer Serv, 141. | |
dc.relation | Eziashi, E. I., Uma, N. U., Adekunle, a a, & Airede, C. E. (2006). Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. African Journal of Biotechnology, 5(May), 703–706. | |
dc.relation | FAOSTAT. (2019). Producción de coco en el mundo. http://www.fao.org/faostat/es/#data/QC | |
dc.relation | Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39(4), 783. https://doi.org/10.2307/2408678 | |
dc.relation | Francardi, V., Benvenuti, C., Roversi, P. F., Rumine, P., & Barzanti, G. (2012a). Entomopathogenicity of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) sorokin isolated from different sources in the control of Rhynchophorus ferrugineus (Olivier) (Coleoptera curculionidae). Redia, 95(January 2016), 49–55. | |
dc.relation | Francardi, V., Benvenuti, C., Roversi, P. F., Rumine, P., & Barzanti, G. (2012b). Entomopathogenicity of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) sorokin isolated from different sources in the control of Rhynchophorus ferrugineus (Olivier) (Coleoptera curculionidae). Redia, 95(March), 49–55. | |
dc.relation | Gabarty, A., Salem, H. M., Fouda, M. A., Abas, A. A., & Ibrahim, A. A. (2014). Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). Journal of Radiation Research and Applied Sciences, 7(1), 95–100. https://doi.org/10.1016/j.jrras.2013.12.004 | |
dc.relation | Gallardo, F., Hernandez, E., & Pagan, J. (2010). PRESENCIA NATURAL DEL HONGO BEAUVERIA BASSIANA (BALS.) WILL. ENLABROCADEL CAFÉ HYPOTHENEMUS HAMPEI (FERRARI) EN PUERTO RICO. 195–198. | |
dc.relation | Gao, L. (2011). A novel method to optimize culture conditions for biomass and sporulation of the entomopathogenic fungus Beauveria Bassiana IBC1201. Brazilian Journal of Microbiology, 42(4), 1574–1584. https://doi.org/10.1590/S1517-83822011000400045 | |
dc.relation | Gijón, A. R., Trejo-Sandoval, Z., López, C. M., Ramírez Huerta, L., & Padilla, V. J. A. (2015). Caracterización y efectividad de Trichoderma spp. sobre insectos descortezadores de pino. Entomología Mexicana, 2, 293–299. | |
dc.relation | Goettel, M. S., Eilenberg, J., & Glare, T. (2005). Entomopathogenic Fungi and their Role in Regulation of Insect Populations. In Comprehensive Molecular Insect Science (Issue January). https://doi.org/10.1016/b0-44-451924-6/00088-0 | |
dc.relation | Gohel, V., Chaudhary, T., Vyas, P., & Chhatpar, H. S. (2006). Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa. Biochemical Engineering Journal, 28(1), 50–56. https://doi.org/10.1016/j.bej.2005.09.002 | |
dc.relation | Gomes, F., & Prado, C. H. (2007). Ecophysiology of coconut palm under water stress. Brazilian Journal of Plant Physiology, 19(4), 377–391. https://doi.org/10.1590/S1677-04202007000400008 | |
dc.relation | González, I., Infante, D., Martínez, B., Miranda, I., & Peteira, B. (2013). Induction of chitinases and glucanases in Trichoderma spp. strains intended for biological control. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Griffith, R. (1987). Red Ring Disease of Coconut palm. 71(2), 193–196. | |
dc.relation | Grueso, W., & Betancourth, C. (2009). EVALUACION DE ERRADICACION DEL COCOTERO PARA EL MANEJO DEL ANILLO ROJO Bursaphelenchus cocophilus – GUALPA Rhynchophorus palmarum (Coleoptera: Curculionidae) EN TUMACO - NARIÑO. Universidad de Nariño. | |
dc.relation | Güerri-Agulló, B., Gómez-Vidal, S., Asensio, L., Barranco, P., & Lopez-Llorca, L. V. (2010). Infection of the Red Palm Weevil (Rhynchophorus ferrugineus) by the entomopathogenic fungus Beauveria bassiana: A SEM study. Microscopy Research and Technique, 73(7), 714–725. https://doi.org/10.1002/jemt.20812 | |
dc.relation | Guevara, D. (2018). Universidad Técnica Estatal De Quevedo. Universidad técnica Estatal de Quevedo. | |
dc.relation | Gunn, B. F., Baudouin, L., & Olsen, K. M. (2011). Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021143 | |
dc.relation | Hagley, E. A. C. (1965). On the Life History and Habits of the Palm Weevil, Rhynchophorus palmarium. Annals of the Entomological Society of America, 58(1), 22–28. https://doi.org/10.1093/aesa/58.1.22 | |
dc.relation | Hajek, A., Mcmanus, M., & Junior, I. (2007). A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biological Control, 41, 1–13. https://doi.org/10.1016/j.biocontrol.2006.11.003 | |
dc.relation | Hanada, R. E., Pomella, A. W. V, Soberanis, W., Loguercio, L. L., & Pereira, J. O. (2009). Biocontrol potential of Trichoderma martiale against the black-pod disease ( Phytophthora palmivora ) of cacao. Biological Control, 50(2), 143–149. https://doi.org/10.1016/j.biocontrol.2009.04.005 | |
dc.relation | Hanold, D. (1991). Coconut Cadang-Cadang Disease and Its Viroid Agent. Plant Disease, 75(4), 330. https://doi.org/10.1094/pd-75-0330 | |
dc.relation | Hanson, P. (1993). Control biológico de insectos. | |
dc.relation | Harman, G. E. (1998). Trichoderma And Gliocladium, Volume 2. https://doi.org/10.1201/9781482267945 | |
dc.relation | Hegedus, D. D., & Khachatourians, G. G. (1988). Production of an extracellular lipase by Beauveria bassiana. Biotechnology Letters, 10(9), 637–642. https://doi.org/10.1007/BF01024716 | |
dc.relation | Hernández, V., Cerda, H., & Sánchez, P. (1992). Localización del hospedero, actividad diaria y optimización de las capturas del picudo del cocotero Rhynchophorus palmarum L. (Coleoptera: curculionidae) mediante trampas inocuas. Agronomía Tropical, 42(3–4), 211–226. | |
dc.relation | Hotaka, D., Maketon, C., & Siritutsoontorn, S. (2017). Efficacy of Purpureocillium lilacinum CKPL-053 in controlling Thrips palmi. Applied Entomology and Zoology, August 2015. https://doi.org/10.1007/s13355-015-0339-6 | |
dc.relation | Huang, Y., Matzke, A., & Matzke, M. (2013). Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PloS One, 8(8), e74736. https://doi.org/10.1371/journal.pone.0074736 | |
dc.relation | Huffaker, C. B. (1974). Some ecological roots of pest control. Entomophaga, 19(4), 371–389. https://doi.org/10.1007/BF02372772 | |
dc.relation | Hussain, A., Rizwan-ul-Haq, M., Al-Ayedh, H., & AlJabr, A. (2016). Susceptibility and immune defence mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against entomopathogenic fungal infections. International Journal of Molecular Sciences, 17(9), 1518. https://doi.org/10.3390/ijms17091518 | |
dc.relation | Kassa, A., Brownbridge, M., Parker, B. L., Skinner, M., Gouli, V., Gouli, S., Guo, M., Lee, F., & Hata, T. (2008). Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycological Research, 112(5), 583–591. https://doi.org/10.1016/j.mycres.2007.12.004 | |
dc.relation | Kaur, H., & Garg, H. (2014). Pesticides: Environmental Impacts and Management Strategies. Pesticides - Toxic Aspects, February. https://doi.org/10.5772/57399 | |
dc.relation | Kobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler, D. A. (2015). Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4), 179–190. https://doi.org/10.1016/j.funbio.2014.12.005 | |
dc.relation | Koffi, Y., N’Nan-Alla, O., Konan Konan, J. L., Malaurie, B., & Engelmann, F. (2013). Morphological and agronomical characteristics of coconut (Cocos nucifera L.) palms produced from in vitro cultured zygotic embryos. In Vitro Cellular and Developmental Biology - Plant, 49(5), 599–604. https://doi.org/10.1007/s11627-013-9531-y | |
dc.relation | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | |
dc.relation | Lavery, S., Moritz, C., & Fielder, D. R. (1996). Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Molecular Ecology, 5(4), 557–570. https://doi.org/10.1111/j.1365-294X.1996.tb00347.x | |
dc.relation | León-Martínez, G. A., Campos-Pinzón, J. C., & Arguelles-Cárdenas, J. H. (2019). Pathogenicity and autodissemination of promising entomopathogenic fungi strains on Rhynchophorus palmarum L. (Coleoptera: Dryophthoridae). Agronomy Mesoamerican, 30(3), 631–646. https://doi.org/10.15517/am.v30i3.36184 | |
dc.relation | Lever, R. (1969). Pests of the coconut palm (p. 190). | |
dc.relation | Lo Verde, G., Torta, L., Mondello, V., Caldarella, C. G., Burruano, S., & Caleca, V. (2015). Pathogenicity bioassays of isolates of Beauveria bassiana on Rhynchophorus ferrugineus. Pest Management Science, 71(2), 323–328. https://doi.org/10.1002/ps.3852 | |
dc.relation | López, M. L. (2016). Evaluación de un método de cría semi artificial de larvas de Rhynchophorus palmarum L. utilizando sustratos a base de Saccharum officinarum (caña de azúcar). Universidad Estatal Amazónica. | |
dc.relation | Lourdes, M. De, Hernández, P., & Reséndiz, J. F. (2019). Organismos entomopatógenos como control biológico en los sectores agropecuario y forestal de México : una revisión Entomopathogenic organisms for pest control in the mexican agriculture , livestock and forest sectors : a review Introducción El uso indiscr. Revista Mexicana de Ciencias Forestales, 10(56). | |
dc.relation | Mahindapala, R. & Pinto, J. 1991. (1991). Coconut cultivation. In Coconut Research Institute, Bandirippuwa Estate. | |
dc.relation | Manciot, R., Ollagnier, R., & Ochs, R. (1979). Mineral nutrition and fertilization of the coconut around the world. Oleagineux, 34(12), 563–580. | |
dc.relation | Mazza, G., Francardi, V., Simoni, S., Benvenuti, C., Cervo, R., Faleiro, J. R., Llácer, E., Longo, S., Nannelli, R., Tarasco, E., & Roversi, P. F. (2014). An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus. Biological Control, 77(October), 83–92. https://doi.org/10.1016/j.biocontrol.2014.06.010 | |
dc.relation | MELO, J. W. D. S. (2010). INTENSIDADE DE DANO DE Aceria guerreronis KEIFER (ACARI: ERIOPHYIDAE) EM FRUTOS DE COQUEIRO SOB DIFERENTES CONDIÇÕES E RESPOSTAS OLFATIVAS DE SEUS PREDADORES. Universidade Federal Rural de Pernambuco. | |
dc.relation | Méndez, S., Lage, A., & Roberts, D. (2001). Detección de hongos Entomophthorales patógenos a insectos fitófagos, al sur de Bahia, Brasil. Entomotrópica: Revista Internacional Para El Estudio de La Entomología Tropical, 16(3), 203–206. | |
dc.relation | Mexzón, R. G., Chinchilla, C. M., Castrillo, G., & Danny, S. (1994). Biología y hábitos de Rhynchophorus palmarum L. asociado a la palma aceitera en Costa Rica. ASD Oil Palm Papers, 8(8), 14–21. | |
dc.relation | Minagricultura. (2015). Informe de gestión. Ministerio de Agricultura 2015. 2015. | |
dc.relation | Mohamed, G. S., & Taha, E. (2017). Potency of Entomopathogenic Fungi , Trichoderma album Preuss in Controlling , Rhzopertha dominica F . ( Coleoptera : Bostrichidae ) under Laboratory Conditions. J. Plant Prot. and Path, 8(11), 571–576. | |
dc.relation | Mondal, S., Baksi, S., Koris, A., & Vatai, G. (2016). Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Natural Science and Engineering, 18(2), 85–99. https://doi.org/10.1016/j.psra.2016.10.001 | |
dc.relation | Motta, P., & Murcia, B. (2011). Hongos entomopatógenos como alternativa para el control biológico de plagas. Revista Ambiente e Agua, 6(2), 77–90. https://doi.org/10.4136/1980-993X | |
dc.relation | Moya-Murillo, O. M., Aldana-de La Torre, R. C., & Bustillo-Pardey, A. E. (2015). Efficacy of traps to capture Rhynchophorus palmarum (Coleoptera: Dryophthoridae) in oil palm plantations. Revista Colombiana de Entomología, 41(1), 18–23. | |
dc.relation | Nampoothiri, K. M., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G., & Pandey, A. (2004). Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 39(11), 1583–1590. https://doi.org/10.1016/S0032-9592(03)00282-6 | |
dc.relation | Nava, E., García, C., Camacho-Báez, R., Vázquez-, E., Ra Ximhai, J., Ximhai, R., Nava-Pérez, E., & Camacho-Báez, J. (2012). Bioplaguicidas: Una Opción Para El Control Biológico De Plagas Biopesticides: an Option for the Biological Pest Control. Ra Ximhai, 8(3), 17–29. | |
dc.relation | Nipah, J. O., Jones, P., & Dickinson, M. J. (2007). Detection of lethal yellowing phytoplasma in embryos from coconut palms infected with Cape St Paul wilt disease in Ghana. Plant Pathology, 56(5), 777–784. https://doi.org/10.1111/j.1365-3059.2007.01623.x | |
dc.relation | O’Donnell, K., Kistlerr, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049. https://doi.org/10.1073/pnas.95.5.2044 | |
dc.relation | Ooijkaas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., & Rinzema, A. (2000). As Solid-State Fermentation Production Systems. Trends in Biotechnology, 18(August), 356–360. https://doi.org/10.1016/S0167-7799(00)01466-9 | |
dc.relation | Oropeza, C., Zizumbo, D., Narvaez, M., & Cordova, I. (2010). Interacciones planta-patógeno- vector-ambiente en el amarillamiento letal del cocotero Plant-Pathogen-Vector-Environment Introducción Historia y distribución geográfica del amarillamiento letal. 31, 11–25. | |
dc.relation | Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 | |
dc.relation | Peña, E., Reyes, R., & Bastidas, S. (2001). Efectividad de una feromona de agregación en dos tipos de trampas para la captura del insecto Rhynchophorus palmarum en la zona de Tumaco (Nariño, Colombia). Revista de Ciencias Agrícolas, 11–17. | |
dc.relation | Percot, A., Viton, C., & Domard, A. (2003). Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules, 4, 12–18. c:%5CUsers%5CRich%5CDocuments%5CWork%5CAquaculture waste%5CRecycling waste%5CMorts and processing%5CRecycling and processing solutions%5CHydrolysates%5CChitin%5COptimization of Chitin Extraction from Shrimp Shells.pdf | |
dc.relation | Perera, L., Meegahakumbura, M., Wijesekara, H., Fernando, W., & Dickinson, M. (2012). A PHYTOPLASMA IS ASSOCIATED WITH THE WELIGAMA COCONUT LEAF WILT DISEASE IN SRI LANKA. Journal of Plant Pathology, 94(1), 205–209. | |
dc.relation | Pérez, D., & Iannacone, J. (2006). Efectividad de Extractos Botánicos de Diez Plantas Sobre la Mortalidad y Repelencia de Larvas de Rhynchophorus palmarum L., Insecto Plaga del Pijuayo Bactris gasipaes Kunth en la Amazonía del Perú. Agricultura Técnica, 66(1), 21–30. | |
dc.relation | Petlamul, W., & Prasertsan, P. (2012). Evaluation of strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the basis of their virulence, germination rate, conidia production, radial growth and enzyme activity. Mycobiology, 40(2), 111–116. https://doi.org/10.5941/MYCO.2012.40.2.111 | |
dc.relation | Petlamul, W., & Prasertsan, P. (2014). Spore production of entomopathogenic fungus Beauveria bassiana BNBCRC for biocontrol: Response surface optimization of medium using decanter cake from palm oil mill. Journal of the Korean Society for Applied Biological Chemistry, 57(2), 201–208. https://doi.org/10.1007/s13765-013-4175-5 | |
dc.relation | Pham, T. A., Kim, J. J., & Kim, K. (2010). Optimization of Solid-State Fermentation for Improved Conidia Production of Beauveria bassiana as a Mycoinsecticide . Mycobiology, 38(2), 137. https://doi.org/10.4489/myco.2010.38.2.137 | |
dc.relation | Pham, T. A., Kim, J. J., Kim, S. G., & Kim, K. (2009). Production of Blastospore of Entomopathogenic Beauveria bassiana in a Submerged Batch Culture . Mycobiology, 37(3), 218. https://doi.org/10.4489/myco.2009.37.3.218 | |
dc.relation | Pitt, D., & Ugalde, U. (1984). Calcium in fungi. Plant, Cell & Environment, 7(6), 467–475. https://doi.org/10.1111/j.1365-3040.1984.tb01437.x | |
dc.relation | Prades, A., Dornier, M., Diop, N., & Pain, J. P. (2012). Coconut water uses, composition and properties: a review. Fruits, 67(2), 87–107. https://doi.org/10.1051/fruits/2012002 | |
dc.relation | Quintana, C. (2014). CADENA NACIONAL DEL COCO. | |
dc.relation | Ramírez, J., & Torres, H. (2016). Control de Cosmopolites sordidus en el cultivo de plátano (Musa paradisiaca) usando tres agentes biológicos Heterorhabditis bacteriophora, Beauveria bassiana y Metarhizium anisopliae. https://bdigital.zamorano.edu/bitstream/11036/5875/1/CPA-2016-T080.pdf | |
dc.relation | Restrepo, T. (2014). Aislamiento , identificación y evaluación de hongos entomopatógenos como posibles agentes de control de trips ( Thysanoptera : Thripidae ) asociados a cultivos de aguacate ( Persea americana Miller ) Aislamiento , identificación y evaluación de hongos ent (Vol. 67, Issue 2) [Universidad Nacional de Colombia]. https://doi.org/10.1007/s13355-014-0290-y | |
dc.relation | Rezende, S. R. F., Curvello, F. A., Fraga, M. E., Reis, R. C. S., Castilho, A. M. C., & Agostinho, T. S. P. (2009). Control of the Alphitobius Diaperinus (Panzer) (Coleoptera: Tenebrionidae) with entomopathogenic fungi. Revista Brasileira de Ciencia Avicola, 11(2), 121–127. https://doi.org/10.1590/S1516-635X2009000200008 | |
dc.relation | Ricaño, J., Güerri-Agulló, B., Serna-Sarriás, M. J., Rubio-Llorca, G., Asensio, L., Barranco, P., & Lopez-Llorca, L. V. (2013). Evaluation of the Pathogenicity of Multiple Isolates of Beauveria bassiana (Hypocreales: Clavicipitaceae) on Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) for the Assessment of a Solid Formulation Under Simulated Field Conditions. Florida Entomologist, 96(4), 1311–1324. https://doi.org/10.1653/024.096.0410 | |
dc.relation | Rochat, D. (1987). Estude de la communication chimique chez un Coleoptere: Curculionidae. Universite Paris VI. | |
dc.relation | Rodríguez, Á., Mayo, S., González-López, Ó., Reinoso, B., Gutierrez, S., & Casquero, P. A. (2017). Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). Environmental Monitoring and Assessment, 189(1). https://doi.org/10.1007/s10661-016-5719-z | |
dc.relation | Rodríguez, M., Jaramillo, J., & Orozco, J. (2009). Colecta de aguacates criollos colombianos como base para iniciar programas de fitomejoramiento que contribuyan a su competitividad. III Congreso Latinoamericano de Aguacate, 14–27. | |
dc.relation | Sáenz, A. (2005). Aspectos generales e importancia del agente causal de anillo rojo. Palmas, 26(2), 59–70. | |
dc.relation | Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 | |
dc.relation | Sánchez, P., Jaffé, K., Hernández, J., & Cerda, H. (1993). Biologia Y Comportamiento Del Picudo. Bol. Entomol. Venez, 8(1), 83–93. http://atta.labb.usb.ve/Klaus/art77.pdf | |
dc.relation | Sandhya, C., Adapa, L. K., Nampoothiri, K. M., Binod, P., Szakacs, G., & Pandey, A. (2004a). Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology, 44(1), 49–58. https://doi.org/10.1002/jobm.200310284 | |
dc.relation | Sandhya, C., Adapa, L. K., Nampoothiri, K. M., Binod, P., Szakacs, G., & Pandey, A. (2004b). Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol, 44, 49–58. https://doi.org/10.1002/jobm.200310284 | |
dc.relation | Santhoshkumar, K., & Sekar, C. (2015). An Economic Inquiry into the Consumer’s Usage of Coconut Oil in Tamil Nadu. Asian Review of Social Sciences ARSS, 1(1), 47–53. | |
dc.relation | Schisler, D. A., Jackson, M., & Bothast, J. (1991). Influence of Nutrition During Conidiation of Colletotrichum truncatum on Conidial Germination and Efficacy in Inciting Disease in Sesbania exaltata. Phytopathology, 81(6), 587. https://doi.org/10.1094/phyto-81-587 | |
dc.relation | Seifert, K., Morgan, G., Gams, W., & Kendrick, B. (2013). The genera of hyphomycetes. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Silva, J. (2017). CARACTERIZAÇÃO FÍSICO QUÍMICA DE α – QUITINA EM APROVEITAMENTO DA BIOMASSA RESIDUAL PARA OBTENÇÃO. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ | |
dc.relation | Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44(4), 846–849. https://doi.org/10.1099/00207713-44-4-846 | |
dc.relation | Tarocco, F., Lecuona, R. E., Couto, A. S., & Arcas, J. A. (2005). Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology. Applied Microbiology and Biotechnology, 68(4), 481–488. https://doi.org/10.1007/s00253-005-1901-x | |
dc.relation | Tewari, L., & Bhanu, C. (2004). Evaluation of agro-industrial wastes for conidia based inoculum production of bio-control agent: Trichoderma harzianum. Journal of Scientific and Industrial Research, 63(10), 807–812. | |
dc.relation | Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882. https://doi.org/10.1093/nar/25.24.4876 | |
dc.relation | Valencia, C. (2015). Caracterización de aislamientos de hongos entomopatógenos de los géneros Beauveria y Metarhizium asociados a insectos plaga de palma de aceite (Elaeis guineensis Jaqc.) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/49760/1/TESIS HONGOS ENTOMOPATGENOS.pdf | |
dc.relation | Vargas, C. (2020). CAPACIDAD PARASÍTICA DE Beauveria bassiana SOBRE EL PICUDO DEL PALMITO (Metamasius hemipterus). (Coleoptera: Dryophthoridae). Alcances Tecnológicos, 13(1), 13–20. | |
dc.relation | Vega, F. E., Jackson, M. A., Mercadier, G., & Poprawski, T. J. (2003). The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World Journal of Microbiology and Biotechnology, 19(4), 363–368. https://doi.org/10.1023/A:1023924304456 | |
dc.relation | Vergara, D., Guzmán, Ó. A., & Leguizamón, J. (2012). EFECTO In vitro DE Purpureocillium lilacinum (THOM) LUANGSA-ARD et al. Y Pochonia chlamydosporia (GODDARD) ZARE Y GAMS SOBRE EL NEMATODO. Agronomia Universidad De Caldas, 20(2), 25–36. | |
dc.relation | Wakil, W., Yasin, M., & Shapiro-Ilan, D. (2017). Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier). Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-05615-3 | |
dc.relation | Wang, C., Typas, M. A., & Butt, T. M. (2002). Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiology Letters, 213(2), 251–255. https://doi.org/10.1016/S0378-1097(02)00823-6 | |
dc.relation | Wasli, A. S., Salleh, M. M., Abd-Aziz, S., Hassan, O., & Mahadi, N. M. (2009). Medium optimization for chitinase production from Trichoderma virens using central composite design. Biotechnology and Bioprocess Engineering, 14(6), 781–787. https://doi.org/10.1007/s12257-008-0127-z | |
dc.relation | White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 315–322. | |
dc.relation | Wodzicki, K. (1969). Preliminary report on damage to coconuts and on the ecology of the Polynesian Rat (Rattus exulans) in the Tokelau Islands. Proceedings of the New Zealand Ecological Society, 16, 7–12. | |
dc.relation | Xiao, Y., Xu, P., Fan, H., Baudouin, L., Xia, W., Bocs, S., Xu, J., Li, Q., Guo, A., Zhou, L., Li, J., Wu, Y., Ma, Z., Armero, A., Issali, A. E., Liu, N., Peng, M., & Yang, Y. (2017). The genome draft of coconut (Cocos nucifera). GigaScience, 6(11), 1–11. https://doi.org/10.1093/gigascience/gix095 | |
dc.relation | Xie, L., Chen, H., & Yang, J. (2013). Conidia production by Beauveria bassiana on rice in solid-state fermentation using tray bioreactor. Advanced Materials Research, 610–613, 3478–3482. https://doi.org/10.4028/www.scientific.net/AMR.610-613.3478 | |
dc.relation | Xu, C. P., Kim, S. W., Hwang, H. J., Choi, J. W., & Yun, J. W. (2003). Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochemistry, 38(7), 1025–1030. https://doi.org/10.1016/S0032-9592(02)00224-8 | |
dc.relation | Yu, X., Hallett, S. G., Sheppard, J., & Watson, A. K. (1998). Effects of carbon concentration and carbon-to-nitrogen ratio on growth, conidiation, spore germination and efficacy of the potential bioherbicide Colletotrichum coccodes. Journal of Industrial Microbiology and Biotechnology, 20(6), 333–838. https://doi.org/10.1038/sj.jim.2900534 | |
dc.relation | Zapana, J. G., Escobar, F., Villata, P., & Zapana, J. C. (2016). Evaluación de substratos y producción de Beauveria Brongniartii (sacc.) petch para control de gorgojo de los andes (premnotrypes spp) en cultivo de papa. Revista Investigaciones Altoandinas - Journal of High Andean Investigation, 17(3), 347. | |
dc.relation | Zhang, F., Zhu, Z., Wang, B., Wang, P., Yu, G., Wu, M., Chen, W., Ran, W., & Shen, Q. (2013). Optimization of Trichoderma harzianum T-E5 biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation. Industrial Crops and Products, 49, 619–627. https://doi.org/10.1016/j.indcrop.2013.05.037 | |
dc.relation | Zhang, S., Widemann, E., Bernard, G., Lesot, A., Pinot, F., Pedrini, N., & Keyhani, N. O. (2012). CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. Journal of Biological Chemistry, 287(16), 13477–13486. https://doi.org/10.1074/jbc.M111.338947 | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Evaluación de hongos entomopatógenos para el control de rhynchophorus palmarum (coleoptera: curculionidae) principal plaga del cultivo de coco (cocos nucifera l.) en Colombia | |
dc.type | Otro | |