dc.contributor | Yunis Londoño, Juan José | |
dc.contributor | Yunis Hazbun, Luz Karime | |
dc.contributor | Patología Molecular | |
dc.creator | Grajales Ospina, Diana Carolina | |
dc.date.accessioned | 2021-02-18T15:00:37Z | |
dc.date.available | 2021-02-18T15:00:37Z | |
dc.date.created | 2021-02-18T15:00:37Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79270 | |
dc.description.abstract | Objective: To evaluate the concordance of a non-invasive prenatal test (NIPT) against invasive prenatal tests (karyotype) in a pilot sample of high-risk fetal aneuploidy pregnancies. Materials and methods: Pilot study in 15 patients classified as high risk of aneuploidies, each underwent confirmatory invasive test, NIPT and standard screening test. Results: Three out of 15 pregnancies had aneuploidies detected by invasive cytogenetic study, which corresponded to: a trisomy 21, a trisomy 18 and a monosomy X. There were no abnormal findings in the other pregnancies. The kappa index between NIPT and karyotype was 0.75. NIPT detected 66% of aneuploidies. Conclusion: This is the first study that compares NIPT and confirmatory tests carried out in patients at high risk for aneuploidy in Colombia. We found that NIPT has a good overall operational performance (0.75) for the detection of aneuploidies in the pilot sample. However, a larger sample is required to support these findings. | |
dc.description.abstract | Objetivo: Evaluar la concordancia de una prueba prenatal no invasiva (NIPT) contra pruebas prenatales invasivas (cariotipo) en una muestra piloto de embarazos de alto riesgo de aneuploidías fetales. Materiales y métodos: Estudio piloto en 15 pacientes clasificadas con alto riesgo de aneuploidías, a cada una se le realizó prueba invasiva confirmatoria, NIPT y prueba de tamización estándar. Resultados: 3 de las 15 gestaciones presentaron aneuploidías detectadas por estudio citogenético invasivo, las cuáles correspondían a: una trisomía 21, una trisomía 18 y una monosomía X. No hubo hallazgos anormales en las gestaciones restantes. El índice kappa entre NIPT y cariotipo fue de 0,75. La prueba NIPT detectó 66% de las aneuploidías. Conclusión: Este es el primer estudio de comparación entre pruebas NIPT y pruebas confirmatorias realizado en pacientes de alto riesgo para aneuploidía en Colombia, encontrando que la prueba NIPT tiene un buen rendimiento operativo global (0,75) para la detección de las aneuploidías en la muestra piloto. Sin embargo se requiere una mayor muestra para soportar estos hallazgos. | |
dc.language | spa | |
dc.publisher | Bogotá - Medicina - Maestría en Genética Humana | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | 1. Botero FR, Araujo YA. Supervivencia durante el primer año de recién nacidos con defectos congénitos Survival during the first year of life of children with birth defects. | |
dc.relation | 2. WHO. Birth defects. Report by the Secretariat. 1 April 2010. | |
dc.relation | 3. Zarante I, Franco L, López C, Fernández N. Frecuencia de malformaciones congénitas: evaluación y pronóstico de 52.744 nacimientos en tres ciudades colombianas. Biomédica. 2010;30(1). | |
dc.relation | 4. García MA, Imbachí L, Hurtado PM, Gracia G, Zarante I. Detección ecográfica de anomalías congénitas en 76.155 nacimientos en Bogotá y Cali, 2011-2012. Biomédica. 2014;34(3):379-86. | |
dc.relation | 5. Shaffer BL, Norton ME. Cell-Free DNA Screening for Aneuploidy and Microdeletion Syndromes. Obstet Gynecol Clin North Am. 2018;45(1):13-26. | |
dc.relation | 6. Norwitz ER, Levy B. Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol. 2013;6(2):48-62. | |
dc.relation | 7. Kazemi M, Salehi M, Kheirollahi M. Down Syndrome: Current Status, Challenges and Future Perspectives. Int J Mol Cell Med. 2016;5(3):125-33. | |
dc.relation | 8. Bianchi DW, Rava RP, Sehnert AJ. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med. 2014;371(6):578. | |
dc.relation | 9. Nussbaum RL, McInnes RR, Willard HF. Thompson & Thompson Genetics in Medicine E-Book: Elsevier Health Sciences; 2015. | |
dc.relation | 10. Nicolaides KH, Falcón O. La ecografía de las 11-13+ 6 semanas. Fetal Medicine Foundation, Londres. 2004:17-9. | |
dc.relation | 11. Audibert F, De Bie I, Johnson JA, Okun N, Wilson RD, Armour C, et al. No. 348-Joint SOGC-CCMG Guideline: Update on Prenatal Screening for Fetal Aneuploidy, Fetal Anomalies, and Adverse Pregnancy Outcomes. J Obstet Gynaecol Can. 2017;39(9):805-17. | |
dc.relation | 12. Chai H, DiAdamo A, Grommisch B, Boyle J, Amato K, Wang D, et al. Integrated FISH, Karyotyping and aCGH Analyses for Effective Prenatal Diagnosis of Common Aneuploidies and Other Cytogenomic Abnormalities. Med Sci (Basel). 2019;7(2). | |
dc.relation | 13. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646-50. | |
dc.relation | 14. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485-7. | |
dc.relation | 15. de Alba MR, Bustamante-Aragonés A, Perlado S, Trujillo-Tiebas MJ, Díaz-Recasens J, Plaza-Arranz J, et al. Diagnóstico prenatal no invasivo: presente y futuro de mano de las nuevas tecnologías. 2012;23(2):67-75. | |
dc.relation | 16. Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A, et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health. 2015;7:113-26. | |
dc.relation | 17. Costa J-M, Letourneau A, Favre R, Bidat L, Belaisch-Allart J, Jouannic J-M, et al. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study. Genetics in Medicine. 2018. | |
dc.relation | 18. Committee on Practice Bulletins—Obstetrics CmoG, and the Society for Maternal-Fetal Medicine. Practice Bulletin No. 163: Screening for Fetal Aneuploidy. Obstet Gynecol. 2016;127(5):e123-37. | |
dc.relation | 19. Cunningham F, Leveno K, Bloom S, Spong CY, Dashe J. Williams obstetrics, 24e: Mcgraw-hill; 2014. | |
dc.relation | 20. Wellesley D, Dolk H, Boyd PA, Greenlees R, Haeusler M, Nelen V, et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur J Hum Genet. 2012;20(5):521-6. | |
dc.relation | 21. Nicolaides KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn. 2011;31(1):7-15. | |
dc.relation | 22. Borrell A BV, Bennassar M. Guía de práctica clínica: Diagnóstico prenatal de los defectos congénitos. Cribado de anomalías cromosómicas. Diagnóstico Prenatal. 2013;24(2):57-72. | |
dc.relation | 23. Committee Opinion No. 640: Cell-Free DNA Screening For Fetal Aneuploidy. Obstet Gynecol. 2015;126(3):e31-7. | |
dc.relation | 24. Gagnon A, Wilson RD, COMMITTEE SOOAGOCG. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 2008;30(10):918-32. | |
dc.relation | 25. Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26-38. | |
dc.relation | 26. Carlson LM, Vora NL. Prenatal Diagnosis: Screening and Diagnostic Tools. Obstet Gynecol Clin North Am. 2017;44(2):245-56. | |
dc.relation | 27. Park SY, Jang IA, Lee MA, Kim YJ, Chun SH, Park MH. Screening for chromosomal abnormalities using combined test in the first trimester of pregnancy. Obstet Gynecol Sci. 2016;59(5):357-66. | |
dc.relation | 28. Perea Cuesta R, Rodríguez Merchán DM. Texto guía en ecografia obstetrica, para el desarrollo de programas de educación médica continuada en ultrasonido obstétrico de la Unidad de Medicina Maternofetal del Departamento de Obstetricia y Ginecología de la Universidad Nacional: Universidad Nacional de Colombia. | |
dc.relation | 29. Fandiño-Losada A, Lucumí-Villegas B, Ramírez-Cheyne J, Isaza-de, Lourido C, Saldarriaga C. Valor predictivo positivo del diagnóstico prenatal
invasivo para alteraciones cromosómicas Rev. Fac. Med. 2018 | |
dc.relation | 30. Colciencias MdSyPnS-. Guía de Práctica Clínica para la prevención, detección temprana y tratamiento del embarazo, parto o puerperio. 2013. | |
dc.relation | 31. Gynaecologists RCoOa. Amniocentesis and chorionic villus sampling: RCOG; 2010. | |
dc.relation | 32. Alfirevic Z, Navaratnam K, Mujezinovic F. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev. 2017;9:CD003252. | |
dc.relation | 33. Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol. 2007;110(3):687-94. | |
dc.relation | 34. Ghi T, Sotiriadis A, Calda P, Da Silva Costa F, Raine‐Fenning N, Alfirevic Z, et al. ISUOG Practice Guidelines: invasive procedures for prenatal diagnosis. 2016;48(2):256-68. | |
dc.relation | 35. García-Posada R, Borobio V, Bennasar M, Illa M, Mula R, Serés A, et al. Biopsia corial transcervical: guía práctica. Diagnóstico Prenatal. 2012;23(1):2-10. | |
dc.relation | 36. Aypar U, Thorland EC, Hoppman N. Prenatal diagnosis of chromosome abnormalities: past, present, and future. Clin Chem. 2013;59(10):1432-4. | |
dc.relation | 37. Faas BH, Cirigliano V, Bui TH. Rapid methods for targeted prenatal diagnosis of common chromosome aneuploidies. Semin Fetal Neonatal Med. 2011;16(2):81-7. | |
dc.relation | 38. Fauzdar A, Chowdhry M, Makroo RN, Mishra M, Srivastava P, Tyagi R, et al. Rapid-prenatal diagnosis through fluorescence in situ hybridization for preventing aneuploidy related birth defects. Indian J Hum Genet. 2013;19(1):32-42. | |
dc.relation | 39. Tepperberg J, Pettenati MJ, Rao PN, Lese CM, Rita D, Wyandt H, et al. Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature. Prenat Diagn. 2001;21(4):293-301. | |
dc.relation | 40. Dey M, Sharma S, Aggarwal S. Prenatal screening methods for aneuploidies. N Am J Med Sci. 2013;5(3):182-90. | |
dc.relation | 41. Medicine CoGatSfM-F. Committee Opinion No.682: Microarrays and Next-Generation Sequencing Technology: The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology. Obstet Gynecol. 2016;128(6):e262-e8. | |
dc.relation | 42. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175-84. | |
dc.relation | 43. Brady PD, Delle Chiaie B, Christenhusz G, Dierickx K, Van Den Bogaert K, Menten B, et al. A prospective study of the clinical utility of prenatal chromosomal microarray analysis in fetuses with ultrasound abnormalities and an exploration of a framework for reporting unclassified variants and risk factors. Genet Med. 2014;16(6):469-76. | |
dc.relation | 44. Hillman SC, McMullan DJ, Hall G, Togneri FS, James N, Maher EJ, et al. Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013;41(6):610-20. | |
dc.relation | 45. Revello R, Sarno L, Ispas A, Akolekar R, Nicolaides KH. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound Obstet Gynecol. 2016;47(6):698-704. | |
dc.relation | 46. Ashoor G, Syngelaki A, Poon LC, Rezende JC, Nicolaides KH. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol. 2013;41(1):26-32. | |
dc.relation | 47. Bianchi DW, Parsa S, Bhatt S, Halks-Miller M, Kurtzman K, Sehnert AJ, et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol. 2015;125(2):375-82. | |
dc.relation | 48. Taylor-Phillips S, Freeman K, Geppert J, Agbebiyi A, Uthman OA, Madan J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002. | |
dc.relation | 49. Langlois S, Brock JA, COMMITTEE G. Current status in non-invasive prenatal detection of Down syndrome, trisomy 18, and trisomy 13 using cell-free DNA in maternal plasma. J Obstet Gynaecol Can. 2013;35(2):177-81. | |
dc.relation | 50. Gregg AR, Skotko BG, Benkendorf JL, Monaghan KG, Bajaj K, Best RG, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18(10):1056-65. | |
dc.relation | 51. Devers PL, Cronister A, Ormond KE, Facio F, Brasington CK, Flodman P. Noninvasive prenatal testing/noninvasive prenatal diagnosis: the position of the National Society of Genetic Counselors. J Genet Couns. 2013;22(3):291-5. | |
dc.relation | 52. Wou K, Levy B, Wapner RJ. Chromosomal Microarrays for the Prenatal Detection of Microdeletions and Microduplications. Clin Lab Med. 2016;36(2):261-76. | |
dc.relation | 53. Suela J, López-Expósito I, Querejeta ME, Martorell R, Cuatrecasas E, Armengol L, et al. Recommendations for the use of microarrays in prenatal diagnosis. Med Clin (Barc). 2017;148(7):328.e1-.e8. | |
dc.relation | 54. Petersen AK, Cheung SW, Smith JL, Bi W, Ward PA, Peacock S, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am J Obstet Gynecol. 2017;217(6):691.e1-.e6. | |
dc.relation | 55. Beulen L, Faas BH, Feenstra I, van Vugt JM, Bekker MN. Clinical utility of non‐invasive prenatal testing in pregnancies with ultrasound anomalies. Ultrasound in Obstetrics & Gynecology. 2017;49(6):721-8. | |
dc.relation | 56. Nicolaides KH, Syngelaki A, Poon LC, Gil MM, Wright D. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing. Fetal Diagn Ther. 2014;35(3):185-92. | |
dc.relation | 57. Gil MM, Accurti V, Santacruz B, Plana MN, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017;50(3):302-14. | |
dc.relation | 58. Haymon L, Simi E, Moyer K, Aufox S, Ouyang DW. Clinical implementation of noninvasive prenatal testing among maternal fetal medicine specialists. Prenat Diagn. 2014;34(5):416-23. | |
dc.relation | 59. Programa para análisis epidemiológico de datos. Versión 4.2, julio 2016. Consellería de Sanidade, Xunta de Galicia, España; Organización Panamericana de la salud (OPS-OMS); Universidad CES, Colombia. | |
dc.relation | 60. Foundation FM. https://fetalmedicine.org/research/assess/trisomies 2020 [ | |
dc.relation | 61. Nicolaides KH, Syngelaki A, Ashoor G, Birdir C, Touzet G. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol. 2012;207(5):374.e1-6. | |
dc.relation | 62. Guy C, Haji-Sheikhi F, Rowland CM, Anderson B, Owen R, Lacbawan FL, et al. Prenatal cell-free DNA screening for fetal aneuploidy in pregnant women at average or high risk: Results from a large US clinical laboratory. Mol Genet Genomic Med. 2019;7(3):e545. | |
dc.relation | 63. Luo Y, Hu H, Zhang R, Pan Y, Ma Y, Long Y, et al. [Factors affecting the failure of non-invasive prenatal testing and the feasibility analysis of retesting]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2020;37(6):603-8. | |
dc.relation | 64. Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33(7):662-6. | |
dc.relation | 65. Van Opstal D, Srebniak MI, Polak J, de Vries F, Govaerts LC, Joosten M, et al. False Negative NIPT Results: Risk Figures for Chromosomes 13, 18 and 21 Based on Chorionic Villi Results in 5967 Cases and Literature Review. PLoS One. 2016;11(1):e0146794. | |
dc.relation | 66. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, et al. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem. 2013;46(12):1099-104. | |
dc.relation | 67. Tabor A, Alfirevic Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther. 2010;27(1):1-7. | |
dc.relation | 68. Chen Y, Yu Q, Mao X, Lei W, He M, Lu W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum Genomics. 2019;13(1):60. | |
dc.relation | 69. Fairbrother G, Burigo J, Sharon T, Song K. Prenatal screening for fetal aneuploidies with cell-free DNA in the general pregnancy population: a cost-effectiveness analysis. J Matern Fetal Neonatal Med. 2016;29(7):1160-4. | |
dc.relation | 70. Kostenko E, Chantraine F, Vandeweyer K, Schmid M, Lefevre A, Hertz D, et al. Clinical and Economic Impact of Adopting Noninvasive Prenatal Testing as a Primary Screening Method for Fetal Aneuploidies in the General Pregnancy Population. Fetal Diagn Ther. 2019;45(6):413-23. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Análisis de concordancia de pruebas no invasivas prenatales en sangre materna (NIPT) con pruebas invasivas para embarazos con alto riesgo de aneuploidías fetales en una muestra piloto | |
dc.type | Otro | |