dc.contributor | Monsalve Mejía, Gaspar | |
dc.contributor | Bernal Franco, Gladys Rocío | |
dc.contributor | OCEANICOS Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacional | |
dc.creator | Gómez García, Ángela María | |
dc.date.accessioned | 2020-09-22T19:32:53Z | |
dc.date.accessioned | 2022-09-21T19:00:29Z | |
dc.date.available | 2020-09-22T19:32:53Z | |
dc.date.available | 2022-09-21T19:00:29Z | |
dc.date.created | 2020-09-22T19:32:53Z | |
dc.date.issued | 2020-04-27 | |
dc.identifier | Gómez-García, Ángela María. (2020). New insights from satellite gravimetry and thermal modelling on the oceanic lithospheric structure: the Caribbean plate as a case study. PhD thesis. Universidad Nacional de Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78490 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3412607 | |
dc.description.abstract | A refined understanding of the lithospheric configuration may greatly improve the accuracy of geohazard assessments. However, it is challenging to reach such comprehension where data coverage is limited, such as the oceanic lithosphere, one of the least well-known features on the outer solid Earth. In the ocean, classic techniques for direct data acquisition provide the most accurate results, but they require expensive and time-consuming campaigns, which can only typically cover relatively small areas.
Nowadays, satellite missions have greatly improved the measurements of potential fields with global coverage, including the Vertical Gravity Gradients and the more commonly used gravity anomalies. Combined datasets of satellite gravimetry, altimetry and terrestrial measurements can be used to develop and test 3D lithospheric-scale models, with high spatial resolution and homogeneous coverage.
In this thesis, 3D data-integrative and gravity-validated models of the Caribbean oceanic domain and northwestern South American plate are used to demonstrate that, despite scarce direct data, new insights regarding the lithospheric density and thermal configuration are possible. These models may contribute to more reliable geohazard studies.
First, a new methodology is proposed for identifying tectonic boundaries, based on global-coverage Vertical Gravity Gradients. It can be applied in other tectonic settings worldwide because it relies on publicly available datasets. With this method, previously debated tectonic or terrain boundaries in the Caribbean oceanic realm are confirmed, and new ones are proposed. The most remarkable boundaries include: the limit between the North and South American plates, in the Lesser Antilles subduction; the most feasible boundary between the Colombian and Venezuelan basins, in the Beata Ridge area; the boundary between two crustal domains in the Grenada Basin; as well as the continent-ocean transition along the continental margins of the Caribbean plate.
Additionally, widespread high and low density bodies in the Lesser and Leeward Antilles forearcs, and an anomalous low density body in the North Lesser Antilles subduction are recognised for the first time.
Next, a 3D lithospheric-scale density model validated with gravity anomalies is presented for the South Caribbean and the northwestern South American plate. In this region, the Nazca and Caribbean flat-slabs interact beneath the South American continent. A slab geometry was integrated in the model after carrying out a sensitivity analysis to different mantle density configurations. In the calculated density distribution, fossil plume material is recognised, currently preserved within the Caribbean oceanic upper mantle. This preserved plume had never been identified before.
Using this gravity-validated model, the 3D steady-state lithospheric thermal field is calculated, for the first time, for the study area, and its implications for lithospheric strength and geohazards are discussed. Given the prescribed model configuration, the lithosphere in the Andean orogen results to be weaker than the surroundings, and is therefore, prone to further deformation. The temperatures at which earthquakes nucleate are analysed, although limitations due to the steady-state assumption used for a flat-slab subduction system are recognised. The results suggest that a seismic gap is present between ∼35 and ∼39 km depth, with modelled temperatures ranging between ∼520° and 600°C, that can be associated with the transition in lithologies within the lithosphere (from continental crust to upper mantle), but additionally, it can also be related with the beginning of the seismogenic window of olivine, at 600°C. Additionally, potential gas hydrate stability zones in the marine sediments are delineated, thus highlighting areas where hydrates destabilisation may potentially trigger submarine landslides and tsunamis. | |
dc.description.abstract | Comprender de manera refinada la configuración de la litósfera puede mejorar significativamente la fiabilidad de las evaluaciones de geopeligros. Sin embargo, es un reto alcanzar tal comprensión allí donde la cobertura de datos es limitada, por ejemplo en la litósfera oceánica, uno de los componentes menos conocidos de la parte superior de la Tierra sólida. En el océano, las técnicas clásicas para la adquisición directa de datos proporcionan los resultados más precisos, pero requieren campañas costosas en tiempo y dinero, que típicamente sólo pueden cubrir áreas relativamente pequeñas.
Hoy en día, las misiones satelitales han mejorado enormemente las medidas de campos potenciales con cobertura global, incluyendo los gradientes verticales de la gravedad y las más comúnmente usadas anomalías de gravedad. Conjuntos de datos combinados de gravimetría, altimetría y medidas terrestres pueden usarse para desarrollar y poner a prueba modelos 3D de escala litosférica, con alta resolución espacial y cobertura homogénea.
En esta tesis, modelos 3D del dominio oceánico del Caribe, integradores de datos y validados por gravimetría, se usan para demostrar que, a pesar de los escasos datos directos, es posible obtener nueva información de la densidad y de la configuración termal de la litósfera. Estos modelos pueden contribuir a estudios más fiables de los geopeligros.
Primero, se propone una nueva metodología para identificar límites tectónicos, basada en los gradientes verticales de gravedad, de cobertura global. Ésta técnica se puede aplicar en otros contextos tectónicos del mundo, puesto que emplea bases de datos de acceso público. Con este método, se confirman límites tectónicos o de terrenos en el dominio oceánico del Caribe, y se proponen otros nuevos. Los límites más destacables incluyen: el límite entre las placas Norte y Sur Americanas, en la subducción de las Antillas Menores; el límite más probable entre las cuencas de Colombia y Venezuela, en el área de la Dorsal de Beata; el límite entre dos dominios corticales en la cuenca de Grenada; y la transición océano-continente a lo largo de las márgenes continentales de la placa del Caribe. Además, se identifican por vez primera extensos cuerpos de alta y baja densidad en las Antillas Menores y de Sotavento, y un cuerpo anómalo de baja densidad en la subducción de las Antillas Menores del Norte.
A continuación, un modelo de densidad en 3D de escala litosférica, validado con anomalías de gravedad, se presenta para el sur del Caribe y el noroeste de la placa Sur Americana. En esta región, bajo el continente Sur Americano, interaccionan las subducciones planas de las placas de Nazca y del Caribe. En el modelo se integró una geometría de esta subducción tras llevar a cabo un análisis de sensibilidad a diferentes
configuraciones de densidad del manto. En la distribución de densidad calculada se reconoce material de una pluma fósil, actualmente preservada dentro del manto superior oceánico del Caribe. Esta pluma preservada no se había identificado hasta ahora.
Usando el modelo validado por gravimetría, se calcula por primera vez el campo termal litosférico en 3D para el área de estudio, y se discuten sus implicaciones para la resistencia litosférica y los geopeligros. Dada la configuración prescrita al modelo, la litósfera en el orógeno andino resulta ser más débil que en los alrededores, y por tanto, más propensa a experimentar deformación posterior. Se analizan las temperaturas a las que nuclean los terremotos, aunque se reconocen las limitaciones de asumir estado estacionario en un sistema de subducción plana. Los resultados
sugieren que hay un intervalo asísmico entre los ∼35 y ∼39 km de profundidad, con temperaturas modeladas de entre ∼520° y 600°C, que puede estar asociado con la transición de litologías en la litósfera (de la corteza continental al manto superior), pero adicionalmente, puede estar relacionado con el comienzo de la ventana sismogénica del olivino, a 600°C. Adicionalmente, se delinean las potenciales zonas de estabilidad de los hidratos de gas en los sedimentos marinos, señalando por tanto las áreas donde la desestabilización de los hidratos puede potencialmente desencadenar deslizamientos submarinos y tsunamis. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos | |
dc.publisher | Departamento de Geociencias y Medo Ambiente | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Aitken, T., P. Mann, A. Escalona, and G. L. Christeson (2011). “Evolution of the Grenada
and Tobago basins and implications for arc migration”. Marine and Petroleum Geology
28.1, pp. 235–258. DOI: 10.1016/j.marpetgeo.2009.10.003. | |
dc.relation | Álvarez, O., M. Gimenez, C. Braitenberg, and A. Folguera (2012). “GOCE satellite
derived gravity and gravity gradient corrected for topographic effect in the South
Central Andes region”. Geophysical Journal International 190, pp. 941–959. DOI: 10.
1111/j.1365-246X.2012.05556.x. | |
dc.relation | Álvarez, O., S. Nacif, M. Gimenez, A. Folguera, and C. Braitenberg (2014). “GOCE
derived vertical gravity gradient delineates great earthquake rupture zones along
the Chilean margin”. Tectonophysics 622, pp. 198–215. DOI: 10.1016/j.tecto.
2014.03.011. | |
dc.relation | Álvarez, O., S. Nacif, S. Spagnotto, A. Folguera, M. Gimenez, M. Chlieh, and C.
Braitenberg (2015). “Gradients from GOCE reveal gravity changes before Pisagua
Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes”. Journal of South
American Earth Sciences 64, pp. 273–287. DOI: 10.1016/j.jsames.2015.09.014. | |
dc.relation | ANH (2020). Banco de información petrolera. URL: https : / / www . anh . gov . co /
Bancodeinformacionpetrolera / EPIS / Paginas / default . aspx (visited
on 03/21/2020). | |
dc.relation | Arnaiz-Rodríguez, M. S. and F. Audermard (2018). “Isostasy of the Aves Ridge and
Neighboring Basins”. Geophysical Journal International. DOI: 10 . 1093 / gji /
ggy401/5113491. | |
dc.relation | Arndt, N. T., A. C. Kerr, and J. Tarney (1997). “Dynamic melting in plume heads: the
formation of Gorgona komatiites and basalts”. Earth and Planetary Science Letters
146.1-2, pp. 289–301. DOI: 10.1016/S0012-821X(96)00219-1. | |
dc.relation | Artemieva, I. M., H. Thybo, and A. Shulgin (2016). “Geophysical constraints on
geodynamic processes at convergent margins: A global perspective”. Gondwana
Research 33, pp. 4–23. DOI: 10.1016/j.gr.2015.06.010. | |
dc.relation | Audemard, F. A. (1996). “Paleoseismicity studies on the Oca-Ancón fault system,
northwestern Venezuela”. Tectonophysics 259.1-3, pp. 67–80. DOI: 10.1016/0040-
1951(95)00144-1. | |
dc.relation | Bangs, N. L., G. L. Christeson, and T. H. Shipley (2003). “Structure of the Lesser Antilles
subduction zone backstop and its role in a large accretionary system”. Journal of
Geophysical Research: Solid Earth 108.B7. DOI: 10.1029/2002JB002040. | |
dc.relation | Beauval, C., H. Yepes, P. Palacios, M. Segovia, A. Alvarado, Y. Font, J. Aguilar, L.
Troncoso, and S. Vaca (2013). “An earthquake catalog for seismic hazard assessment
in Ecuador”. Bulletin of the Seismological Society of America 103.2 A, pp. 773–786. DOI:
10.1785/0120120270. | |
dc.relation | Becker, J. J., D. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J.
Factor, S. Ingalls, S.-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer,
J. Von Rosenberg, G. Wallace, and P. Weatherall (2009). “Global Bathymetry and
Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS”. Marine Geodesy 32.4,
pp. 355–371. DOI: 10.1080/01490410903297766. | |
dc.relation | Benz, H., A. Tarr, G. Hayes, A. Villaseñor, K. Furlong, R. Dart, and S. Rhea (2011).
Seismicity of the Earth 1900 – 2010. Caribbean Plate and Vicinity. Tech. rep. DOI:
10 . 1130 / G23631A . 1 . DeMets. URL: http : / / pubs . er . usgs . gov /
publication/ofr20101083J. | |
dc.relation | Bernal-Olaya, R., P. Mann, and C. A. Vargas (2015). “Earthquake, Tomographic, Seismic
Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath
the Caribbean Margin of Northwestern Colombia”. Petroleum Geology and Potential
of the Colombian Caribbean Margin: AAPG Memoir 108, pp. 247–270. DOI: 10.1306/
13531939M1083642. | |
dc.relation | Bethmann, F., N. Deichmann, and P. M. Mai (2011). “Scaling relations of local magnitude
versus moment magnitude for sequences of similar earthquakes in Switzerland”.
Bulletin of the Seismological Society of America 101.2, pp. 515–534. DOI: 10 . 1785 /
0120100179. | |
dc.relation | Bezada, M. J., A. Levander, and B. Schmandt (2010). “Subduction in the southern
Caribbean: Images from finite-frequency P wave tomography”. Journal of Geophysical
Research: Solid Earth 115.12, pp. 1–19. DOI: 10.1029/2010JB007682. | |
dc.relation | Biegalski, K., J. Bohlin, J. Carter, J. Coyne, D. Dompierre, G. Novosel, and C.
Rinehart (1999). Formats and protocols for messages – IMS1.0. International Data
Center & Science Applications International Corporation. Document SAIC-99/3004. Tech. rep. International Data Center & Science Applications International Corporation.
Document SAIC-99/3004. | |
dc.relation | Bird, P. (2003). “An updated digital model of plate boundaries”. Geochemistry,
Geophysics, Geosystems 4.3, p. 52. DOI: 10.1029/2001GC000252. | |
dc.relation | Bondár, I. and D. Storchak (2011). “Improved location procedures at the International
Seismological Centre”. Geophysical Journal International 186.3, pp. 1220–1244. DOI:
10.1111/j.1365-246X.2011.05107.x. | |
dc.relation | Boschman, L. M., D. J. van Hinsbergen, T. H. Torsvik, W. Spakman, and J. L. Pindell
(2014). “Kinematic reconstruction of the Caribbean region since the Early Jurassic”.
Earth-Science Reviews 138, pp. 102–136. DOI: 10.1016/j.earscirev.2014.08.
007. | |
dc.relation | Bouysse, P. and D. Westercamp (1990). “Subduction of Atlantic aseismic ridges and Late
Cenozoic evolution of the Lesser Antilles island arc”. Tectonophysics 175.4. DOI: 10.
1016/0040-1951(90)90180-G. | |
dc.relation | Bowland, C. L. and E Rosencrantz (1988). “Upper crustal structure of the western
Colombian Basin, Caribbean Sea”. Geological Society of America Bulletin 100.4,
pp. 534–546. DOI: 10.1130/0016-7606(1988)100<0534. | |
dc.relation | Brink, U. S. ten, D. F. Coleman, and W. P. Dillon (2002). “The nature of the crust under
Cayman Trough from gravity”. Marine and Petroleum Geology 19.8, pp. 971–987. DOI:
10.1016/S0264-8172(02)00132-0. | |
dc.relation | Brink, U. ten, R. Barkan, B. Andrews, and J. Chaytor (2009). “Size distributions and
failure initiation of submarine and subaerial landslides”. Earth and Planetary Science
Letters 287.1-2, pp. 31–42. DOI: 10.1016/j.epsl.2009.07.031. | |
dc.relation | Buchs, D. M., R. J. Arculus, P. O. Baumgartner, C. Baumgartner-Mora, and A. Ulianov
(2010). “Late Cretaceous arc development on the SW margin of the Caribbean
Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes”.
Geochemistry, Geophysics, Geosystems 11.7, pp. 1–35. DOI: 10.1029/2009GC002901. | |
dc.relation | Burov, E (2011). “Rheology and strength of the lithosphere”. Marine and Petroleum
Geology 28.8, pp. 1402–1443. DOI: 10.1016/j.marpetgeo.2011.05.008. | |
dc.relation | Burov, E and M. Diament (1995). “The effective elastic thickness (Te) of continental
lithosphere: What does it really mean?” Journal of Geophysical Research 100.B3,
pp. 3905–3927. | |
dc.relation | C3S (2020). C3S ERA5-Land reanalysis. DOI: 10 . 24381 / cds . 68d2bb30. URL:
https://cds.climate.copernicus.eu/cdsapp{\#}!/home (visited on
09/15/2019). | |
dc.relation | Calais, É., S. Symithe, B. Mercier de Lépinay, and C. Prépetit (2016). “Plate boundary
segmentation in the northeastern Caribbean from geodetic measurements and
Neogene geological observations”. Comptes Rendus - Geoscience 348.1, pp. 42–51. DOI:
10.1016/j.crte.2015.10.007. | |
dc.relation | Camacho, E., W. Hutton, and J. F. Pacheco (2010). “A new look at evidence for a
Wadati-Benioff zone and active convergence at the north Panama deformed belt”.
Bulletin of the Seismological Society of America 100.1, pp. 343–348. DOI: 10 . 1785 /
0120090204. | |
dc.relation | Caress, D. W., M. K. Mc Nutt, R. S. Detrick, and J. C. Mutter (1995). “Seismic imaging
of hotspot-related crustal underplating beneath the Marquesas Islands”. Nature
373.6515, pp. 600–603. DOI: 10.1038/373600a0. | |
dc.relation | Carpentier, M., C. Chauvel, and N. Mattielli (2008). “Pb-Nd isotopic constraints on
sedimentary input into the Lesser Antilles arc system”. Earth and Planetary Science
Letters 272.1-2, pp. 199–211. DOI: 10.1016/j.epsl.2008.04.036. | |
dc.relation | Case, J. and T. Holcombe (1980). Geologic-Tectonic Map of the Caribbean Region. URL:
https://ngmdb.usgs.gov/Prodesc/proddesc{\_}12986.htm. | |
dc.relation | Cediel, F., R. P. Shaw, and C. Cáceres (2003). “Tectonic Assembly of the Northern
Andean Block”. AAPG Memoir 79, pp. 815–848. | |
dc.relation | Chen, W. P. and Z. Yang (2004). “Earthquakes beneath the Himalayas and Tibet:
Evidence for strong lithospheric mantle”. Science 304.5679, pp. 1949–1952. DOI: 10.
1126/science.1097324. | |
dc.relation | Chen, W., R. Tenzer, and X. Gu (2014). “Sediment stripping correction to marine gravity
data”. Marine Geodesy 37.4, pp. 419–439. DOI: 10.1080/01490419.2014.932870. | |
dc.relation | Chiarabba, C., P. De Gori, C. Faccenna, F. Speranza, D. Seccia, V. Dionicio, and G. A.
Prieto (2015). “Subduction system and flat slab beneath the Eastern Cordillera of
Colombia”. Geochemistry, Geophysics, Geosystems 17.1, pp. 16–27. DOI: 10 . 1002 /
2015GC006048. | |
dc.relation | Chicangana, G., A. Kammer, C. Vargas, C. Ordoñez, H. Mora-Páez, A. Ferrari, and
S. López (2011). “El posible origen de la sismicidad somera que se presenta en la
región que corresponde a la Sierra Nevada de Santa Marta , la Serranía de Perijá y
la Península de La Guajira , noreste de Colombia”. Cap&Cua 6, pp. 1–33. | |
dc.relation | Christeson, G. L., N. L. Bangs, and T. H. Shipley (2003). “Deep structure of an island
arc backstop, Lesser Antilles subduction zone”. Journal of Geophysical Research: Solid
Earth 108.B7, pp. 1–17. DOI: 10.1029/2002JB002243. | |
dc.relation | Christeson, G. L., P. Mann, A. Escalona, and T. J. Aitken (2008). “Crustal structure of
the Caribbean - Northeastern South America arc-continent collision zone”. Journal
of Geophysical Research: Solid Earth 113.8, pp. 1–19. DOI: 10.1029/2007JB005373. | |
dc.relation | DeShon, H. R., S. Y. Schwartz, S. L. Bilek, L. M. Dorman, V. Gonzalez, J. M. Protti, E. R.
Flueh, and T. H. Dixon (2003). “Seismogenic zone structure of the southern Middle
America Trench, Costa Rica”. Journal of Geophysical Research: Solid Earth 108.B10. DOI:
10.1029/2002JB002294. | |
dc.relation | Deville, E., A. Mascle, Y. Callec, P. Huyghe, S. Lallemant, O. Lerat, X. Mathieu, C. Padron
de Carillo, M. Patriat, T. Pichot, B. Loubrieux, and D. Granjeon (2015). “Tectonics
and sedimentation interactions in the east Caribbean subduction zone: An overview
from the Orinoco delta and the Barbados accretionary prism”. Marine and Petroleum
Geology 64, pp. 76–103. DOI: 10.1016/j.marpetgeo.2014.12.015. | |
dc.relation | Di Giacomo, D., I. Bondár, D. A. Storchak, E. R. Engdahl, P. Bormann, and J.
Harris (2015). “ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009),
III. Re-computed MS and mb, proxy MW, final magnitude composition and
completeness assessment”. Physics of the Earth and Planetary Interiors 239, pp. 33–47.
DOI: 10.1016/j.pepi.2014.06.005. | |
dc.relation | Di Giacomo, D. and D. A. Storchak (2016). “A scheme to set preferred magnitudes in
the ISC Bulletin”. Journal of Seismology 20.2, pp. 555–567. DOI: 10.1007/s10950-
015-9543-7. | |
dc.relation | Diebold, J. and N. Driscoll (1999). “Chapter 19 New insights on the formation of the
Caribbean basalt province revealed by multichannel seismic images of volcanic
structures in the Venezuelan basin”. Sedimentary Basins of the World 4.C. DOI: 10.
1016/S1874-5997(99)80053-7. | |
dc.relation | Dimate, C., L. Rivera, A. Taboada, B. Delouis, A. Osorio, E. Jimenez, A. Fuenzalida,
A. Cisternas, and I. Gomez (2003). “The 19 January 1995 Tauramena (Colombia)
earthquake : geometry and stress regime”. Tectonophysics 363, pp. 159–180. DOI: 10.
1016/S0040-1951(02)00670-4. | |
dc.relation | Driscoll, N. and J. Diebold (1999). “Chapter 20 Tectonic and stratigraphic development
of the eastern Caribbean: New constraints from multichannel seismic data”.
Sedimentary Basins of the World 4.C. DOI: 10.1016/S1874-5997(99)80054-9. | |
dc.relation | Ebbing, J., J. Bouman, M. Fuchs, V. Lieb, R. Haagmans, J. A. C. Meekes, and R. A. Fattah
(2013). “Advancements in satellite gravity gradient data for crustal studies”. The
Leading Edge 32.8, pp. 900–906. DOI: 10.1190/tle32080900.1. | |
dc.relation | Edgar, T., J. Ewing, and J. Hennion (1971). “Seismic refraction and reflection in
Caribbean Sea”. The American Association of Petroleum Geologists Bulletin 55.6,
pp. 833–870. | |
dc.relation | Ehlers, T. A. (2005). “Crustal thermal processes and the interpretation of
thermochronometer data”. Reviews in Mineralogy and Geochemistry 58, pp. 315–350.
DOI: 10.2138/rmg.2005.58.12. | |
dc.relation | Emmerson, B. and D. McKenzie (2007). “Thermal structure and seismicity of subducting
lithosphere”. Physics of the Earth and Planetary Interiors 163.1-4, pp. 191–208. DOI:
10.1016/j.pepi.2007.05.007. | |
dc.relation | Escalona, A. and P. Mann (2011). “Tectonics, basin subsidence mechanisms, and
paleogeography of the Caribbean-South American plate boundary zone”. Marine
and Petroleum Geology 28.1, pp. 8–39. DOI: 10.1016/j.marpetgeo.2010.01.016. | |
dc.relation | Evain, M., A. Galve, P. Charvis, M. Laigle, H. Kopp, A. Bécel, W. Weinzierl, A. Hirn,
E. R. Flueh, and J. Gallart (2013). “Structure of the Lesser Antilles subduction forearc
and backstop from 3D seismic refraction tomography”. Tectonophysics 603, pp. 55–67.
DOI: 10.1016/j.tecto.2011.09.021. | |
dc.relation | Ewing, J., J. Antoine, and M. Ewing (1960). “Geophysical measurements in the Western
Caribbean Sea and in the Gulf of Mexico”. Journal of Geophysical Research 65.12,
pp. 4087–4126. DOI: 10.1029/JZ065i012p04087. | |
dc.relation | EXXON (1985). Tectonic map of the world. Tulsa, OK: American Association of Petroleum
Geologists Foundation. | |
dc.relation | Ferrand, T. P. (2019). “Seismicity and mineral destabilizations in the subducting mantle
up to 6 GPa, 200 km depth”. Lithos 334-335, pp. 205–230. DOI: 10.1016/j.lithos.
2019.03.014. | |
dc.relation | Ferry, N., L. Parent, G. Garric, B. Barnier, and N. C. Jourdain (2010). “Mercator
global Eddy permitting ocean reanalysis GLORYS1V1: Description and results”.
Mercator-Ocean Quarterly Newsletter 34.January, pp. 15–27. | |
dc.relation | Förste, C., S. Bruinsma, O. Abrikosov, J. Lemoine, T. Schaller, H.-J. Götze, J. Ebbing,
J.-C. Marty, F. Flechtner, G. Balmino, and R. Biancale (2014). “EIGEN-6C4 The latest
combined global gravity field model including GOCE data up to degree and order
2190 of GFZ Potsdam and GRGS Toulouse”. In: 5th GOCE User Workshop. Paris. DOI:
http://dx.doi.org/10.5880/icgem.2015.1. | |
dc.relation | Gamero, M. L. D. D. (1996). “The changing course of the Orinoco River during
the Neogene: a review”. Palaeogeography, Palaeoclimatology, Palaeoecology 123,
pp. 385–402. | |
dc.relation | Gentili, S., M. Sugan, L. Peruzza, and D. Schorlemmer (2011). “Probabilistic
completeness assessment of the past 30 years of seismic monitoring in northeastern
Italy”. Physics of the Earth and Planetary Interiors 186.1-2, pp. 81–96. DOI: 10.1016/
j.pepi.2011.03.005. | |
dc.relation | Gladkikh, V. and R. Tenzer (2012). “A mathematical model of the global ocean saltwater
density distribution”. Pure and Applied Geophysics 169.1-2, pp. 249–257. DOI: 10 .
1007/s00024-011-0275-5. | |
dc.relation | Goes, S., R Govers, and P Vacher (2000). “Shallow mantle temperatures under Europe
from P and S wave tomography”. Journal Of Geophysical Research-Solid Earth 105.B5,
pp. 11153–11169. DOI: 10.1029/1999jb900300. | |
dc.relation | Gómez-García, A., C. Meeßen, M. Scheck-Wenderoth, G. Monsalve, J. Bott, A.
Bernhardt, and G. Bernal (2019a). Average crustal densities and main terrain boundaries
of the Caribbean oceanic domain inferred from the modelling of Vertical Gravity Gradients.
Tech. rep. GFZ Data Services. DOI: http://doi.org/10.5880/GFZ.4.5.2019.
001. | |
dc.relation | Gómez-García, A., C. Meeßen, M. Scheck-Wenderoth, G. Monsalve, J. Bott, A.
Bernhardt, and G. Bernal (2019b). Scripts to calculate the Vertical Gravity Gradients response of a 3D lithospheric
model using spherical coordinates: the Caribbean oceanic domain as a case study. DOI:
http://doi.org/10.5880/GFZ.4.5.2019.002. | |
dc.relation | Gómez-García, Á. M., C. Meeßen, M. Scheck-Wenderoth, G. Monsalve, J. Bott, A.
Bernhardt, and G. Bernal (2019c). “3-D modeling of Vertical Gravity Gradients and
the delimitation of tectonic boundaries: the Caribbean oceanic domain as a case
study”. Geochemistry, Geophysics, Geosystems 20.11, pp. 5371–5393. DOI: 10.1029/
2019GC008340. | |
dc.relation | Götze, H. J. and R. Pail (2018). “Insights from recent gravity satellite missions in the
density structure of continental margins – With focus on the passive margins of the
South Atlantic”. Gondwana Research 53, pp. 285–308. DOI: 10.1016/j.gr.2017.
04.015 | |
dc.relation | Grozic, J. L. (2010). “Interplay between gas hydrates and submarine slope failure”.
In: Submarine Mass Movements and Their Consequences - 4th International Symposium,
pp. 11–30. DOI: 10.1007/978-90-481-3071-9_2. | |
dc.relation | Gutscher, M. A., F. Klingelhoefer, T. Theunissen, W. Spakman, T. Berthet, T. K. Wang,
and C. S. Lee (2016). “Thermal modeling of the SW Ryukyu forearc (Taiwan):
Implications for the seismogenic zone and the age of the subducting Philippine Sea Plate (Huatung Basin)”. Tectonophysics 692, pp. 131–142. DOI: 10.1016/j.tecto.
2016.03.029. | |
dc.relation | Gutscher, M. A., G. K. Westbrook, B. Marcaillou, D. Graindorge, A. Gailler, T. Pichot,
and R. C. Maury (2013). “How wide is the seismogenic zone of the Lesser Antilles
forearc?” Bulletin de la Societe Geologique de France 184.1-2, pp. 47–59. DOI: 10.2113/
gssgfbull.184.1-2.47. | |
dc.relation | Hacker, B. R. and G. A. Abers (2004). “Subduction Factory 3: An Excel worksheet
and macro for calculating the densities, seismic wave speeds, and H2O contents
of minerals and rocks at pressure and temperature”. Geochemistry, Geophysics,
Geosystems 5.1, pp. 1–7. DOI: 10.1029/2003GC000614. | |
dc.relation | Hamilton, E. (1976). “Variations of density and porosity with depth in deep-sea
sediments”. Journal of Sedimentary Petrology 46.2, pp. 280–300. | |
dc.relation | Hanks, T. C. and H. Kanamori (1979). “A moment magnitude scale”. Journal of
Geophysical Research B: Solid Earth 84.B5, pp. 2348–2350. DOI: 10 . 1029 /
JB084iB05p02348. | |
dc.relation | Harris, R. N. and K. Wang (2002). “Thermal models of the Middle America Trench at
the Nicoya Peninsula, Costa Rica”. Geophysical Research Letters 29.21, pp. 1–5. DOI:
10.1029/2002GL015406. | |
dc.relation | Hasterok, D., M. Gard, and J. Webb (2018). “On the radiogenic heat production
of metamorphic, igneous, and sedimentary rocks”. Geoscience Frontiers 9.6,
pp. 1777–1794. DOI: 10.1016/j.gsf.2017.10.012. | |
dc.relation | Hastie, A. R. and A. C. Kerr (2010). “Mantle plume or slab window?: Physical
and geochemical constraints on the origin of the Caribbean oceanic plateau”.
Earth-Science Reviews 98.3-4, pp. 283–293. DOI: 10.1016/j.earscirev.2009.
11.001. | |
dc.relation | Hayes, G. P., G. L. Moore, D. E. Portner, M. Hearne, H. Flamme, M. Furtney, and
G. M. Smoczyk (2018). “Slab2, a comprehensive subduction zone geometry model
- Supplementary material”. Science 362.6410, pp. 58–61. DOI: 10.1126/science.
aat4723. | |
dc.relation | Hillebrandt-Andrade, C. von (2013). “Minimizing Caribbean Tsunami Risk”. Science
341.August, pp. 966–969. DOI: 10.1126/science.1238943. | |
dc.relation | Ince, E. S., F. Barthelmes, S. Reißland, K. Elger, C. Förste, F. Flechtner, and H. Schuh
(2019). “ICGEM - 15 years of successful collection and distribution of global
gravitational models, associated services, and future plans”. Earth System Science
Data 11, pp. 647–674. DOI: 10.5194/essd-2019-17. | |
dc.relation | Incel, S., N. Hilairet, L. Labrousse, T. John, D. Deldicque, T. Ferrand, Y. Wang, J. Renner,
L. Morales, and A. Schubnel (2017). “Laboratory earthquakes triggered during
eclogitization of lawsonite-bearing blueschist”. Earth and Planetary Science Letters
459, pp. 320–331. DOI: 10.1016/j.epsl.2016.11.047. | |
dc.relation | International Seismological Centre (2020). On-line Bulletin. DOI: http://doi.org/
10.31905/D808B830. URL: http://www.isc.ac.uk (visited on 03/23/2020). | |
dc.relation | Ito, G. and A. Taira (2000). “Compensation of the Ontong Java Plateau by surface
and subsurface loading”. Journal of Geophysical Research: Solid Earth 105.B5,
pp. 11171–11183. DOI: 10.1029/2000jb900036. | |
dc.relation | Jackson, J. (2002). “Strength of the continental lithosphere: Time to abandon the jelly
sandwich?” GSA Today 12.9, pp. 4–10. DOI: 10 . 1130 / 1052 - 5173(2002 )
012<0004:SOTCLT>2.0.CO;2. | |
dc.relation | Jacquey, A. B. and M. Cacace (2020a). “Multiphysics Modeling of a Brittle-Ductile
Lithosphere: 1. Explicit Visco-Elasto-Plastic Formulation and Its Numerical
Implementation”. Journal of Geophysical Research: Solid Earth 125.1. DOI: 10.1029/
2019JB018474. | |
dc.relation | Jacquey, A. B. and M. Cacace (2020b). “Multiphysics Modeling of a Brittle-Ductile Lithosphere: 2. Semi-brittle,
Semi-ductile Deformation and Damage Rheology”. Journal of Geophysical Research:
Solid Earth 125.1. DOI: 10.1029/2019JB018475. | |
dc.relation | Ji, Y., S. Yoshioka, V. C. Manea, M. Manea, and N. Suenaga (2019). “Subduction thermal
structure, metamorphism and seismicity beneath north-central Chile”. Journal of
Geodynamics 129.June, pp. 299–312. DOI: 10.1016/j.jog.2018.09.004. | |
dc.relation | Jiménez-Díaz, A., J. Ruiz, M. Pérez-Gussinyé, J. F. Kirby, J. A. Álvarez-Gómez, R.
Tejero, and R. Capote (2014). “Spatial variations of effective elastic thickness of
the lithosphere in Central America and surrounding regions”. Earth and Planetary
Science Letters 391, pp. 55–66. DOI: 10.1016/j.epsl.2014.01.042. | |
dc.relation | Kanamori, H. (1977). “The energy release in great earthquakes”. 82.20, pp. 2981–2987. | |
dc.relation | Katz, B. and K. Williams (2003). “Biogenic gas potential offshore Guajira Peninsula,
Colombia”. AAPG Memoir 79, pp. 173–175. | |
dc.relation | Keken, P. E. van, C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz,
S. C. Lin, E. M. Parmentier, M. Spiegelman, and K. Wang (2008). “A community
benchmark for subduction zone modeling”. Physics of the Earth and Planetary Interiors
171.1-4, pp. 187–197. DOI: 10.1016/j.pepi.2008.04.015. | |
dc.relation | Kerr, A. C. (2014). Oceanic Plateaus. 2nd ed. Vol. 4. Elsevier Ltd., pp. 631–667. DOI: 10.
1016/B978-0-08-095975-7.00320-X. | |
dc.relation | Kerr, A. C., J Tarney, A. D. Saunders, A Nivia, and G. F. Marriner (1998). “The internal
structure of oceanic plateaus: inferences from obducted Cretaceous terranes in
western Colombia and the Caribbean”. Tectonophysics 292.3-4, pp. 173–188. DOI:
http://dx.doi.org/10.1016/S0040-1951(98)00067-5. | |
dc.relation | Kerr, A. and J. Tarney (2005). “Tectonic evolution of the Caribbean and northwestern
South America: The case for accretion of two Late Cretaceous oceanic plateaus”.
Geology 33.4, pp. 269–272. DOI: 10.1130/G21109.1. | |
dc.relation | Kerr, A. C. (2005). “La Isla de Gorgona, Colombia: A petrological enigma?” Lithos 84.1-2,
pp. 77–101. DOI: 10.1016/j.lithos.2005.02.006. | |
dc.relation | Klitzke, P., M. Luzi-Helbing, J. M. Schicks, M. Cacace, A. B. Jacquey, J. Sippel, M.
Scheck-Wenderoth, and J. I. Faleide (2016a). “Gas hydrate stability zone of the
Barents Sea and Kara Sea region”. Energy Procedia 97, pp. 302–309. DOI: 10.1016/
j.egypro.2016.10.005. | |
dc.relation | Klitzke, P., J. Sippel, J. I. Faleide, and M. Scheck-Wenderoth (2016b). “A 3D gravity and
thermal model for the Barents Sea and Kara Sea”. Tectonophysics 684, pp. 131–147.
DOI: 10.1016/j.tecto.2016.04.033. | |
dc.relation | Kreemer, C., G. Blewitt, and E. Klein (2014). “A geodetic platemotion and Global Strain
Rate Model”. Geochemistry, Geophysics, Geosystems 15, pp. 3849–3889. DOI: 10.1002/
2014GC005407. | |
dc.relation | Kroehler, M. E., P. Mann, A. Escalona, and G. L. Christeson (2011). “Late
Cretaceous-Miocene diachronous onset of back thrusting along the South Caribbean
deformed belt and its importance for understanding processes of arc collision and
crustal growth”. Tectonics 30.6. DOI: 10.1029/2011TC002918. | |
dc.relation | Ladd, J, M Truchan, M Talwani, P Stoffa, P Buhl, R Houtz, A. Mauffret, and G Westbrook
(1984). “Seismic reflection profiles across the southern margin of the Caribbean”.
Memoir of the Geological Society of America 162.1, pp. 153–159. DOI: https://doi.
org/10.1130/MEM162-p153. | |
dc.relation | Laigle, M., A. Becel, B. de Voogd, M. Sachpazi, G. Bayrakci, J. F. Lebrun, and M. Evain
(2013a). “Along-arc segmentation and interaction of subducting ridges with the
Lesser Antilles Subduction forearc crust revealed by MCS imaging”. Tectonophysics
603, pp. 32–54. DOI: 10.1016/j.tecto.2013.05.028. | |
dc.relation | Laigle, M., A. Hirn, M. Sapin, A. Bécel, P. Charvis, E. Flueh, J. Diaz, J. F. Lebrun,
A. Gesret, R. Raffaele, A. Galvé, M. Evain, M. Ruiz, H. Kopp, G. Bayrakci, W.
Weinzierl, Y. Hello, J. C. Lépine, J. P. Viodé, M. Sachpazi, J. Gallart, E. Kissling, and R.
Nicolich (2013b). “Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc”. Tectonophysics 603.9 September, pp. 1–20. DOI: 10.1016/j.tecto.2013.05.043. | |
dc.relation | Laske, G, G Masters, Z Ma, and M. E. Pasyanos (2013). “CRUST1.0 : An Updated Global
Model of Earth’s Crust”. Geophys. Res. Abstracts 15, Abstract EGU2013–2658. URL:
http://igppweb.ucsd.edu/{~}gabi/rem.html. | |
dc.relation | Leahy, G. M. and J. Park (2005). “Hunting for oceanic island Moho”. Geophysical Journal
International 160.3, pp. 1020–1026. DOI: 10.1111/j.1365-246X.2005.02562.x. | |
dc.relation | Leroy, S. and A. Mauffret (1996). “Intraplate deformation in the Caribbean region”.
Journal of Geodynamics 21.1, pp. 113–122. DOI: 10.1016/0264-3707(95)00037-
2. | |
dc.relation | Leroy, S., A. Mauffret, P. Patriat, and B. Mercier de Lépinay (2000). “An alternative
interpretation of the Cayman trough evolution from a reidentification of magnetic
anomalies”. Geophysical Journal International 141, pp. 539–557. DOI: 10.1046/j.
1365-246x.2000.00059.x. | |
dc.relation | Leslie, S. C. and P. Mann (2016). “Giant submarine landslides on the Colombian margin
and tsunami risk in the Caribbean Sea”. Earth and Planetary Science Letters 449,
pp. 382–394. DOI: 10.1016/j.epsl.2016.05.040. | |
dc.relation | Levander, A., M. Schmitz, H. G. Avé Lallemant, C. A. Zelt, D. S. Sawyer, M. B. Magnani,
P. Mann, G. Christeson, J. E. Wright, G. L. Pavlis, and J. Pindell (2006). “Evolution
of the southern Caribbean plate boundary”. Eos 87.9, pp. 97–99. DOI: 10.1029/
2006EO090001. | |
dc.relation | Lewis, J. F., G. Kysar Mattietti, M. Perfit, and G. Kamenov (2011). “Geochemistry and
petrology of three granitoid rock cores from the Nicaraguan rise, Caribbean sea:
Implications for its composition, structure and tectonic evolution”. Geologica Acta
9.3, pp. 467–479. DOI: 10.1344/105.000001714. | |
dc.relation | Li, X. and H. J. Götze (2001). “Ellipsoid, geoid, gravity, geodesy, and geophysics”.
Geophysics 66.6. | |
dc.relation | López, C. and G. Y. Ojeda (2006). “Heat flow in the Colombian Caribbean from
the Bottom Simulating Reflector (BSR)”. CT y F - Ciencia, Tecnologia y Futuro 3.2,
pp. 29–39. | |
dc.relation | Lowrie, W. (2007). Fundamentals of Geophysics. Second Edi. Cambridge, p. 381. | |
dc.relation | Lucazeau, F. (2019). “Analysis and mapping of an updated terrestrial heat flow
data set”. Geochemistry, Geophysics, Geosystems, pp. 4001–4024. DOI: 10 . 1029 /
2019gc008389. | |
dc.relation | Mann, P. (2007). “Overview of the tectonic history of northern Central America”.
Geological Society of America spec. pap. 428.June, pp. 1–19. DOI: 10 . 1130 / 2007 .
2428(01).. | |
dc.relation | Marcaillou, B., P. Charvis, and J. Y. Collot (2006). “Structure of the Malpelo Ridge
(Colombia) from seismic and gravity modelling”. Marine Geophysical Research 27.4,
pp. 289–300. DOI: 10.1007/s11001-006-9009-y | |
dc.relation | Maruyama, T. (1963). “On the force equivalents of dynamical elastic dislocations with
reference to the earthquake mechanism”. Bulletin of the Earthquake Research Institute
41, pp. 467–486. | |
dc.relation | Mattioli, G., J. Miller, C. Demets, and P. Jansma (2014). “Rigidity and definition of
Caribbean plate motion from COCONet and campaign GPS observations”. In:
Geophysical Research Abstracts. Vol. 16. EGU2014-EGU14546. | |
dc.relation | Mauffret, A. and S. Leroy (1997). “Seismic stratigraphy and structure of the Caribbean
igneous province”. Tectonophysics 283.1-4, pp. 61–104. DOI: 10 . 1016 / S0040 -
1951(97)00103-0. | |
dc.relation | Maystrenko, Y. P., M. Scheck-Wenderoth, A. Hartwig, Z. Anka, A. B. Watts, K. K. Hirsch,
and S. Fishwick (2013). “Structural features of the Southwest African continental
margin according to results of lithosphere-scale 3D gravity and thermal modelling”.
Tectonophysics 604, pp. 104–121. DOI: 10.1016/j.tecto.2013.04.014. | |
dc.relation | McKenzie, D., J. Jackson, and K. Priestley (2019). “Continental collisions and the origin
of subcrustal continental earthquakes”. Canadian Journal of Earth Sciences 56.11,
pp. 1101–1118. DOI: 10.1139/cjes-2018-0289. | |
dc.relation | McNutt, M. and D. W. Caress (2007). Crust and Lithospheric Structure - Hot Spots
and Hot-Spot Swells. Vol. 1. Elsevier B.V., pp. 445–478. DOI: 10 . 1016 / B978 -
044452748-6.00013-4. | |
dc.relation | Meeßen, C. (2017). VelocityConversion. DOI: http://doi.org/10.5880/GFZ.6.1.
2017.001. URL: https://github.com/cmeessen/VelocityConversion. | |
dc.relation | Mériaux, C. A., A. Agnon, and J. R. Lister (1998). “The thermal signature of subducted
lithospheric slabs at the core-mantle boundary”. Earth and Planetary Science Letters
160.3-4, pp. 551–562. DOI: 10.1016/S0012-821X(98)00110-1. | |
dc.relation | Monsalve, G., J. S. Jaramillo, A. Cardona, V. Schulte-Pelkum, G. Posada, V. Valencia, and
E. Poveda (2019). “Deep crustal faults, shear zones, and magmatism in the Eastern
Cordillera of Colombia: growth of a plateau from teleseismic receiver function and
geochemical Mio-Pliocene volcanism constraints”. Journal of Geophysical Research:
Solid Earth 124.9, pp. 9833–9851. DOI: 10.1029/2019JB017835. | |
dc.relation | Monsalve, G., A. Sheehan, V. Schulte-Pelkum, S. Rajaure, M. R. Pandey, and F.
Wu (2006). “Seismicity and one-dimensional velocity structure of the Himalayan
collision zone: Earthquakes in the crust and upper mantle”. Journal of Geophysical
Research: Solid Earth 111.10, pp. 1–19. DOI: 10.1029/2005JB004062. | |
dc.relation | Montes, C., G. Bayona, A. Cardona, D. M. Buchs, C. A. Silva, S. Morón, N. Hoyos,
D. A. Ramírez, C. A. Jaramillo, and V. Valencia (2012). “Arc-continent collision and
orocline formation: Closing of the Central American seaway”. Journal of Geophysical
Research: Solid Earth 117.4, pp. 1–25. DOI: 10.1029/2011JB008959. | |
dc.relation | Montes, C., A. F. Rodriguez-Corcho, G. Bayona, N. Hoyos, S. Zapata, and A. Cardona
(2019). “Continental margin response to multiple arc-continent collisions: The
northern Andes-Caribbean margin”. Earth-Science Reviews 198.August, p. 102903.
DOI: 10.1016/j.earscirev.2019.102903. | |
dc.relation | Mora, J. A., O. Oncken, E. Le Breton, M. Ibánez-Mejia, C. Faccenna, G. Veloza, V.
Vélez, M. de Freitas, and A. Mesa (2017). “Linking Late Cretaceous to Eocene
tectonostratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean
plateau collision and flat subduction”. Tectonics 36.11, pp. 2599–2629. DOI: 10 .
1002/2017TC004612. | |
dc.relation | Mora-Bohórquez, J. A., M. Ibánez-Mejia, O. Oncken, M. de Freitas, V. Vélez, A. Mesa,
and L. Serna (2017). “Structure and age of the Lower Magdalena Valley basin
basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into
the termination of the central Andes against the Caribbean basin”. Journal of South
American Earth Sciences 74, pp. 1–26. DOI: 10.1016/j.jsames.2017.01.001. | |
dc.relation | Moreno, M., C. Haberland, O. Oncken, A. Rietbrock, S. Angiboust, and O. Heidbach
(2014). “Locking of the Chile subduction zone controlled by fluid pressure before
the 2010 earthquake”. Nature Geoscience 7.4, pp. 292–296. DOI: 10.1038/ngeo2102. | |
dc.relation | Mosquera-Machado, S., C. Lalinde-Pulido, E. Salcedo-Hurtado, and A. M. Michetti
(2009). “Ground effects of the 18 October 1992, Murindo earthquake (NW
Colombia), using the Environmental Seismic Intensity Scale (ESI 2007) for the
assessment of intensity”. Geological Society Special Publication 316, pp. 123–144. DOI:
10.1144/SP316.7. | |
dc.relation | Müller, D. and W. H. Smith (1993). “Deformation of the oceanic crust between the
North American and South American plates”. Journal of Geophysical Research 98.B5,
pp. 8275–8291. DOI: 10.1029/92JB02863. | |
dc.relation | Neill, I., A. C. Kerr, A. R. Hastie, K.-P. Stanek, and I. L. Millar (2011). “Origin of the
Aves Ridge and Dutch-Venezuelan Antilles: interaction of the Cretaceous ’Great Arc’ and Caribbean-Colombian Oceanic Plateau?” Journal of the Geological Society
168.2, pp. 333–348. DOI: 10.1144/0016-76492010-067. | |
dc.relation | Noda, A. (2016). “Forearc basins: Types, geometries, and relationships to subduction
zone dynamics”. Bulletin of the Geological Society of America 128.5-6, pp. 879–895. DOI:
10.1130/B31345.1. | |
dc.relation | Officer, C. B., J. I. Ewing, J. F. Hennion, D. G. Harkrider, and D. E. Miller (1959).
“Geophysical investigations in the eastern Caribbean: Summary of 1955 and 1956
cruises”. Physics and Chemistry of The Earth 3, pp. 17–109. DOI: 10.1016/0079-
1946(59)90004-7. | |
dc.relation | Okazaki, K. and G. Hirth (2016). “Dehydration of lawsonite could directly trigger
earthquakes in subducting oceanic crust”. Nature 530. DOI: 10 . 1038 /
nature16501. | |
dc.relation | Oleskevich, D, R Hyndman, and K Wang (1999). “The updip and downdip limits
to great subduction earthquakes: Thermal and structural models of Cascadia,
south Alaska, SW Japan, and Chile”. Journal of Geophysical Research 104.B7,
pp. 14965–14991. | |
dc.relation | O’Reilly, S. Y. and W. L. Griffin (2010). “The continental lithosphere-asthenosphere
boundary: Can we sample it?” Lithos 120.1-2, pp. 1–13. DOI: 10.1016/j.lithos.
2010.03.016. | |
dc.relation | Oruc, B. (2014). “Structural interpretation of southern part of western Anatolian using
analytic signal of the second order gravity gradients and discrete wavelet transform
analysis”. Journal of Applied Geophysics 103, pp. 82–98. DOI: 10.1016/j.jappgeo.
2014.01.008. | |
dc.relation | Patriat, M., T. Pichot, G. K. Westbrook, M. Umber, E. Deville, F. Bénard, W. R. Roest,
and B. Loubrieu (2011). “Evidence for Quaternary convergence across the North
America-South America plate boundary zone, east of the Lesser Antilles”. Geology
39.10, pp. 979–982. DOI: 10.1130/G32474.1. | |
dc.relation | Pawlowski, R. (2008). “The use of gravity anomaly data for offshore continental margin
demarcation”. The Leading Edge 27.6, pp. 722–727. DOI: https://doi.org/10.
1190/1.2944156. | |
dc.relation | Perfit, M. R. and B. C. Heezen (1978). “The geology and evolution of the Cayman
Trench”. Bulletin of the Geological Society of America 89, pp. 1155–1174. DOI: 10.1130/
0016-7606(1978)89<1155:TGAEOT>2.0.CO;2. | |
dc.relation | Pichot, T., M. Patriat, G. K. Westbrook, T. Nalpas, M. A. Gutscher, W. R. Roest,
E. Deville, M. Moulin, D. Aslanian, and M. Rabineau (2012). “The Cenozoic tectonostratigraphic evolution of the Barracuda Ridge and Tiburon Rise, at the western end of the North America-South America plate boundary zone”. Marine Geology 303-306, pp. 154–171. DOI: 10.1016/j.margeo.2012.02.001. | |
dc.relation | Pope, E., P. Talling, M. Urlaub, J. Hunt, M. Clare, and P. Challenor (2015). “Are
large submarine landslides temporally random or do uncertainties in available age
constraints make it impossible to tell?” Marine Geology 369, pp. 19–33. DOI: 10 .
1016/j.margeo.2015.07.002. | |
dc.relation | Porritt, R. W., T. W. Becker, and G. Monsalve (2014). “Seismic anisotropy and slab
dynamics from SKS splitting recorded in Colombia”. Geophysical Research Letters
41.24, pp. 8775–8783. DOI: 10.1002/2014GL061958. | |
dc.relation | Poveda, E., G. Monsalve, and C. Vargas (2015). “Receiver functions and crustal structure
of the northwestern Andean region, Colombia”. Journal of Geophysical Research: Solid
Earth 120, pp. 2408–2425. DOI: 10.1002/2014JB011304.Received. | |
dc.relation | Priestley, K., J. James, and D. Mckenzie (2008). “Lithospheric structure and deep
earthquakes beneath India, the Himalaya and southern Tibet”. Geophysical Journal
International 172.1, pp. 345–362. DOI: 10.1111/j.1365-246X.2007.03636.x. | |
dc.relation | Prieto, G. A., M. Florez, S. A. Barrett, G. C. Beroza, P. Pedraza, J. F. Blanco, and E.
Poveda (2013). “Seismic evidence for thermal runaway during intermediate-depth
earthquake rupture”. Geophysical Research Letters 40, pp. 6064–6068. DOI: 10.1002/
2013GL058109. | |
dc.relation | Ratheesh Kumar, R. T. and B. F. Windley (2013). “Spatial variations of effective elastic
thickness over the Ninetyeast Ridge and implications for its structure and tectonic
evolution”. Tectonophysics 608.2013, pp. 847–856. DOI: 10.1016/j.tecto.2013.
07.034. | |
dc.relation | Reed, D. L., E. A. Silver, J. E. Tagudin, T. H. Shipley, and P. Vrolijk (1990). “Relations
between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate,
offshore north Panama”. Marine and Petroleum Geology 7.1, pp. 44–54. DOI: 10 .
1016/0264-8172(90)90055-L. | |
dc.relation | Reguzzoni, M. and D. Sampietro (2015). “GEMMA: An Earth crustal model based
on GOCE satellite data”. International Journal of Applied Earth Observation and
Geoinformation 35.PA, pp. 31–43. DOI: 10.1016/j.jag.2014.04.002. | |
dc.relation | Rosencrantz, E. (1990). “Structure and tectonics of the Yucatan Basin, Caribbean Sea, as
determined from seismic reflection studies”. Tectonics 9.5, pp. 1037–1059. | |
dc.relation | Rosencrantz, E. and P. Mann (1991). “Sea MARC II mapping of transform faults in the
Cayman Trough, Caribbean Sea”. Geology 19.7, pp. 690–693. DOI: 10.1130/0091-
7613(1991)019<0690:SIMOTF>2.3.CO;2. | |
dc.relation | Sæther, B (1997). “Improved estimation of subsurface magnetic properties using
minimum mean-square error methods”. PhD thesis. Norwegian University of
Science and Technology, p. 144. | |
dc.relation | Sanchez-Rojas, J. and M. Palma (2014). “Crustal density structure in northwestern South
America derived from analysis and 3-D modeling of gravity and seismicity data”.
Tectonophysics 634, pp. 97–115. DOI: 10.1016/j.tecto.2014.07.026. | |
dc.relation | Sandiford, D., L. Moresi, M. Sandiford, and T. Yang (2019). “Geometric controls on flat
slab seismicity”. Earth and Planetary Science Letters 527, p. 115787. DOI: 10.1016/j.
epsl.2019.115787. | |
dc.relation | Sandwell, D., R. D. Müller, W. H. F. Smith, E. Garcia, and R. Francis (2014). “New global
marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.”
Science 346.6205, pp. 65–67. DOI: 10.1126/science.1258213. | |
dc.relation | Schaeffer, A. J. and S. Lebedev (2013). “Global shear speed structure of the upper mantle
and transition zone”. Geophysical Journal International 194.1, pp. 417–449. DOI: 10.
1093/gji/ggt095. | |
dc.relation | Schaller, T., J. Andersen, H. J. Götze, N. Koproch, S. Schmidt, M. Sobiesiak, and S.
Splettstößer (2015). “Segmentation of the Andean margin by isostatic models and
gradients”. Journal of South American Earth Sciences 59, pp. 69–85. DOI: 10.1016/j.
jsames.2015.01.008. | |
dc.relation | Scheck-Wenderoth, M. and Y. P. Maystrenko (2013). “Deep control on shallow heat in
sedimentary basins”. Energy Procedia 40, pp. 266–275. DOI: 10.1016/j.egypro.
2013.08.031. | |
dc.relation | Schenk, C., R. Viger, and C. Anderson (2000). U.S. Geological Survey Open-File Report
97-470D. Maps showing geology, oil and gas fields, and geologic provinces of the South
America region. Tech. rep. | |
dc.relation | Schlumberger (2019). Petrel 2019. | |
dc.relation | Schmidt, S., C. Plonka, H. J. Götze, and B. Lahmeyer (2011). “Hybrid modelling
of gravity, gravity gradients and magnetic fields”. Geophysical Prospecting 59.6,
pp. 1046–1051. DOI: 10.1111/j.1365-2478.2011.00999.x. | |
dc.relation | Scholz, C. H. (2019). The Mechanics of Earthquakes and Faulting. 3rd Editio. Cambridge
University Press, p. 471. | |
dc.relation | Schön, J. H. (2011). Physical Properties of Rocks: A Workbook. Elsevier, p. 494. | |
dc.relation | Schorlemmer, D. and J. Woessner (2008). “Probability of detecting an earthquake”.
Bulletin of the Seismological Society of America 98.5, pp. 2103–2117. DOI: 10.1785/
0120070105. | |
dc.relation | Schulte-Pelkum, V., G. Monsalve, A. Sheehan, M. R. Pandey, S. Sapkota, R. Bilham,
and F. Wu (2005). “Imaging the Indian subcontinent beneath the Himalaya”. Nature
435.7046, pp. 1222–1225. DOI: 10.1038/nature03678. | |
dc.relation | SGC (2020). Consulta Catálogo Sísmico. URL: https://www2.sgc.gov.co/sgc/
sismos/Paginas/catalogo-sismico.aspx (visited on 03/23/2020). | |
dc.relation | SGC and GEM (2018). Modelo Nacional de Amenaza Sísmica de Colombia. Servicio Geológico
Colombiano (SGC) – Grupo de Amenaza Sísmica. Fundación Global Earthquake Model
(GEM). Tech. rep., p. 196. URL: https://amenazasismica.sgc.gov.co/. | |
dc.relation | Shapiro, N. M. and M. H. Ritzwoller (2004). “Thermodynamic constraints on seismic
inversions”. Geophysical Journal International 157.3, pp. 1175–1188. DOI: 10.1111/
j.1365-246X.2004.02254.x. | |
dc.relation | Sinton, C. W., R. A. Duncan, M. Storey, J. Lewis, and J. J. Estrada (1998). “An oceanic
flood basalt province within the Caribbean plate”. Earth and Planetary Science Letters
155.3-4, pp. 221–235. DOI: 10.1016/s0012-821x(97)00214-8. | |
dc.relation | Siravo, G., C. Faccenna, M. Gérault, T. W. Becker, M. G. Fellin, F. Herman, and P. Molin
(2019). “Slab flattening and the rise of the Eastern Cordillera, Colombia”. Earth and
Planetary Science Letters 512, pp. 100–110. DOI: 10.1016/j.epsl.2019.02.002. | |
dc.relation | Stüwe, K. (2007). Geodynamics of the lithosphere: An introduction. 2nd. Springer, pp. 1–493. | |
dc.relation | Suenaga, N., S. Yoshioka, T. Matsumoto, V. C. Manea, M. Manea, and Y. Ji (2019).
“Two-dimensional thermal modeling of the Philippine Sea plate subduction in
Central Japan: implications for gap of low-frequency earthquakes and tectonic
tremors”. Journal of Geophysical Research: Solid Earth 124.7, pp. 6848–6865. DOI: 10.
1029/2018JB017068. | |
dc.relation | Symithe, S., E. Calais, J. B. De Chabalier, R. Robertson, and M. Higgins (2015).
“Current block motions and strain accumulation on active faults in the Caribbean”.
Journal of Geophysical Research B: Solid Earth 120.5, pp. 3748–3774. DOI: 10.1002/
2014JB011779. | |
dc.relation | Syracuse, E. M., P. E. van Keken, G. A. Abers, D. Suetsugu, C. Bina, T. Inoue, D. Wiens,
and M. Jellinek (2010). “The global range of subduction zone thermal models”.
Physics of the Earth and Planetary Interiors 183.1-2, pp. 73–90. DOI: 10 . 1016 / j .
pepi.2010.02.004. | |
dc.relation | Tenzer, R. and V. Gladkikh (2014). “Assessment of density variations of marine
sediments with ocean and sediment depths”. The Scientific World Journal 2014. DOI:
10.1155/2014/823296. | |
dc.relation | Tenzer, R., P. Vajda, and Hamayun (2010). “A mathematical model of the
bathymetry-generated external gravitational field”. Contributions to Geophysics and
Geodesy 40.1, pp. 31–44. DOI: 10.2478/v10126-010-0002-8. | |
dc.relation | Turcotte, D. and G. Schubert (2002). Geodynamics, p. 456. DOI: 10 . 1017 /
CBO9781107415324.004. | |
dc.relation | Uieda, L. (2015). Tesseroids v1.1.1: Forward modeling of gravitational fields in spherical
coordinates. DOI: 10 . 5281 / zenodo . 15800. URL: https : / / github . com /
leouieda/tesseroids. | |
dc.relation | Uieda, L., V. C. F. Barbosa, and C. Braitenberg (2016). “Tesseroids: Forward-modeling
gravitational fields in spherical coordinates”. Geophysics 81.5. DOI: 10 . 1190 /
geo2015-0204.1. | |
dc.relation | Uieda, L., V. C. Oliveira Jr, and V. C. F. Barbosa (2013). “Modeling the Earth with
Fatiando a Terra”. Proceedings of the 12th Python in Science Conference Scipy, pp. 90–96. | |
dc.relation | UNAVCO (2019). Plate Motion Calculator. URL: https : / / www . unavco . org /
software/geodetic- utilities/plate- motion- calculator/platemotion-calculator.html (visited on 11/18/2017). | |
dc.relation | Urlaub, M., P. J. Talling, and D. G. Masson (2013). “Timing and frequency of
large submarine landslides: Implications for understanding triggers and future
geohazard”. Quaternary Science Reviews 72, pp. 63–82. DOI: 10 . 1016 / j .
quascirev.2013.04.020. | |
dc.relation | U.S. Geological Survey (2018). Search Earthquake Catalog. URL: https://earthquake.
usgs.gov/earthquakes/search/ (visited on 05/10/2018). | |
dc.relation | Van Benthem, S., R. Govers, W. Spakman, and R. Wortel (2013). “Tectonic evolution and
mantle structure of the Caribbean”. Journal of Geophysical Research: Solid Earth 118.6,
pp. 3019–3036. DOI: 10.1002/jgrb.50235. | |
dc.relation | Van Der Lelij, R., R. A. Spikings, A. C. Kerr, A. Kounov, M. Cosca, D. Chew, and
D. Villagomez (2010). “Thermochronology and tectonics of the Leeward Antilles:
Evolution of the southern Caribbean Plate boundary zone”. Tectonics 29.6. DOI: 10.
1029/2009TC002654. | |
dc.relation | Vargas, C. A. (2012). “Evaluating total yet-to-find hydrocarbon volume in Colombia”.
Earth Sciences Research Journal 16.Special, pp. 1–562. | |
dc.relation | Vargas, C. A. and P. Mann (2013). “Tearing and breaking off of subducted slabs as the
result of collision of the Panama arc-indenter with Northwestern South America”.
Bulletin of the Seismological Society of America 103.3, pp. 2025–2046. DOI: 10.1785/
0120120328. | |
dc.relation | Vilà, M., M. Fernández, and I. Jiménez-Munt (2010). “Radiogenic heat production
variability of some common lithological groups and its significance to lithospheric
thermal modeling”. Tectonophysics 490.3-4, pp. 152–164. DOI: 10.1016/j.tecto.
2010.05.003. | |
dc.relation | Wagner, L. S., J. S. Jaramillo, L. F. Ramírez-Hoyos, G. Monsalve, A. Cardona, and T. W.
Becker (2017). “Transient slab flattening beneath Colombia”. Geophysical Research
Letters 44.13, pp. 6616–6623. DOI: 10.1002/2017GL073981. | |
dc.relation | Wang-Pin Chen and P. Molnar (1983). “Focal depths of intracontinental and intraplate
earthquakes and their implications for the thermal and mechanical properties of the
lithosphere.” Journal of Geophysical Research 88.B5, pp. 4183–4214. DOI: 10.1029/
jb088ib05p04183. | |
dc.relation | Watts, A. B. (1978). “An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor
Seamount Chain”. Journal of Geophysical Research: Solid Earth 83.B12, pp. 5989–6004.
DOI: 10.1029/jb083ib12p05989. | |
dc.relation | Watts, A. B. (2007). “Crust and Lithosphere Dynamics”. Treatise on Geophysics 5, pp. 1–48. | |
dc.relation | Watts, A. B., U. S. Ten Brink, P. Buhl, and T. M. Brocher (1985). “A multichannel seismic
study of lithospheric flexure across the Hawaiian-Emperor seamount chain”. Nature
315.6015, pp. 105–111. DOI: 10.1038/315105a0. | |
dc.relation | Watts, B (1992). “The effective elastic thickness of the lithosphere and the evolution of
foreland basins”. Basin Research 4, pp. 169–178. | |
dc.relation | Weatherall, P., K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere,
D. Chayes, V. Ferrini, and R. Wigley (2015). “A new digital bathymetric model
of the world’s oceans”. Earth and Space Science 2, pp. 331–345. DOI: 10 . 1002 /
2015EA000107. | |
dc.relation | Wessel, P., D. Sandwell, and S.-S. Kim (2010). “The Global Seamount Census”.
Oceanography 23.1, pp. 24–33. DOI: 10.5670/oceanog.2010.60. | |
dc.relation | Wessel, P., W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe (2013). “Generic mapping
tools: Improved version released”. Eos 94.45, pp. 409–410. DOI: 10 . 1002 /
2013EO450001. | |
dc.relation | Whittaker, J. M., A. Goncharov, S. E. Williams, R. D. Muller, and G. Leitchenkov (2013).
“Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean”. Geochemistry, Geophysics, Geosystems 14.8, pp. 3297–3305. DOI: 10.1002/ggge.20181. | |
dc.relation | Woessner, J. and S. Wiemer (2005). “Assessing the quality of earthquake catalogues:
Estimating the magnitude of completeness and its uncertainty”. Bulletin of the
Seismological Society of America 95.2, pp. 684–698. DOI: 10.1785/0120040007. | |
dc.relation | Yan, Z., L. Chen, X. Xiong, K. Wang, R. Xie, and H. T. Hsu (2020). “Observations and
modeling of flat subduction and its geological effects”. Science China Earth Sciences.
DOI: 10.1007/s11430-019-9575-2. | |
dc.relation | Yarce, J., G. Monsalve, T. W. Becker, A. Cardona, E. Poveda, D. Alvira, and O.
Ordoñez-Carmona (2014). “Seismological observations in Northwestern South
America: Evidence for two subduction segments, contrasting crustal thicknesses
and upper mantle flow”. Tectonophysics 637, pp. 57–67. DOI: 10.1016/j.tecto.
2014.09.006. URL: http://linkinghub.elsevier.com/retrieve/pii/
S00401951140050 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | New insights from satellite gravimetry and thermal modelling on the oceanic lithospheric structure: the Caribbean plate as a case study | |
dc.type | Tesis | |