dc.contributor | Rengifo Castillo, Aura Caterine | |
dc.contributor | Torres Fernández, Orlando | |
dc.contributor | Dueñas Gómez, Zulma Janeth | |
dc.creator | Rosales Munar, Alicia Alejandra | |
dc.date.accessioned | 2022-07-06T19:59:20Z | |
dc.date.available | 2022-07-06T19:59:20Z | |
dc.date.created | 2022-07-06T19:59:20Z | |
dc.date.issued | 2022-06-01 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81685 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La enfermedad del virus Zika (ZIKV) ha generado graves problemas en la salud pública desde su aparición en los brotes de las Américas del 2015-2016. Esta enfermedad puede causar trastornos en el neurodesarrollo como microcefalia; una condición que genera, entre otras, disfunciones motoras, visuales, auditivas y cognitivas. A pesar de un gran número de publicaciones sobre la patogénesis del ZIKV aún se desconocen los mecanismos asociados a la infección de las células del sistema nervioso, por ello, el objetivo de este trabajo consistió en evaluar los cambios morfológicos y la participación de marcadores del neurodesarrollo en la infección por virus del Zika durante la neurogénesis embrionaria en un modelo murino. Para cumplir este objetivo se inocularon cinco ratones hembra BALB/c en el estadío temprano de gestación E6,5 por la vía intraperitoneal, con una dosis de interferón y al siguiente día (E7,5) con una dosis de 9,4 x 105 PFU del ZIKV. Se llevó a cabo la eutanasia de las hembras en el estadío embrionario E14,5; momento en donde se da la convergencia para la corticogénesis y cerebelogénesis en el ratón. A continuación, se realizó la extracción de los encéfalos de los embriones para evaluar la expresión de los marcadores del neurodesarrollo (DCX, MCPH1, NES, TBR2, GFAP, CEP-152 y RELN) y para ensayos histológicos e inmunohistoquímicos únicamente en el tejido cerebral. En la evaluación de expresión de los marcadores de neurodesarrollo evaluados se encontró que la infección por ZIKV altera significativamente la expresión de DCX, CEP-152, TBR2 y RELN proteínas cruciales para el desarrollo cortical y cerebelar. Además, en los resultados obtenidos de inmunohistoquímica e hibridación in situ observamos que las regiones con más antígeno y ARN de replicación del ZIKV fueron el mesencéfalo, rombencéfalo y médula espinal, regiones donde también encontramos un mayor número de alteraciones asociadas a procesos morfológicos relacionados a procesos de degeneración celular y marcación positiva para caspasa. Por otro lado, se realizaron ensayos de acoplamiento molecular entre las proteínas seleccionadas para el proyecto (DCX, MCPH1, CEP152, RELN, TBR2, GFAP y NES) con las proteínas de replicación NS4A y NS5 del ZIKV y se encontraron energías de interacción favorables para MCPH1, RELN, DCX y TBR2 con NS4A del ZIKV. Con este trabajo se concluye que el virus zika genera alteraciones morfológicas como la aparición de núcleos picnóticos altamente asociadas a la presencia y replicación viral del mismo. Se reporta por primera vez cambios en la expresión de marcadores del neurodesarrollo cortical y cerebelar asociados a la infección por el ZIKV como MCPH1, CEP-152, RELN, TBR2, además, este estudio es el primer reporte en donde se evidencia interacción molecular entre las proteínas del neurodesarrollo MCPH1, DCX, RELN y TBR2 con la proteína de replicación viral NS4A. Estos resultados postulan a los genes evaluados como posibles blancos de unión al ZIKV y permiten plantear futuros mecanismos de infección por el ZIKV. (Texto tomado de la fuente). | |
dc.description.abstract | Zika virus disease (ZIKV) has generated serious public health problems since its appearance between 2015–2016 years of outbreaks in the Americas. This disease can cause neurodevelopmental disorders such as microcephaly; a condition that generates, among others, motor, visual, auditory and cognitive dysfunctions. Despite numerous publications on the pathogenesis of ZIKV, the mechanisms associated with the infection of nervous system cells are still unknown. Therefore, this study evaluated the morphological changes and the participation of neurodevelopmental markers in ZIKV infection during embryonic neurogenesis in a murine model. To accomplish this objective, five female BALB/c mice at early gestational stage E6.5 were inoculated intraperitoneally with a dose of interferon and the following day (E7.5) with a 9.4 x 105 PFU dose of ZIKV. The females were euthanized at the E14.5 embryonic stage, when the convergence for corticogenesis and cerebellogenesis occurs in the mouse. Then, the embryos' brains were extracted to evaluate the expression of neurodevelopmental markers (DCX, MCPH1, NES, TBR2, GFAP, CEP-152 and RELN) and for histological and immunohistochemical assays only in brain tissue. In the evaluation of expression of the neurodevelopmental markers evaluated, it was found that ZIKV infection significantly alters the expression of DCX, CEP-152, TBR2 and RELN proteins crucial for cortical and cerebellar development. Additionally, in the results obtained from immunohistochemistry and in situ hybridization, we observed that the regions with more antigen and replication RNA of ZIKV were the midbrain, hindbrain and spinal cord, regions where we also found a greater number of alterations associated with morphological processes related to processes of cell degeneration and positive labeling for caspase. By the other hand, molecular docking assays were performed between the proteins selected for the project (DCX, MCPH1, CEP152, RELN, TBR2, GFAP and NES) with the replication proteins NS4A and NS5 of ZIKV and favorable interaction energies were found for MCPH1, RELN, DCX, and TBR2 with NS4A of ZIKV. This work concludes that the Zika virus generates morphological alterations such as the appearance of pyknotic nuclei, highly associated with the presence and viral replication of the virus. We report for the first time changes in the expression of cortical and cerebellar neurodevelopmental markers associated with ZIKV infection such as MCPH1, CEP-152, RELN, TBR2, in addition, this study is the first report where the molecular interaction between the neurodevelopmental proteins MCPH1, DCX, RELN, and TBR2 with the viral replication protein NS4A is evidenced. These results postulate the genes evaluated as possible binding targets for ZIKV and allow us to consider future mechanisms of ZIKV infection. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Medicina - Maestría en Neurociencias | |
dc.publisher | Facultad de Medicina | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Bireme | |
dc.relation | Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016;131:159-84. | |
dc.relation | Lewis MH. Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev. 2004;10(2):91-5. | |
dc.relation | Koch C, Laurent G. Complexity and the Nervous System. 1999. | |
dc.relation | van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika Virus Targeting in the Developing Brain. J Neurosci. 2017;37(8):2161-75. | |
dc.relation | Szaba FM, Tighe M, Kummer LW, Lanzer KG, Ward JM, Lanthier P, et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 2018;14(4). | |
dc.relation | Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet. 2016;387(10020):719-21. | |
dc.relation | Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 292016. p. 487-524. | |
dc.relation | Martines RB, Bhatnagar J, Keating MK, Silva-Flannery L, Muehlenbachs A, Gary J, et al. Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses--Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(6):159-60. | |
dc.relation | Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016. | |
dc.relation | Rubin EJ, Greene MF, Baden LR. Zika Virus and Microcephaly. N Engl J Med. 2016;374(10):984-5. | |
dc.relation | Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika Virus Infects Human Cortical Neural Precursors and Attenuates Their Growth. Cell Stem Cell. 2016;18(5):587-90. | |
dc.relation | Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol. 2016;47(1):6-7. | |
dc.relation | Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374(10):951-8. | |
dc.relation | Cao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017;214(8):2303-13. | |
dc.relation | Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534(7606):267. | |
dc.relation | Chavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS, Sanford TJ, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357(6346):83-8. | |
dc.relation | Hou S, Kumar A, Xu Z, Airo AM, Stryapunina I, Wong CP, et al. Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response. J Virol. 2017;91(16). | |
dc.relation | Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, et al. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe. 2016;19(6):882-90. | |
dc.relation | Jiang X, Dong X, Li SH, Zhou YP, Rayner S, Xia HM, et al. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex. Front Microbiol. 2018;9. | |
dc.relation | Carletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008;14(1):91-100. | |
dc.relation | Marín Padilla M. Desarrollo de la corteza cerebral humana. Teoría citoarquitectónica1999. 208 p. | |
dc.relation | Lorente De No R. Cerebral cortex : architecture, intracortical connections, motor projections. Physiology of the Nervous System. 1938:288-313. | |
dc.relation | Martynoga B, Drechsel D, Guillemot F. Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex. Cold Spring Harb Perspect Biol. 2012;4(10). | |
dc.relation | Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, et al. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular and cellular neurosciences. 2010;44(4):362-73. | |
dc.relation | Yamano T, Shimada M, Abe Y, Ohta S, Ohno M. Destruction of external granular layer and subsequent cerebellar abnormalities. Acta Neuropathologica. 1983;59(1):41-7. | |
dc.relation | Delgado-Esteban M, García-Higuera I, Maestre C, Moreno S, Almeida A. APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nature Communications. 2013;4(1):2879. | |
dc.relation | Jaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Negl Trop Dis. 2019;13(4). | |
dc.relation | Winkler CW, Peterson KE. Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology. 2018;153(4):443-54. | |
dc.relation | Shan C, Xie X, Luo H, Muruato AE, Liu Y, Wakamiya M, et al. Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications. 2019;10(1):5677. | |
dc.relation | Jaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS neglected tropical diseases [Internet]. 2019 2019/04//; 13(4):[e0007343 p.]. Available from: http://europepmc.org/abstract/MED/30995223Available. | |
dc.relation | Yun SI, Lee YM. Japanese encephalitis: The virus and vaccines. Hum Vaccin Immunother. 2014;10(2):263-79. | |
dc.relation | Luo MH, Hannemann H, Kulkarni AS, Schwartz PH, O'Dowd JM, Fortunato EA. Human Cytomegalovirus Infection Causes Premature and Abnormal Differentiation of Human Neural Progenitor Cells. J Virol. 2010;84(7):3528-41. | |
dc.relation | Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika Virus: History, Emergence, Biology, and Prospects for Control. Antiviral Res. 2016;130:69-80. | |
dc.relation | Grard G CM, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D. Zika Virus in Gabon (Central Africa) – 2007: A New Threat from Aedes albopictus? PLoS Negledted Tropical Diseases. 2014;8(2). | |
dc.relation | Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. http://dxdoiorg/101056/NEJMoa0805715. 2009. | |
dc.relation | Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387(10027):1531-9. | |
dc.relation | Hennessey M, Fischer M, Staples JE. Zika Virus Spreads to New Areas - Region of the Americas, May 2015-January 2016. MMWR Morb Mortal Wkly Rep. 2016;65(3):55-8. | |
dc.relation | Alvis-Guzmán N, Zakzuk-Sierra J, Vargas-Moranth R, Alcocer-Olaciregui A, Parra-Padilla D. Dengue, Chikunguña and Zika in Colombia 2015-2016. 22. 2017. | |
dc.relation | Siddique R, Liu Y, Nabi G, Sajjad W, Xue M, Khan S. Zika Virus Potentiates the Development of Neurological Defects and Microcephaly: Challenges and Control Strategies. Front Neurol. 2019;10. | |
dc.relation | Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the. Nature Reviews Microbiology. 2018;16(3):125. | |
dc.relation | Scaturro P, Stukalov A, Haas DA, Cortese M, Draganova K, Płaszczyca A, et al. An orthogonal
proteomic survey uncovers novel Zika virus host factors. Nature. 2018;561(7722):253. | |
dc.relation | Ledermann JP, Guillaumot L, Yug L, Saweyog SC, Tided M, Machieng P, et al. Aedes hensilli
as a potential vector of Chikungunya and Zika viruses. PLoS Negl Trop Dis. 2014;8(10):e3188. | |
dc.relation | S. Ioos H-PM, I. Leparc Goffart, V. Gauthier, T. Cardoso, M. Herida. Current Zika virus
epidemiology and recent epidemicsInfections par le virus Zika et épidémies récentes. Médecine
et Maladies Infectieuses. 2014;44(7):302-7. | |
dc.relation | Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D. Evidence of perinatal transmission
of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill. 2014;19(13). | |
dc.relation | Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, et al. Transmission of
Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission -
Continental United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65(8):215-6. | |
dc.relation | Barjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, et al. Probable
transfusion-transmitted Zika virus in Brazil. Transfusion. 2016;56(7):1684-8. | |
dc.relation | Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual
transmission of Zika virus. Emerg Infect Dis. 2015;21(2):359-61. | |
dc.relation | Barzon L, Pacenti M, Berto A, Sinigaglia A, Franchin E, Lavezzo E, et al. Isolation of infectious
Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the
Dominican Republic to Italy, January 2016. Euro Surveill. 2016;21(10):30159. | |
dc.relation | Dupont-Rouzeyrol M, mdupont@pasteur.nc, Institut Pasteur de Nouvelle-Calédonie RIdIP,
Noumea Cedex, New Caledonia, Biron A, Institut Pasteur de Nouvelle-Calédonie RIdIP,
Noumea Cedex, New Caledonia, O'Connor O, et al. Infectious Zika viral particles in breastmilk.
The Lancet. 2016;387(10023):1051. | |
dc.relation | Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, De Azeved Marques ET, et al.
Type III Interferons Produced by Human Placental Trophoblasts Confer Protection Against Zika
Virus Infection. Cell Host Microbe. 2016;19(5):705-12. | |
dc.relation | Zammarchi L, Spinicci M, Bartoloni A. Zika Virus: a Review from the Virus Basics to Proposed
Management Strategies. Mediterranean journal of hematology and infectious diseases.
2016;8(1):e2016056-e. | |
dc.relation | Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. Persistent detection
of Zika virus RNA in semen for six months after symptom onset in a traveller returning from
Haiti to Italy, February 2016. Euro surveillance : bulletin Europeen sur les maladies
transmissibles = European communicable disease bulletin. 2016;21(32):30314. | |
dc.relation | Paniz-Mondolfi AE, Rodriguez-Morales AJ, Blohm G, Marquez M, Villamil-Gomez WE.
ChikDenMaZika Syndrome: the challenge of diagnosing arboviral infections in the midst of
concurrent epidemics. Ann Clin Microbiol Antimicrob. 2016;15. | |
dc.relation | Gilmore EC, Walsh CA. Genetic Causes of Microcephaly and Lessons for Neuronal
Development. Wiley Interdiscip Rev Dev Biol. 2013;2(4):461-78. | |
dc.relation | Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of
microcephalin, a protein implicated in determining the size of the human brain. Am J Hum
Genet. 2002;71(1):136-42. | |
dc.relation | Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major
determinant of cerebral cortical size. Nat Genet. 2002;32(2):316-20 | |
dc.relation | Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, et al. A centrosomal
mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet. 2005;37(4):353-
5. | |
dc.relation | Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar
and centrosomal protein, cause primary microcephaly. Am J Hum Genet. 2009;84(2):286-90. | |
dc.relation | Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing
identifies recessive WDR62 mutations in severe brain malformations. Nature.
2010;467(7312):207-10. | |
dc.relation | Sir JH, Barr AR, Nicholas AK, Carvalho OP, Khurshid M, Sossick A, et al. A primary
microcephaly protein complex forms a ring around parental centrioles. Nat Genet.
2011;43(11):1147-53. | |
dc.relation | Coronell-Rodríguez W, Arteta-Acosta C, Suárez-Fuentes MA, Burgos-Rolon MC, RubioSotomayor MT, Sarmiento-Gutiérrez M, et al. Infección por virus del Zika en el embarazo,
impacto fetal y neonatal. Rev chil infectol. 2016;33(6):665-73. | |
dc.relation | Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika virus infection
during pregnancy in mice causes placental damage and fetal demise. Cell. 2016;165(5):1081-91. | |
dc.relation | Silasi M, Cardenas I, Racicot K, Kwon JY, Aldo P, Mor G. VIRAL INFECTIONS DURING
PREGNANCY. Am J Reprod Immunol. 2015;73(3):199-213. | |
dc.relation | Kwon JY, Romero R, Mor G. New insights into the relationship between viral infection and
pregnancy complications. Am J Reprod Immunol. 2014;71(5):387-90. | |
dc.relation | Sarno M, Sacramento GA, Khouri R, do Rosario MS, Costa F, Archanjo G, et al. Zika Virus
Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS
Negl Trop Dis. 2016;10(2):e0004517. | |
dc.relation | Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, et al.
Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. MMWR
Morb Mortal Wkly Rep. 2016;65(3):59-62. | |
dc.relation | Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM, Hills SL. Zika and the Risk of
Microcephaly. N Engl J Med. 2016;375(1):1-4. | |
dc.relation | Oliveira WKd, Cortez-Escalante J, Oliveira WTGHD, Carmo GMId, Henriques CMP, Coelho
GE, et al. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in
Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy —
Brazil, 2015 | MMWR. MMWR Morb Mortal WKly Rep; 2016 2019-04-08T03:25:01Z/. | |
dc.relation | Bierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, Lebreton A, et al. Activation of Type
III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta.
PLoS One. 2012;7(6). | |
dc.relation | Götz M, Huttner WB. The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology.
2005;6(10):777-88. | |
dc.relation | Agirman G, Broix L, Nguyen L. Cerebral cortex development: an outside-in perspective. FEBS
Letters. 2017;591(24):3978-92. | |
dc.relation | Ming G, Song H. Adult Neurogenesis in the Mammalian Brain: Significant Answers and
Significant Questions. Neuron. 2011;70(4):687-702. | |
dc.relation | Mirzaa GM, RiviÈRe J-B, Dobyns WB. Megalencephaly Syndromes and Activating Mutations
in the PI3K-AKT Pathway: MPPH and MCAP. American Journal of Medical Genetics Part C:
Seminars in Medical Genetics. 2013;163(2):122-30. | |
dc.relation | Cloëtta D, Thomanetz V, Baranek C, Lustenberger RM, Lin S, Oliveri F, et al. Inactivation of
mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis. J Neurosci.
2013;33(18):7799-810. | |
dc.relation | Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27(50):6473-88. | |
dc.relation | Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika
Virus Infection in Human Skin Cells. J Virol. 2015;89(17):8880-96. | |
dc.relation | Heaton NS, Randall G. Dengue virus induced autophagy regulates lipid metabolism. Cell Host
Microbe. 2010;8(5):422-32. | |
dc.relation | Sir D, Kuo C, Tian Y, Liu HM, Huang EJ, Jung JU, et al. Replication of Hepatitis C Virus RNA
on Autophagosomal Membranes*. J Biol Chem. 2012;287(22):18036-43. | |
dc.relation | Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature.
2011;469(7330):323-35. | |
dc.relation | Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. Zika Virus NS4A and NS4B Proteins
Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and
Induce Autophagy. Cell Stem Cell. 2016;19(5):663-71. | |
dc.relation | Baldock R, Bard J, Davidson D, Morriss-Kay G. Kaufman’s Atlas of Mouse Development
Supplement: With Coronal Sections: Elsevier Science; 2015. | |
dc.relation | Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, et al. Comparative aspects
of cerebral cortical development. European Journal of Neuroscience. 2006;23(4):921-34. | |
dc.relation | Tata M, Wall I, Joyce A, Vieira JM, Kessaris N, Ruhrberg C. Regulation of embryonic
neurogenesis by germinal zone vasculature. Proc Natl Acad Sci U S A. 1132016. p. 13414-9. | |
dc.relation | Rubenstein JL. Development of the Cerebral Cortex: Implications for Neurodevelopmental
Disorders. J Child Psychol Psychiatry. 2011;52(4):339-55. | |
dc.relation | Chen JG, Rasin MR, Kwan KY, Sestan N. Zfp312 is required for subcortical axonal projections
and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl
Acad Sci U S A. 2005;102(49):17792-7. | |
dc.relation | Komiyama T, Luo L. Intrinsic control of precise dendritic targeting by an ensemble of
transcription factors. Curr Biol. 2007;17(3):278-85. | |
dc.relation | Cubelos B, Sebastian-Serrano A, Kim S, Moreno-Ortiz C, Redondo JM, Walsh CA, et al. Cux-
2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular
zone. Cereb Cortex. 2008;18(8):1758-70. | |
dc.relation | Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1
and Cux2 Regulate Dendritic Branching, Spine Morphology, and Synapses of the Upper Layer
Neurons of the Cortex. Neuron. 2010;66(4):523-35. | |
dc.relation | Curran T, D'Arcangelo G. Role of reelin in the control of brain development. Brain research
Brain research reviews. 1998;26(2-3):285-94. | |
dc.relation | Liu Q, Xie, F., Siedlak, S.L. et al. CMLS, Cell. Mol. Life Sci. Neurofilament proteins in
neurodegenerative diseases | SpringerLink. Cellular and Molecular Life Sciences CMLS.
2004;61(24):3057-75. | |
dc.relation | Poulain FE, Sobel A. The microtubule network and neuronal morphogenesis: Dynamic and
coordinated orchestration through multiple players. Mol Cell Neurosci. 2010;43(1):15-32. | |
dc.relation | Monteiro MR, Kandratavicius L, Leite JP. O papel das proteínas do citoesqueleto na fisiologia
celular normal e em condições patológicas. J epilepsy clin neurophysiol. 2011;17(1):17-23. | |
dc.relation | van Binsbergen E, Ellis RJ, Abdelmalik N, Jarvis J, Randhawa K, Wyatt-Ashmead J, et al. A
fetus with de novo 2q33.2q35 deletion including MAP2 with brain anomalies, esophageal
atresia, and laryngeal stenosis. Am J Med Genet A. 2014;164a(1):194-8. | |
dc.relation | Alcántara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, et al. Regional and Cellular
Patterns of reelin mRNA Expression in the Forebrain of the Developing and Adult Mouse. J
Neurosci. 1998;18(19):7779-99. | |
dc.relation | Ayala R, Shu T, Tsai L-H. Trekking across the Brain: The Journey of Neuronal Migration. Cell.
2007;128(1):29-43. | |
dc.relation | Rohlfs Domínguez P. Development of the nervous system in humans. Overview of the prenatal
stage until 2013. Revista Internacional de Psicología. 2016;15(1). | |
dc.relation | Choi BH, Lapham LW. Radial glia in the human fetal cerebrum: a combined Golgi,
immunofluorescent and electron microscopic study. Brain Res. 1978;148(2):295-311. | |
dc.relation | Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nature Reviews
Neuroscience. 2009;10(10):724-35. | |
dc.relation | Elkin Navarro Quiroz MA, Roberto Navarro-Quiroz, Pierine España-Puccini, Anderson DíazPerez, Jose Luis Villarreal, Lucy Vasquez, Augusto Torres. Neurogénesis en Cerebro Adulto.
Salud Uninorte. 2018;34(1):144-59. | |
dc.relation | Dusart P, Fagerberg L, Perisic L, Civelek M, Struck E, Hedin U, et al. A systems-approach
reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament
protein. Scientific Reports. 2018;8(1):1-15. | |
dc.relation | Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate
filament protein. Cell. 1990;60(4):585-95. | |
dc.relation | Lindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5.
Methods Enzymol. 2016;568:509-35. | |
dc.relation | D´Arcagelo G. Reelin in the Years: Controlling Neuronal Migration and Maturation in the
Mammalian Brain. Advances in neuroscience. 2014;2014:19. | |
dc.relation | Raaf J, Kernohan JW. A study of the external granular layer in the cerebellum. The
disappearance of the external granular layer and the growth of the molecular and internal
granular layers in the cerebellum. American Journal of Anatomy. 1944;75(2):151-72. | |
dc.relation | Yamano T, Shimada M, Abe Y, Ohta S, Ohno M. Destruction of external granular layer and
subsequent cerebellar abnormalities. Acta neuropathologica. 1983;59(1):41-7. | |
dc.relation | Lakatosova S, Ostatnikova D. Reelin and its complex involvement in brain development and
function. The international journal of biochemistry & cell biology. 2012;44(9):1501-4. | |
dc.relation | de Oliveira WK, de Franca GVA, Carmo EH, Duncan BB, de Souza Kuchenbecker R, Schmidt
MI. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a
surveillance-based analysis. Lancet. 2017;390(10097):861-70. | |
dc.relation | Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, et al. A single mutation in the prM
protein of Zika virus contributes to fetal microcephaly. Science. 2017;358(6365):933-6. | |
dc.relation | Pettersson JH, Eldholm V, Seligman SJ, Lundkvist A, Falconar AK, Gaunt MW, et al. How Did
Zika Virus Emerge in the Pacific Islands and Latin America? MBio. 2016;7(5). | |
dc.relation | Hertzog J, Dias Junior AG, Rigby RE, Donald CL, Mayer A, Sezgin E, et al. Infection with a
Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks
type I IFN induction and signaling. Eur J Immunol. 2018;48(7):1120-36. | |
dc.relation | Adibi JJ, Marques ET, Jr., Cartus A, Beigi RH. Teratogenic effects of the Zika virus and the role
of the placenta. Lancet. 2016;387(10027):1587-90. | |
dc.relation | Kennedy LA. The pathogenesis of brain abnormalities in the fetal alcohol syndrome: an
integrating hypothesis. Teratology. 1984;29(3):363-8. | |
dc.relation | Dekaban AS. Abnormalities in children exposed to x-radiation during various stages of
gestation: tentative timetable of radiation injury to the human fetus. I. J Nucl Med.
1968;9(9):471-7. | |
dc.relation | Mostoufi-zadeh M, Driscoll SG, Biano SA, Kundsin RB. Placental evidence of cytomegalovirus
infection of the fetus and neonate. Arch Pathol Lab Med. 1984;108(5):403-6. | |
dc.relation | Hadeed AJ, Siegel SR. Maternal cocaine use during pregnancy: effect on the newborn infant.
Pediatrics. 1989;84(2):205-10. | |
dc.relation | Attardo A, Fabel K, Krebs J, Haubensak W, Huttner WB, Kempermann G. Tis21 Expression
Marks Not Only Populations of Neurogenic Precursor Cells but Also New Postmitotic Neurons
in Adult Hippocampal Neurogenesis. Cereb Cortex. 2010;20(2):304-14. | |
dc.relation | Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa SI, Bikoff EK, et al. The T-box
transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone.
Genes Dev. 2008;22(18):2479-84. | |
dc.relation | Huang Y, Li Y, Zhang H, Zhao R, Jing R, Xu Y, et al. Zika virus propagation and release in
human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell
Discovery. 2018;4(1):19. | |
dc.relation | Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA. Strain-Dependent
Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses.
2018;10(10):550. | |
dc.relation | Morrison TE, Diamond MS, Pierson TC. Animal Models of Zika Virus Infection, Pathogenesis,
and Immunity. 2017. | |
dc.relation | Laiton-Donato K, Alvarez-Diaz DA, Rengifo AC, Torres-Fernandez O, Usme-Ciro JA, Rivera
JA, et al. Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c64
Mouse Brain after Intraperitoneal Inoculation. Microbiology resource announcements.
2019;8(46). | |
dc.relation | Au - Herrlinger SA, Au - Shao Q, Au - Ma L, Au - Brindley M, Au - Chen J-F. Establishing
Mouse Models for Zika Virus-induced Neurological Disorders Using Intracerebral Injection
Strategies: Embryonic, Neonatal, and Adult. JoVE. 2018(134):e56486. | |
dc.relation | Marzi A, Emanuel J, Callison J, McNally KL, Arndt N, Chadinha S, et al. Lethal Zika Virus
Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice. Front Cell Infect
Microbiol. 2018;8. | |
dc.relation | Lazear Helen M, Govero J, Smith Amber M, Platt Derek J, Fernandez E, Miner Jonathan J, et
al. A Mouse Model of Zika Virus Pathogenesis. Cell Host & Microbe. 2016;19(5):720-30. | |
dc.relation | Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, et al. Zika virus disrupts neural progenitor
development and leads to microcephaly in mice. Cell Stem Cell. 2016;19(1):120-6. | |
dc.relation | Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, et al. Vaginal Exposure to
Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell. 2016;166(5):1247-56 e4. | |
dc.relation | Sapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, et al. Neutralizing human
antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016;540(7633):443-
7. | |
dc.relation | Garcez PP, Nascimento JM, Vasconcelos JMd, Costa RMd, Delvecchio R, Trindade P, et al.
Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports.
2017;7:40780. | |
dc.relation | Ferraris P, Cochet M, Hamel R, Gladwyn-Ng I, Alfano C, Diop F, et al. Zika virus differentially
infects human neural progenitor cells according to their state of differentiation and dysregulates
neurogenesis through the Notch pathway. Emerging Microbes & Infections. 2019;8(1):1003-16. | |
dc.relation | Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika
virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816-
8. | |
dc.relation | Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, et al. Zika Virus Depletes
Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune
Receptor TLR3. Cell Stem Cell. 2016;19(2):258-65. | |
dc.relation | Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev
Neurol. 2009;5(7):380. | |
dc.relation | Fang Y, Eglen R. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS
discovery. 2017:2472555217696795. | |
dc.relation | Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein
and is expressed widely by migrating neurons. Neuron. 1999;23(2):257-71. | |
dc.relation | Journiac N, Gilabert-Juan J, Cipriani S, Benit P, Liu X, Jacquier S, et al. Cell Metabolic
Alterations due to Mcph1 Mutation in Microcephaly. Cell Reports. 2020;31(2):107506. | |
dc.relation | Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U, et al. Cep152 acts
as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol. 2010;191(4):731-
9. | |
dc.relation | Nigg EA, Raff JW. Centrioles, centrosomes, and cilia in health and disease. Cell.
2009;139(4):663-78. | |
dc.relation | Brown NJ, Marjanović M, Lüders J, Stracker TH, Costanzo V. Cep63 and Cep152 Cooperate to
Ensure Centriole Duplication. PLoS One. 2013;8(7). | |
dc.relation | Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. Tbr2 directs conversion of radial
glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the
developing neocortex. Neuron. 2008;60(1):56-69. | |
dc.relation | Roessmann U, Velasco ME, Sindely SD, Gambetti P. Glial fibrillary acidic protein (GFAP) in
ependymal cells during development. An immunocytochemical study. Brain Research.
1980;200(1):13-21. | |
dc.relation | Hamad MIK, Jbara A, Rabaya O, Petrova P, Daoud S, Melliti N, et al. Reelin signaling
modulates GABAB receptor function in the neocortex. J Neurochem. 2020. | |
dc.relation | Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic
implications. Cell Mol Life Sci. 2018;75(12):2177-95. | |
dc.relation | Garber JC, Barbee RW, Bielitzki JT, Clayton L, Donovan J, Hendriksen C, et al. Guide for the
care and use of laboratory animals. The National Academic Press, Washington DC. 2011;8:220. | |
dc.relation | 2010/63/UE D. del Parlamento Europeo y del Consejo, de 22 de septiembre de 2010 , relativa a
la protección de los animales utilizados para fines científicos Texto pertinente a efectos del EEE.
2010. p. 33–79. | |
dc.relation | Chosewood LC, Wilson DE. Biosafety in microbiological and biomedical laboratories: Diane
Publishing; 2007. | |
dc.relation | Organization WH. Laboratory biosafety manual: World Health Organization; 2004. | |
dc.relation | Fuentes F, Mendoza R, Rosales A, Cisneros R, Salud INd. Guía de manejo y cuidado de animales
de laboratorio: ratón. Instituto Nacional de Salud (Perú) Ministerio de Salud, Instituto Nacional
de Salud Lima. 2008:52. | |
dc.relation | Balls M, Straughan DW. The three Rs of Russell & Burch and the testing of biological products.
Dev Biol Stand. 1996;86:11-8. | |
dc.relation | Scremin AM, Scremin OU, Brechner T. Survival under hypoxia. Age dependence and effect of
cholinergic drugs. Stroke. 1980;11(5):548-52. | |
dc.relation | Rivera J, Neira M, Parra E, Méndez J, Sarmiento L, Caldas ML. Detección de antígenos del virus
dengue en tejidos post mortem. Biomédica. 2014;34(4). | |
dc.relation | Rivera J, Neira M, Sarmiento L, Parra E, Caldas ML. Virus de la influenza.
https://revistabiomedicaorg/indexphp/biomedica. 2016. | |
dc.relation | Rivera J, Rengifo A, Santamaría G, Corchuelo S, Álvarez-Díaz D, Parra E, et al.
Inmunorreacción de la infección por el virus de Zika en retina de ratones. Biomédica.
2019;39(2):8-10. | |
dc.relation | Corchuelo S, Gómez C, Rosales A, Santamaria G, Rivera JA, Saad EP, et al. CISH and IHC for
the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded
Cell Blocks and Tissues. Curr Protoc. 2021;1(12):e319. | |
dc.relation | Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data
Bank. Nucleic Acids Res. 2000;28(1):235-42. | |
dc.relation | Tobón ACJ. Infecciones por Virus Zika en Colombia-2015. Medicina. 2015;19(2):125-33. | |
dc.relation | Khaiboullina SF, Lopes P, de Carvalho TG, Real ALCV, Souza DG, Costa VV, et al. Host
Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal
Infection. Viruses. 2019;11(6):558. | |
dc.relation | Chen J, Liang Y, Yi P, Xu L, Hawkins HK, Rossi SL, et al. Outcomes of Congenital Zika Disease
Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Reports.
2017;21(6):1588-99. | |
dc.relation | Cui L, Zou P, Chen E, Yao H, Zheng H, Wang Q, et al. Visual and motor deficits in grown-up
mice with congenital Zika virus infection. EBioMedicine. 2017;20:193-201. | |
dc.relation | Shelton SM, Soucy AR, Kurzion R, Zeldich E, Connor JH, Haydar TF. Forebrain Neural
Precursor Cells Are Differentially Vulnerable to Zika Virus Infection. eNeuro. 2021;8(5). | |
dc.relation | Fauser M, Weselek G, Hauptmann C, Markert F, Gerlach M, Hermann A, et al.
Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse
Brain. Frontiers in Neuroanatomy. 2020;14:64. | |
dc.relation | Thawani A, Sirohi D, Kuhn RJ, Fekete DM. Zika Virus Can Strongly Infect and Disrupt
Secondary Organizers in the Ventricular Zone of the Embryonic Chicken Brain. Cell reports.
2018;23(3):692-700. | |
dc.relation | Foo S-S, Chen W, Chan Y, Lee W-S, Lee S-A, Cheng G, et al. Biomarkers and immunoprofiles
associated with fetal abnormalities of ZIKV-positive pregnancies. JCI insight.
2018;3(21):e124152. | |
dc.relation | Sathupan P, Khongphattanayothin A, Srisai J, Srikaew K, Poovorawan Y. The role of vascular
endothelial growth factor leading to vascular leakage in children with dengue virus infection.
Ann Trop Paediatr. 2007;27(3):179-84. | |
dc.relation | Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705-16. | |
dc.relation | Corchuelo S, Gómez CY, Rosales AA, Santamaria G, Rivera JA, Saad EP, et al. CISH and IHC
for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed ParaffinEmbedded Cell Blocks and Tissues. Curr Protoc. 2021;1(12):e319. | |
dc.relation | Strauss EG, Strauss JH. Replication strategies of the single stranded RNA viruses of eukaryotes.
Curr Top Microbiol Immunol. 1983;105:1-98. | |
dc.relation | Valentine GC, Seferovic MD, Fowler SW, Major AM, Gorchakov R, Berry R, et al. Timing of
gestational exposure to Zika virus is associated with postnatal growth restriction in
a murine model. Am J Obstet Gynecol. 2018;219(4):403.e1-.e9. | |
dc.relation | Álvarez-Díaz DA, Valencia-Álvarez E, Rivera JA, Rengifo AC, Usme-Ciro JA, Peláez-Carvajal
D, et al. An updated RT-qPCR assay for the simultaneous detection and quantification of
chikungunya, dengue and zika viruses. Infection, Genetics and Evolution. 2021;93:104967. | |
dc.relation | Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature
protocols. 2008;3(6):1101-8. | |
dc.relation | Walker TL, Yasuda T, Adams DJ, Bartlett PF. The doublecortin-expressing population in the
developing and adult brain contains multipotential precursors in addition to neuronal-lineage
cells. J Neurosci. 2007;27(14):3734-42. | |
dc.relation | Hannan AJ, Henke RC, Seeto GS, Capes-Davis A, Dunn J, Jeffrey PL. Expression of
doublecortin correlates with neuronal migration and pattern formation in diverse regions of the
developing chick brain. J Neurosci Res. 1999;55(5):650-7. | |
dc.relation | Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, et al. Ultrastructural
Characterization of Zika Virus Replication Factories. Cell reports. 2017;18(9):2113-23. | |
dc.relation | Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, et al.
Asterless is a scaffold for the onset of centriole assembly. Nature. 2010;467(7316):714-8. | |
dc.relation | Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH. Asymmetric centrosome inheritance
maintains neural progenitors in the neocortex. Nature. 2009;461(7266):947-55. | |
dc.relation | Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, et al. Neuroepithelial
stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell.
2008;132(3):474-86. | |
dc.relation | Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R. Centrosome
amplification causes microcephaly. Nat Cell Biol. 2013;15(7):731-40. | |
dc.relation | Hodge RD, Nelson BR, Kahoud RJ, Yang R, Mussar KE, Reiner SL, et al. Tbr2 is essential for
hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2012;32(18):6275-87. | |
dc.relation | Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 Functions to Maintain Neural Progenitor
Identity. Neuron. 2003;39(5):749-65. | |
dc.relation | Hevner RF. Intermediate progenitors and Tbr2 in cortical development. Journal of Anatomy.
2019;235(3):616-25. | |
dc.relation | Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, et al. Eomesodermin is
required for mouse trophoblast development and mesoderm formation. Nature.
2000;404(6773):95-9. | |
dc.relation | Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral
organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-9. | |
dc.relation | Gabriel E, Ramani A, Altinisik N, Gopalakrishnan J. Human Brain Organoids to Decode
Mechanisms of Microcephaly. Frontiers in Cellular Neuroscience. 2020;14:115. | |
dc.relation | Mihalas AB, Elsen GE, Bedogni F, Daza RAM, Ramos-Laguna KA, Arnold SJ, et al.
Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for
Timely Acquisition of Neuronal Subtype Identity. Cell Rep. 2016;16(1):92-105. | |
dc.relation | Vaswani AR, Blaess S. Reelin Signaling in the Migration of Ventral Brain Stem and Spinal Cord
Neurons. Frontiers in cellular neuroscience. 2016;10:62-. | |
dc.relation | Alpuche-Lazcano SP, Saliba J, Costa VV, Campolina-Silva GH, Marim FM, Ribeiro LS, et al.
Profound downregulation of neural transcription factor Npas4 and Nr4a family in fetal mice
neurons infected with Zika virus. PLOS Neglected Tropical Diseases. 2021;15(5):e0009425. | |
dc.relation | Ledur PF, Karmirian K, Pedrosa CdSG, Souza LRQ, Assis-de-Lemos G, Martins TM, et al. Zika
virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSCderived astrocytes. Scientific Reports. 2020;10(1):1218. | |
dc.relation | Limonta D, Jovel J, Kumar A, Airo AM, Hou S, Saito L, et al. Human Fetal Astrocytes Infected
with Zika Virus Exhibit Delayed Apoptosis and Resistance to Interferon: Implications for
Persistence. Viruses. 2018;10(11). | |
dc.relation | Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, et al. Zika Virus Infects
Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell stem cell.
2016;19(5):593-8. | |
dc.relation | Lossia OV, Conway MJ, Tree MO, Williams RJ, Goldthorpe SC, Srinageshwar B, et al. Zika
virus induces astrocyte differentiation in neural stem cells. Journal of NeuroVirology.
2018;24(1):52-61. | |
dc.relation | Martin C-A, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, et al. Mutations in
genes encoding condensin complex proteins cause microcephaly through decatenation failure at
mitosis. Genes & development. 2016;30(19):2158-72. | |
dc.relation | Neitzel H, Neumann LM, Schindler D, Wirges A, Tönnies H, Trimborn M, et al. Premature
chromosome condensation in humans associated with microcephaly and mental retardation: a
novel autosomal recessive condition. American journal of human genetics. 2002;70(4):1015-22. | |
dc.relation | Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ. MCPH1 regulates the
neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the
Chk1-Cdc25 pathway. Nat Cell Biol. 2011;13(11):1325-34. | |
dc.relation | Meertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, et al. Axl
Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses.
Cell Rep. 2017;18(2):324-33. | |
dc.relation | Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV
Replication. Frontiers in cellular and infection microbiology. 2021;11:575346-. | |
dc.relation | Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR.
Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem
Cells. Cell Stem Cell. 2016;18(5):591-6. | |
dc.relation | White SH. How Hydrogen Bonds Shape Membrane Protein Structure. Advances in Protein
Chemistry. 72: Academic Press; 2005. p. 157-72. | |
dc.relation | Williams G. Advanced Biology For You: OUP Oxford; 2015. | |
dc.relation | McGrath EL, Rossi SL, Gao J, Widen SG, Grant AC, Dunn TJ, et al. Differential Responses of
Human Fetal Brain Neural Stem Cells to Zika Virus Infection. Stem Cell Reports.
2017;8(3):715-27. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Estudio morfológico y molecular en un modelo de infección por zika durante la neurogénesis embrionaria | |
dc.type | Trabajo de grado - Maestría | |