dc.contributorRengifo Castillo, Aura Caterine
dc.contributorTorres Fernández, Orlando
dc.contributorDueñas Gómez, Zulma Janeth
dc.creatorRosales Munar, Alicia Alejandra
dc.date.accessioned2022-07-06T19:59:20Z
dc.date.available2022-07-06T19:59:20Z
dc.date.created2022-07-06T19:59:20Z
dc.date.issued2022-06-01
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81685
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa enfermedad del virus Zika (ZIKV) ha generado graves problemas en la salud pública desde su aparición en los brotes de las Américas del 2015-2016. Esta enfermedad puede causar trastornos en el neurodesarrollo como microcefalia; una condición que genera, entre otras, disfunciones motoras, visuales, auditivas y cognitivas. A pesar de un gran número de publicaciones sobre la patogénesis del ZIKV aún se desconocen los mecanismos asociados a la infección de las células del sistema nervioso, por ello, el objetivo de este trabajo consistió en evaluar los cambios morfológicos y la participación de marcadores del neurodesarrollo en la infección por virus del Zika durante la neurogénesis embrionaria en un modelo murino. Para cumplir este objetivo se inocularon cinco ratones hembra BALB/c en el estadío temprano de gestación E6,5 por la vía intraperitoneal, con una dosis de interferón y al siguiente día (E7,5) con una dosis de 9,4 x 105 PFU del ZIKV. Se llevó a cabo la eutanasia de las hembras en el estadío embrionario E14,5; momento en donde se da la convergencia para la corticogénesis y cerebelogénesis en el ratón. A continuación, se realizó la extracción de los encéfalos de los embriones para evaluar la expresión de los marcadores del neurodesarrollo (DCX, MCPH1, NES, TBR2, GFAP, CEP-152 y RELN) y para ensayos histológicos e inmunohistoquímicos únicamente en el tejido cerebral. En la evaluación de expresión de los marcadores de neurodesarrollo evaluados se encontró que la infección por ZIKV altera significativamente la expresión de DCX, CEP-152, TBR2 y RELN proteínas cruciales para el desarrollo cortical y cerebelar. Además, en los resultados obtenidos de inmunohistoquímica e hibridación in situ observamos que las regiones con más antígeno y ARN de replicación del ZIKV fueron el mesencéfalo, rombencéfalo y médula espinal, regiones donde también encontramos un mayor número de alteraciones asociadas a procesos morfológicos relacionados a procesos de degeneración celular y marcación positiva para caspasa. Por otro lado, se realizaron ensayos de acoplamiento molecular entre las proteínas seleccionadas para el proyecto (DCX, MCPH1, CEP152, RELN, TBR2, GFAP y NES) con las proteínas de replicación NS4A y NS5 del ZIKV y se encontraron energías de interacción favorables para MCPH1, RELN, DCX y TBR2 con NS4A del ZIKV. Con este trabajo se concluye que el virus zika genera alteraciones morfológicas como la aparición de núcleos picnóticos altamente asociadas a la presencia y replicación viral del mismo. Se reporta por primera vez cambios en la expresión de marcadores del neurodesarrollo cortical y cerebelar asociados a la infección por el ZIKV como MCPH1, CEP-152, RELN, TBR2, además, este estudio es el primer reporte en donde se evidencia interacción molecular entre las proteínas del neurodesarrollo MCPH1, DCX, RELN y TBR2 con la proteína de replicación viral NS4A. Estos resultados postulan a los genes evaluados como posibles blancos de unión al ZIKV y permiten plantear futuros mecanismos de infección por el ZIKV. (Texto tomado de la fuente).
dc.description.abstractZika virus disease (ZIKV) has generated serious public health problems since its appearance between 2015–2016 years of outbreaks in the Americas. This disease can cause neurodevelopmental disorders such as microcephaly; a condition that generates, among others, motor, visual, auditory and cognitive dysfunctions. Despite numerous publications on the pathogenesis of ZIKV, the mechanisms associated with the infection of nervous system cells are still unknown. Therefore, this study evaluated the morphological changes and the participation of neurodevelopmental markers in ZIKV infection during embryonic neurogenesis in a murine model. To accomplish this objective, five female BALB/c mice at early gestational stage E6.5 were inoculated intraperitoneally with a dose of interferon and the following day (E7.5) with a 9.4 x 105 PFU dose of ZIKV. The females were euthanized at the E14.5 embryonic stage, when the convergence for corticogenesis and cerebellogenesis occurs in the mouse. Then, the embryos' brains were extracted to evaluate the expression of neurodevelopmental markers (DCX, MCPH1, NES, TBR2, GFAP, CEP-152 and RELN) and for histological and immunohistochemical assays only in brain tissue. In the evaluation of expression of the neurodevelopmental markers evaluated, it was found that ZIKV infection significantly alters the expression of DCX, CEP-152, TBR2 and RELN proteins crucial for cortical and cerebellar development. Additionally, in the results obtained from immunohistochemistry and in situ hybridization, we observed that the regions with more antigen and replication RNA of ZIKV were the midbrain, hindbrain and spinal cord, regions where we also found a greater number of alterations associated with morphological processes related to processes of cell degeneration and positive labeling for caspase. By the other hand, molecular docking assays were performed between the proteins selected for the project (DCX, MCPH1, CEP152, RELN, TBR2, GFAP and NES) with the replication proteins NS4A and NS5 of ZIKV and favorable interaction energies were found for MCPH1, RELN, DCX, and TBR2 with NS4A of ZIKV. This work concludes that the Zika virus generates morphological alterations such as the appearance of pyknotic nuclei, highly associated with the presence and viral replication of the virus. We report for the first time changes in the expression of cortical and cerebellar neurodevelopmental markers associated with ZIKV infection such as MCPH1, CEP-152, RELN, TBR2, in addition, this study is the first report where the molecular interaction between the neurodevelopmental proteins MCPH1, DCX, RELN, and TBR2 with the viral replication protein NS4A is evidenced. These results postulate the genes evaluated as possible binding targets for ZIKV and allow us to consider future mechanisms of ZIKV infection.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Neurociencias
dc.publisherFacultad de Medicina
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBireme
dc.relationLudlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016;131:159-84.
dc.relationLewis MH. Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev. 2004;10(2):91-5.
dc.relationKoch C, Laurent G. Complexity and the Nervous System. 1999.
dc.relationvan den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika Virus Targeting in the Developing Brain. J Neurosci. 2017;37(8):2161-75.
dc.relationSzaba FM, Tighe M, Kummer LW, Lanzer KG, Ward JM, Lanthier P, et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 2018;14(4).
dc.relationHeymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet. 2016;387(10020):719-21.
dc.relationMusso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 292016. p. 487-524.
dc.relationMartines RB, Bhatnagar J, Keating MK, Silva-Flannery L, Muehlenbachs A, Gary J, et al. Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses--Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(6):159-60.
dc.relationCalvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016.
dc.relationRubin EJ, Greene MF, Baden LR. Zika Virus and Microcephaly. N Engl J Med. 2016;374(10):984-5.
dc.relationTang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika Virus Infects Human Cortical Neural Precursors and Attenuates Their Growth. Cell Stem Cell. 2016;18(5):587-90.
dc.relationOliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol. 2016;47(1):6-7.
dc.relationMlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374(10):951-8.
dc.relationCao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017;214(8):2303-13.
dc.relationCugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534(7606):267.
dc.relationChavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS, Sanford TJ, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357(6346):83-8.
dc.relationHou S, Kumar A, Xu Z, Airo AM, Stryapunina I, Wong CP, et al. Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response. J Virol. 2017;91(16).
dc.relationGrant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, et al. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe. 2016;19(6):882-90.
dc.relationJiang X, Dong X, Li SH, Zhou YP, Rayner S, Xia HM, et al. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex. Front Microbiol. 2018;9.
dc.relationCarletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008;14(1):91-100.
dc.relationMarín Padilla M. Desarrollo de la corteza cerebral humana. Teoría citoarquitectónica1999. 208 p.
dc.relationLorente De No R. Cerebral cortex : architecture, intracortical connections, motor projections. Physiology of the Nervous System. 1938:288-313.
dc.relationMartynoga B, Drechsel D, Guillemot F. Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex. Cold Spring Harb Perspect Biol. 2012;4(10).
dc.relationSilbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, et al. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular and cellular neurosciences. 2010;44(4):362-73.
dc.relationYamano T, Shimada M, Abe Y, Ohta S, Ohno M. Destruction of external granular layer and subsequent cerebellar abnormalities. Acta Neuropathologica. 1983;59(1):41-7.
dc.relationDelgado-Esteban M, García-Higuera I, Maestre C, Moreno S, Almeida A. APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nature Communications. 2013;4(1):2879.
dc.relationJaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Negl Trop Dis. 2019;13(4).
dc.relationWinkler CW, Peterson KE. Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology. 2018;153(4):443-54.
dc.relationShan C, Xie X, Luo H, Muruato AE, Liu Y, Wakamiya M, et al. Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications. 2019;10(1):5677.
dc.relationJaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS neglected tropical diseases [Internet]. 2019 2019/04//; 13(4):[e0007343 p.]. Available from: http://europepmc.org/abstract/MED/30995223Available.
dc.relationYun SI, Lee YM. Japanese encephalitis: The virus and vaccines. Hum Vaccin Immunother. 2014;10(2):263-79.
dc.relationLuo MH, Hannemann H, Kulkarni AS, Schwartz PH, O'Dowd JM, Fortunato EA. Human Cytomegalovirus Infection Causes Premature and Abnormal Differentiation of Human Neural Progenitor Cells. J Virol. 2010;84(7):3528-41.
dc.relationWeaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika Virus: History, Emergence, Biology, and Prospects for Control. Antiviral Res. 2016;130:69-80.
dc.relationGrard G CM, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D. Zika Virus in Gabon (Central Africa) – 2007: A New Threat from Aedes albopictus? PLoS Negledted Tropical Diseases. 2014;8(2).
dc.relationDuffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. http://dxdoiorg/101056/NEJMoa0805715. 2009.
dc.relationCao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387(10027):1531-9.
dc.relationHennessey M, Fischer M, Staples JE. Zika Virus Spreads to New Areas - Region of the Americas, May 2015-January 2016. MMWR Morb Mortal Wkly Rep. 2016;65(3):55-8.
dc.relationAlvis-Guzmán N, Zakzuk-Sierra J, Vargas-Moranth R, Alcocer-Olaciregui A, Parra-Padilla D. Dengue, Chikunguña and Zika in Colombia 2015-2016. 22. 2017.
dc.relationSiddique R, Liu Y, Nabi G, Sajjad W, Xue M, Khan S. Zika Virus Potentiates the Development of Neurological Defects and Microcephaly: Challenges and Control Strategies. Front Neurol. 2019;10.
dc.relationNeufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the. Nature Reviews Microbiology. 2018;16(3):125.
dc.relationScaturro P, Stukalov A, Haas DA, Cortese M, Draganova K, Płaszczyca A, et al. An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature. 2018;561(7722):253.
dc.relationLedermann JP, Guillaumot L, Yug L, Saweyog SC, Tided M, Machieng P, et al. Aedes hensilli as a potential vector of Chikungunya and Zika viruses. PLoS Negl Trop Dis. 2014;8(10):e3188.
dc.relationS. Ioos H-PM, I. Leparc Goffart, V. Gauthier, T. Cardoso, M. Herida. Current Zika virus epidemiology and recent epidemicsInfections par le virus Zika et épidémies récentes. Médecine et Maladies Infectieuses. 2014;44(7):302-7.
dc.relationBesnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill. 2014;19(13).
dc.relationHills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, et al. Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission - Continental United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65(8):215-6.
dc.relationBarjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, et al. Probable transfusion-transmitted Zika virus in Brazil. Transfusion. 2016;56(7):1684-8.
dc.relationMusso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. Emerg Infect Dis. 2015;21(2):359-61.
dc.relationBarzon L, Pacenti M, Berto A, Sinigaglia A, Franchin E, Lavezzo E, et al. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Euro Surveill. 2016;21(10):30159.
dc.relationDupont-Rouzeyrol M, mdupont@pasteur.nc, Institut Pasteur de Nouvelle-Calédonie RIdIP, Noumea Cedex, New Caledonia, Biron A, Institut Pasteur de Nouvelle-Calédonie RIdIP, Noumea Cedex, New Caledonia, O'Connor O, et al. Infectious Zika viral particles in breastmilk. The Lancet. 2016;387(10023):1051.
dc.relationBayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, De Azeved Marques ET, et al. Type III Interferons Produced by Human Placental Trophoblasts Confer Protection Against Zika Virus Infection. Cell Host Microbe. 2016;19(5):705-12.
dc.relationZammarchi L, Spinicci M, Bartoloni A. Zika Virus: a Review from the Virus Basics to Proposed Management Strategies. Mediterranean journal of hematology and infectious diseases. 2016;8(1):e2016056-e.
dc.relationNicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2016;21(32):30314.
dc.relationPaniz-Mondolfi AE, Rodriguez-Morales AJ, Blohm G, Marquez M, Villamil-Gomez WE. ChikDenMaZika Syndrome: the challenge of diagnosing arboviral infections in the midst of concurrent epidemics. Ann Clin Microbiol Antimicrob. 2016;15.
dc.relationGilmore EC, Walsh CA. Genetic Causes of Microcephaly and Lessons for Neuronal Development. Wiley Interdiscip Rev Dev Biol. 2013;2(4):461-78.
dc.relationJackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet. 2002;71(1):136-42.
dc.relationBond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002;32(2):316-20
dc.relationBond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet. 2005;37(4):353- 5.
dc.relationKumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet. 2009;84(2):286-90.
dc.relationBilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467(7312):207-10.
dc.relationSir JH, Barr AR, Nicholas AK, Carvalho OP, Khurshid M, Sossick A, et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat Genet. 2011;43(11):1147-53.
dc.relationCoronell-Rodríguez W, Arteta-Acosta C, Suárez-Fuentes MA, Burgos-Rolon MC, RubioSotomayor MT, Sarmiento-Gutiérrez M, et al. Infección por virus del Zika en el embarazo, impacto fetal y neonatal. Rev chil infectol. 2016;33(6):665-73.
dc.relationMiner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell. 2016;165(5):1081-91.
dc.relationSilasi M, Cardenas I, Racicot K, Kwon JY, Aldo P, Mor G. VIRAL INFECTIONS DURING PREGNANCY. Am J Reprod Immunol. 2015;73(3):199-213.
dc.relationKwon JY, Romero R, Mor G. New insights into the relationship between viral infection and pregnancy complications. Am J Reprod Immunol. 2014;71(5):387-90.
dc.relationSarno M, Sacramento GA, Khouri R, do Rosario MS, Costa F, Archanjo G, et al. Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS Negl Trop Dis. 2016;10(2):e0004517.
dc.relationSchuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, et al. Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(3):59-62.
dc.relationJohansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM, Hills SL. Zika and the Risk of Microcephaly. N Engl J Med. 2016;375(1):1-4.
dc.relationOliveira WKd, Cortez-Escalante J, Oliveira WTGHD, Carmo GMId, Henriques CMP, Coelho GE, et al. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy — Brazil, 2015 | MMWR. MMWR Morb Mortal WKly Rep; 2016 2019-04-08T03:25:01Z/.
dc.relationBierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, Lebreton A, et al. Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta. PLoS One. 2012;7(6).
dc.relationGötz M, Huttner WB. The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology. 2005;6(10):777-88.
dc.relationAgirman G, Broix L, Nguyen L. Cerebral cortex development: an outside-in perspective. FEBS Letters. 2017;591(24):3978-92.
dc.relationMing G, Song H. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron. 2011;70(4):687-702.
dc.relationMirzaa GM, RiviÈRe J-B, Dobyns WB. Megalencephaly Syndromes and Activating Mutations in the PI3K-AKT Pathway: MPPH and MCAP. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2013;163(2):122-30.
dc.relationCloëtta D, Thomanetz V, Baranek C, Lustenberger RM, Lin S, Oliveri F, et al. Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis. J Neurosci. 2013;33(18):7799-810.
dc.relationFranke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27(50):6473-88.
dc.relationHamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89(17):8880-96.
dc.relationHeaton NS, Randall G. Dengue virus induced autophagy regulates lipid metabolism. Cell Host Microbe. 2010;8(5):422-32.
dc.relationSir D, Kuo C, Tian Y, Liu HM, Huang EJ, Jung JU, et al. Replication of Hepatitis C Virus RNA on Autophagosomal Membranes*. J Biol Chem. 2012;287(22):18036-43.
dc.relationLevine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323-35.
dc.relationLiang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell. 2016;19(5):663-71.
dc.relationBaldock R, Bard J, Davidson D, Morriss-Kay G. Kaufman’s Atlas of Mouse Development Supplement: With Coronal Sections: Elsevier Science; 2015.
dc.relationMolnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, et al. Comparative aspects of cerebral cortical development. European Journal of Neuroscience. 2006;23(4):921-34.
dc.relationTata M, Wall I, Joyce A, Vieira JM, Kessaris N, Ruhrberg C. Regulation of embryonic neurogenesis by germinal zone vasculature. Proc Natl Acad Sci U S A. 1132016. p. 13414-9.
dc.relationRubenstein JL. Development of the Cerebral Cortex: Implications for Neurodevelopmental Disorders. J Child Psychol Psychiatry. 2011;52(4):339-55.
dc.relationChen JG, Rasin MR, Kwan KY, Sestan N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci U S A. 2005;102(49):17792-7.
dc.relationKomiyama T, Luo L. Intrinsic control of precise dendritic targeting by an ensemble of transcription factors. Curr Biol. 2007;17(3):278-85.
dc.relationCubelos B, Sebastian-Serrano A, Kim S, Moreno-Ortiz C, Redondo JM, Walsh CA, et al. Cux- 2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb Cortex. 2008;18(8):1758-70.
dc.relationCubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 Regulate Dendritic Branching, Spine Morphology, and Synapses of the Upper Layer Neurons of the Cortex. Neuron. 2010;66(4):523-35.
dc.relationCurran T, D'Arcangelo G. Role of reelin in the control of brain development. Brain research Brain research reviews. 1998;26(2-3):285-94.
dc.relationLiu Q, Xie, F., Siedlak, S.L. et al. CMLS, Cell. Mol. Life Sci. Neurofilament proteins in neurodegenerative diseases | SpringerLink. Cellular and Molecular Life Sciences CMLS. 2004;61(24):3057-75.
dc.relationPoulain FE, Sobel A. The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci. 2010;43(1):15-32.
dc.relationMonteiro MR, Kandratavicius L, Leite JP. O papel das proteínas do citoesqueleto na fisiologia celular normal e em condições patológicas. J epilepsy clin neurophysiol. 2011;17(1):17-23.
dc.relationvan Binsbergen E, Ellis RJ, Abdelmalik N, Jarvis J, Randhawa K, Wyatt-Ashmead J, et al. A fetus with de novo 2q33.2q35 deletion including MAP2 with brain anomalies, esophageal atresia, and laryngeal stenosis. Am J Med Genet A. 2014;164a(1):194-8.
dc.relationAlcántara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, et al. Regional and Cellular Patterns of reelin mRNA Expression in the Forebrain of the Developing and Adult Mouse. J Neurosci. 1998;18(19):7779-99.
dc.relationAyala R, Shu T, Tsai L-H. Trekking across the Brain: The Journey of Neuronal Migration. Cell. 2007;128(1):29-43.
dc.relationRohlfs Domínguez P. Development of the nervous system in humans. Overview of the prenatal stage until 2013. Revista Internacional de Psicología. 2016;15(1).
dc.relationChoi BH, Lapham LW. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 1978;148(2):295-311.
dc.relationRakic P. Evolution of the neocortex: a perspective from developmental biology. Nature Reviews Neuroscience. 2009;10(10):724-35.
dc.relationElkin Navarro Quiroz MA, Roberto Navarro-Quiroz, Pierine España-Puccini, Anderson DíazPerez, Jose Luis Villarreal, Lucy Vasquez, Augusto Torres. Neurogénesis en Cerebro Adulto. Salud Uninorte. 2018;34(1):144-59.
dc.relationDusart P, Fagerberg L, Perisic L, Civelek M, Struck E, Hedin U, et al. A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein. Scientific Reports. 2018;8(1):1-15.
dc.relationLendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60(4):585-95.
dc.relationLindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5. Methods Enzymol. 2016;568:509-35.
dc.relationD´Arcagelo G. Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. Advances in neuroscience. 2014;2014:19.
dc.relationRaaf J, Kernohan JW. A study of the external granular layer in the cerebellum. The disappearance of the external granular layer and the growth of the molecular and internal granular layers in the cerebellum. American Journal of Anatomy. 1944;75(2):151-72.
dc.relationYamano T, Shimada M, Abe Y, Ohta S, Ohno M. Destruction of external granular layer and subsequent cerebellar abnormalities. Acta neuropathologica. 1983;59(1):41-7.
dc.relationLakatosova S, Ostatnikova D. Reelin and its complex involvement in brain development and function. The international journal of biochemistry & cell biology. 2012;44(9):1501-4.
dc.relationde Oliveira WK, de Franca GVA, Carmo EH, Duncan BB, de Souza Kuchenbecker R, Schmidt MI. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. Lancet. 2017;390(10097):861-70.
dc.relationYuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science. 2017;358(6365):933-6.
dc.relationPettersson JH, Eldholm V, Seligman SJ, Lundkvist A, Falconar AK, Gaunt MW, et al. How Did Zika Virus Emerge in the Pacific Islands and Latin America? MBio. 2016;7(5).
dc.relationHertzog J, Dias Junior AG, Rigby RE, Donald CL, Mayer A, Sezgin E, et al. Infection with a Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling. Eur J Immunol. 2018;48(7):1120-36.
dc.relationAdibi JJ, Marques ET, Jr., Cartus A, Beigi RH. Teratogenic effects of the Zika virus and the role of the placenta. Lancet. 2016;387(10027):1587-90.
dc.relationKennedy LA. The pathogenesis of brain abnormalities in the fetal alcohol syndrome: an integrating hypothesis. Teratology. 1984;29(3):363-8.
dc.relationDekaban AS. Abnormalities in children exposed to x-radiation during various stages of gestation: tentative timetable of radiation injury to the human fetus. I. J Nucl Med. 1968;9(9):471-7.
dc.relationMostoufi-zadeh M, Driscoll SG, Biano SA, Kundsin RB. Placental evidence of cytomegalovirus infection of the fetus and neonate. Arch Pathol Lab Med. 1984;108(5):403-6.
dc.relationHadeed AJ, Siegel SR. Maternal cocaine use during pregnancy: effect on the newborn infant. Pediatrics. 1989;84(2):205-10.
dc.relationAttardo A, Fabel K, Krebs J, Haubensak W, Huttner WB, Kempermann G. Tis21 Expression Marks Not Only Populations of Neurogenic Precursor Cells but Also New Postmitotic Neurons in Adult Hippocampal Neurogenesis. Cereb Cortex. 2010;20(2):304-14.
dc.relationArnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa SI, Bikoff EK, et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008;22(18):2479-84.
dc.relationHuang Y, Li Y, Zhang H, Zhao R, Jing R, Xu Y, et al. Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discovery. 2018;4(1):19.
dc.relationGoodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA. Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses. 2018;10(10):550.
dc.relationMorrison TE, Diamond MS, Pierson TC. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. 2017.
dc.relationLaiton-Donato K, Alvarez-Diaz DA, Rengifo AC, Torres-Fernandez O, Usme-Ciro JA, Rivera JA, et al. Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c64 Mouse Brain after Intraperitoneal Inoculation. Microbiology resource announcements. 2019;8(46).
dc.relationAu - Herrlinger SA, Au - Shao Q, Au - Ma L, Au - Brindley M, Au - Chen J-F. Establishing Mouse Models for Zika Virus-induced Neurological Disorders Using Intracerebral Injection Strategies: Embryonic, Neonatal, and Adult. JoVE. 2018(134):e56486.
dc.relationMarzi A, Emanuel J, Callison J, McNally KL, Arndt N, Chadinha S, et al. Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice. Front Cell Infect Microbiol. 2018;8.
dc.relationLazear Helen M, Govero J, Smith Amber M, Platt Derek J, Fernandez E, Miner Jonathan J, et al. A Mouse Model of Zika Virus Pathogenesis. Cell Host & Microbe. 2016;19(5):720-30.
dc.relationLi C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016;19(1):120-6.
dc.relationYockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, et al. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell. 2016;166(5):1247-56 e4.
dc.relationSapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016;540(7633):443- 7.
dc.relationGarcez PP, Nascimento JM, Vasconcelos JMd, Costa RMd, Delvecchio R, Trindade P, et al. Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports. 2017;7:40780.
dc.relationFerraris P, Cochet M, Hamel R, Gladwyn-Ng I, Alfano C, Diop F, et al. Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerging Microbes & Infections. 2019;8(1):1003-16.
dc.relationGarcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816- 8.
dc.relationDang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, et al. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell. 2016;19(2):258-65.
dc.relationRakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol. 2009;5(7):380.
dc.relationFang Y, Eglen R. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS discovery. 2017:2472555217696795.
dc.relationGleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23(2):257-71.
dc.relationJourniac N, Gilabert-Juan J, Cipriani S, Benit P, Liu X, Jacquier S, et al. Cell Metabolic Alterations due to Mcph1 Mutation in Microcephaly. Cell Reports. 2020;31(2):107506.
dc.relationCizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U, et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol. 2010;191(4):731- 9.
dc.relationNigg EA, Raff JW. Centrioles, centrosomes, and cilia in health and disease. Cell. 2009;139(4):663-78.
dc.relationBrown NJ, Marjanović M, Lüders J, Stracker TH, Costanzo V. Cep63 and Cep152 Cooperate to Ensure Centriole Duplication. PLoS One. 2013;8(7).
dc.relationSessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron. 2008;60(1):56-69.
dc.relationRoessmann U, Velasco ME, Sindely SD, Gambetti P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Research. 1980;200(1):13-21.
dc.relationHamad MIK, Jbara A, Rabaya O, Petrova P, Daoud S, Melliti N, et al. Reelin signaling modulates GABAB receptor function in the neocortex. J Neurochem. 2020.
dc.relationBernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177-95.
dc.relationGarber JC, Barbee RW, Bielitzki JT, Clayton L, Donovan J, Hendriksen C, et al. Guide for the care and use of laboratory animals. The National Academic Press, Washington DC. 2011;8:220.
dc.relation2010/63/UE D. del Parlamento Europeo y del Consejo, de 22 de septiembre de 2010 , relativa a la protección de los animales utilizados para fines científicos Texto pertinente a efectos del EEE. 2010. p. 33–79.
dc.relationChosewood LC, Wilson DE. Biosafety in microbiological and biomedical laboratories: Diane Publishing; 2007.
dc.relationOrganization WH. Laboratory biosafety manual: World Health Organization; 2004.
dc.relationFuentes F, Mendoza R, Rosales A, Cisneros R, Salud INd. Guía de manejo y cuidado de animales de laboratorio: ratón. Instituto Nacional de Salud (Perú) Ministerio de Salud, Instituto Nacional de Salud Lima. 2008:52.
dc.relationBalls M, Straughan DW. The three Rs of Russell & Burch and the testing of biological products. Dev Biol Stand. 1996;86:11-8.
dc.relationScremin AM, Scremin OU, Brechner T. Survival under hypoxia. Age dependence and effect of cholinergic drugs. Stroke. 1980;11(5):548-52.
dc.relationRivera J, Neira M, Parra E, Méndez J, Sarmiento L, Caldas ML. Detección de antígenos del virus dengue en tejidos post mortem. Biomédica. 2014;34(4).
dc.relationRivera J, Neira M, Sarmiento L, Parra E, Caldas ML. Virus de la influenza. https://revistabiomedicaorg/indexphp/biomedica. 2016.
dc.relationRivera J, Rengifo A, Santamaría G, Corchuelo S, Álvarez-Díaz D, Parra E, et al. Inmunorreacción de la infección por el virus de Zika en retina de ratones. Biomédica. 2019;39(2):8-10.
dc.relationCorchuelo S, Gómez C, Rosales A, Santamaria G, Rivera JA, Saad EP, et al. CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded Cell Blocks and Tissues. Curr Protoc. 2021;1(12):e319.
dc.relationBerman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.
dc.relationTobón ACJ. Infecciones por Virus Zika en Colombia-2015. Medicina. 2015;19(2):125-33.
dc.relationKhaiboullina SF, Lopes P, de Carvalho TG, Real ALCV, Souza DG, Costa VV, et al. Host Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal Infection. Viruses. 2019;11(6):558.
dc.relationChen J, Liang Y, Yi P, Xu L, Hawkins HK, Rossi SL, et al. Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Reports. 2017;21(6):1588-99.
dc.relationCui L, Zou P, Chen E, Yao H, Zheng H, Wang Q, et al. Visual and motor deficits in grown-up mice with congenital Zika virus infection. EBioMedicine. 2017;20:193-201.
dc.relationShelton SM, Soucy AR, Kurzion R, Zeldich E, Connor JH, Haydar TF. Forebrain Neural Precursor Cells Are Differentially Vulnerable to Zika Virus Infection. eNeuro. 2021;8(5).
dc.relationFauser M, Weselek G, Hauptmann C, Markert F, Gerlach M, Hermann A, et al. Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse Brain. Frontiers in Neuroanatomy. 2020;14:64.
dc.relationThawani A, Sirohi D, Kuhn RJ, Fekete DM. Zika Virus Can Strongly Infect and Disrupt Secondary Organizers in the Ventricular Zone of the Embryonic Chicken Brain. Cell reports. 2018;23(3):692-700.
dc.relationFoo S-S, Chen W, Chan Y, Lee W-S, Lee S-A, Cheng G, et al. Biomarkers and immunoprofiles associated with fetal abnormalities of ZIKV-positive pregnancies. JCI insight. 2018;3(21):e124152.
dc.relationSathupan P, Khongphattanayothin A, Srisai J, Srikaew K, Poovorawan Y. The role of vascular endothelial growth factor leading to vascular leakage in children with dengue virus infection. Ann Trop Paediatr. 2007;27(3):179-84.
dc.relationZlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705-16.
dc.relationCorchuelo S, Gómez CY, Rosales AA, Santamaria G, Rivera JA, Saad EP, et al. CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed ParaffinEmbedded Cell Blocks and Tissues. Curr Protoc. 2021;1(12):e319.
dc.relationStrauss EG, Strauss JH. Replication strategies of the single stranded RNA viruses of eukaryotes. Curr Top Microbiol Immunol. 1983;105:1-98.
dc.relationValentine GC, Seferovic MD, Fowler SW, Major AM, Gorchakov R, Berry R, et al. Timing of gestational exposure to Zika virus is associated with postnatal growth restriction in a murine model. Am J Obstet Gynecol. 2018;219(4):403.e1-.e9.
dc.relationÁlvarez-Díaz DA, Valencia-Álvarez E, Rivera JA, Rengifo AC, Usme-Ciro JA, Peláez-Carvajal D, et al. An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution. 2021;93:104967.
dc.relationSchmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature protocols. 2008;3(6):1101-8.
dc.relationWalker TL, Yasuda T, Adams DJ, Bartlett PF. The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci. 2007;27(14):3734-42.
dc.relationHannan AJ, Henke RC, Seeto GS, Capes-Davis A, Dunn J, Jeffrey PL. Expression of doublecortin correlates with neuronal migration and pattern formation in diverse regions of the developing chick brain. J Neurosci Res. 1999;55(5):650-7.
dc.relationCortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, et al. Ultrastructural Characterization of Zika Virus Replication Factories. Cell reports. 2017;18(9):2113-23.
dc.relationDzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, et al. Asterless is a scaffold for the onset of centriole assembly. Nature. 2010;467(7316):714-8.
dc.relationWang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature. 2009;461(7266):947-55.
dc.relationYingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell. 2008;132(3):474-86.
dc.relationMarthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R. Centrosome amplification causes microcephaly. Nat Cell Biol. 2013;15(7):731-40.
dc.relationHodge RD, Nelson BR, Kahoud RJ, Yang R, Mussar KE, Reiner SL, et al. Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012;32(18):6275-87.
dc.relationGraham V, Khudyakov J, Ellis P, Pevny L. SOX2 Functions to Maintain Neural Progenitor Identity. Neuron. 2003;39(5):749-65.
dc.relationHevner RF. Intermediate progenitors and Tbr2 in cortical development. Journal of Anatomy. 2019;235(3):616-25.
dc.relationRuss AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000;404(6773):95-9.
dc.relationLancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-9.
dc.relationGabriel E, Ramani A, Altinisik N, Gopalakrishnan J. Human Brain Organoids to Decode Mechanisms of Microcephaly. Frontiers in Cellular Neuroscience. 2020;14:115.
dc.relationMihalas AB, Elsen GE, Bedogni F, Daza RAM, Ramos-Laguna KA, Arnold SJ, et al. Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity. Cell Rep. 2016;16(1):92-105.
dc.relationVaswani AR, Blaess S. Reelin Signaling in the Migration of Ventral Brain Stem and Spinal Cord Neurons. Frontiers in cellular neuroscience. 2016;10:62-.
dc.relationAlpuche-Lazcano SP, Saliba J, Costa VV, Campolina-Silva GH, Marim FM, Ribeiro LS, et al. Profound downregulation of neural transcription factor Npas4 and Nr4a family in fetal mice neurons infected with Zika virus. PLOS Neglected Tropical Diseases. 2021;15(5):e0009425.
dc.relationLedur PF, Karmirian K, Pedrosa CdSG, Souza LRQ, Assis-de-Lemos G, Martins TM, et al. Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSCderived astrocytes. Scientific Reports. 2020;10(1):1218.
dc.relationLimonta D, Jovel J, Kumar A, Airo AM, Hou S, Saito L, et al. Human Fetal Astrocytes Infected with Zika Virus Exhibit Delayed Apoptosis and Resistance to Interferon: Implications for Persistence. Viruses. 2018;10(11).
dc.relationLi H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, et al. Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell stem cell. 2016;19(5):593-8.
dc.relationLossia OV, Conway MJ, Tree MO, Williams RJ, Goldthorpe SC, Srinageshwar B, et al. Zika virus induces astrocyte differentiation in neural stem cells. Journal of NeuroVirology. 2018;24(1):52-61.
dc.relationMartin C-A, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes & development. 2016;30(19):2158-72.
dc.relationNeitzel H, Neumann LM, Schindler D, Wirges A, Tönnies H, Trimborn M, et al. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. American journal of human genetics. 2002;70(4):1015-22.
dc.relationGruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol. 2011;13(11):1325-34.
dc.relationMeertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, et al. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep. 2017;18(2):324-33.
dc.relationXie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Frontiers in cellular and infection microbiology. 2021;11:575346-.
dc.relationNowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem Cell. 2016;18(5):591-6.
dc.relationWhite SH. How Hydrogen Bonds Shape Membrane Protein Structure. Advances in Protein Chemistry. 72: Academic Press; 2005. p. 157-72.
dc.relationWilliams G. Advanced Biology For You: OUP Oxford; 2015.
dc.relationMcGrath EL, Rossi SL, Gao J, Widen SG, Grant AC, Dunn TJ, et al. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection. Stem Cell Reports. 2017;8(3):715-27.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio morfológico y molecular en un modelo de infección por zika durante la neurogénesis embrionaria
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución