dc.contributor | Quijano Nieto, Bernardo alfonso | |
dc.contributor | Perdomo Charry, Oscar Julián | |
dc.contributor | González Osorio, Fabio Augusto | |
dc.contributor | Grupo de Investigacion en Oftalmología Básica y Clínica | |
dc.creator | Padilla Pantoja, Fabio Daniel | |
dc.date.accessioned | 2022-01-31T19:08:41Z | |
dc.date.available | 2022-01-31T19:08:41Z | |
dc.date.created | 2022-01-31T19:08:41Z | |
dc.date.issued | 2022-01-30 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80817 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Objetivo: Desarrollar un método computacional basado en la estrategia de aprendizaje profundo (‘Deep Learning’, DL) para realizar un diagnóstico etiológico automatizado de edema macular (EM) a partir la evaluación de imágenes adquiridas por tomografía de coherencia óptica (OCT), clasificándolas entre edema macular diabético (EMD), degeneración macular exudativa (DMRE(e)) y EM secundario a oclusiones vasculares (EM 2a OVR). Diseño: Desarrollo de algoritmo de inteligencia artificial (IA) para la clasificación automatizada de enfermedades retinianas utilizando datos retrospectivos. Participantes: Se incluyeron 1343 imágenes de OCT de mácula, obtenidas de la base de datos de pacientes atendidos en una Clínica de Oftalmología y de bases de datos de libre acceso, que se utilizaron para entrenar y probar un modelo de inteligencia artificial para detectar EM y su diagnóstico etiológico. Métodos: Las imágenes de OCT fueron marcadas y segmentadas manualmente por dos oftalmólogos expertos, etiquetando biomarcadores (BMs) y clasificándolas en función de la enfermedad correspondiente (EMD, DMRE(e), EM 2a OVR) o como imágenes normales. Se entrenó y validó un modelo de inteligencia artificial usando el 80% de las imágenes y se probó con el 20% de las imágenes restantes. Nuestro método se desarrolló siguiendo cuatro fases consecutivas: segmentación e identificación de BMs, combinación de BMs y predicción de las máscaras, extracción de características mediante aplicación de redes neuronales convolucionales (CNNs) para la clasificación binaria para cada enfermedad y, finalmente, método de clasificación multiclase de las tres enfermedades. Principales medidas de resultados: Exactitud, área bajo la curva (AUC), sensibilidad y especificidad. Resultados: La exactitud diagnóstica lograda por el modelo para clasificar DMRE(e) fue 0.965, y para EMD, EM 2a OVR y controles, los valores fueron 0.94, 0.93 y 0.925, respectivamente. Los valores de área bajo la curva para EMD, DMRE(e), EM 2a OVR e imágenes controles fueron 0.99, 0.98, 0.96 y 0.97, respectivamente. Los valores de sensibilidad y especificidad para la clasificación de las tres enfermedades exudativas retinianas y para imágenes normales fueron comparables con el desempeño de un oftalmólogo experto, de acuerdo con lo reportado en la literatura. Conclusión: El modelo automatizado propuesto con enfoque de DL puede identificar imágenes normales y con edema macular a partir de escaneos adquiridos por OCT de mácula, y permite clasificar su causa entre las tres principales enfermedades exudativas retinianas con alta precisión y confiabilidad. (Texto tomado de la fuente). | |
dc.description.abstract | Purpose: To develop a computational method based on Deep Learning (DL) to automatically make an etiological diagnosis of macular edema (ME) from the evaluation of optical coherence tomography (OCT) scans, by classifying the images between diabetic macular edema (DME) and ME caused by neovascular age-related macular degeneration (nAMD) and retinal vein occlusion (RVO). Design: Algorithm development for retinal disease classification using retrospective data. Participants: A total of 1343 OCT scans, obtained from data repositories of patients attended in an Ophthalmology Clinic and open-access databases, were used to train and test an artificial intelligence (AI) model to detect ME and its etiological diagnosis. Methods: The OCT scans were manually annotated with biomarkers (BMs) and labeled with disease (DME, nAMD, RVO) or control, by two expert ophthalmologists. A DL model was trained and validated using 80% of the images and tested on the remaining 20% of them. Our method was developed by following four consecutive phases: segmentation and identification of BMs, combination of BMs and mask predictions, feature extraction with convolutional neural networks (CNNs) to achieve binary classification for each disease and, finally, multiclass classification of three diseases and control images. Main Outcome Measures: Accuracy, area under the curve (AUC), sensitivity and specificity. Results: The classification accuracy of the model for nAMD was 0.97, and for DME, RVO associated with ME and control, the values were 0.94, 0.93 and 0.93, respectively. AUC values were 0.99, 0.98, 0.96 and 0.97 respectively. Sensitivity and specificity were comparable with the performance of an expert ophthalmologist, according to the literature. Conclusion: The proposed DL model may identify normal images and ME from OCT scans and classify its cause between three major exudative retinal diseases with high accuracy and reliability. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Medicina - Especialidad en Oftalmología | |
dc.publisher | Departamento de Cirugía | |
dc.publisher | Facultad de Medicina | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Bireme | |
dc.relation | Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 2018;63:20-68. | |
dc.relation | Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5(12):e1221-e1234. | |
dc.relation | Johnson MW. Etiology and Treatment of Macular Edema. Am J Ophthalmol. 2009;147(1). | |
dc.relation | Catier A, Tadayoni R, Paques M, et al. Characterization of macular edema from various etiologies by optical coherence tomography. Am J Ophthalmol. 2005;140(2):200.e1-200.e9. | |
dc.relation | World Population Prospects - Population Division - United Nations. Recuperado el 28 de Noviembre de 2021 de https://population.un.org/wpp/. | |
dc.relation | Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5(9):e888-e897. | |
dc.relation | Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta- analysis. Lancet Glob Heal. 2014;2(2). | |
dc.relation | Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition. Diabetes Res Clin Pract. 2019;157. | |
dc.relation | Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health. 2019;9(1). | |
dc.relation | Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed Opt Express. 2017;8(3):1638. | |
dc.relation | Resnikoff S, Lansingh VC, Washburn L, et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol. 2020;104(4):588-592. | |
dc.relation | Househ MS, Aldosari B, Alanazi A, et al. Big data, big problems: A healthcare perspective. In: Studies in Health Technology and Informatics. Vol 238. IOS Press 2017:36-39. | |
dc.relation | Stein JD, Lum F, Lee PP, et al. Use of health care claims data to study patients with ophthalmologic conditions. Ophthalmology. 2014;121(5):1134-1141. | |
dc.relation | Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175. | |
dc.relation | Yang LWY, Ng WY, Foo LL, et al. Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions. Curr Opin Ophthalmol. 2021;32(5):397-405. | |
dc.relation | Wang SY, Pershing S, Lee AY. Big data requirements for artificial intelligence. Curr Opin Ophthalmol. 2020;31(5):318-323. | |
dc.relation | O’Byrne C, Abbas A, Korot E, Keane PA. Automated deep learning in ophthalmology: AI that can build AI. Curr Opin Ophthalmol. 2021;32(5):406-412. | |
dc.relation | Kapoor R, Walters SP, Al-Aswad LA. The current state of artificial intelligence in ophthalmology. Surv Ophthalmol. 2019;64(2):233-240. | |
dc.relation | Rajinikanth V, Sivakumar R, Hemanth DJ, et al. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evol Intell 2021 142. 2021;14(2):1163-1171. | |
dc.relation | Zhong P, Wang J, Guo Y, et al. Multiclass retinal disease classification and lesion segmentation in OCT B-scan images using cascaded convolutional networks. Appl Opt. 2020;59(33):10312-10320. | |
dc.relation | Fang L, Wang C, Li S, et al. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Trans Med Imaging. 2019 Aug;38(8):1959-1970. | |
dc.relation | Kuwayama S, Ayatsuka Y, Yanagisono D, et al. Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images. J Ophthalmol. 2019;2019. | |
dc.relation | Bhatia KK, Graham MS, Terry L, et al. DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE: Validation on Independent, Multicenter Data. Retina. 2020 Aug;40(8):1549-1557. | |
dc.relation | Liu X, Bai Y, Cao J, et al. Joint disease classification and lesion segmentation via one-stage attention-based convolutional neural network in OCT images. Biomed Signal Process Control. 2022;71:103087. | |
dc.relation | Das UN. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Arch Med Sci. 2016;12(5):1142-1157. | |
dc.relation | Bhagat N, Grigorian RA, Tutela A, et al. Diabetic Macular Edema: Pathogenesis
and Treatment. Surv Ophthalmol. 2009;54(1):1-32. | |
dc.relation | Bolz M, Kriechbaum K, Simader C, et al. In Vivo Retinal Morphology after Grid Laser
Treatment in Diabetic Macular Edema. Ophthalmology. 2010;117(3):538-544. | |
dc.relation | Battaglia Parodi M, Bandello F. Branch retinal vein occlusion: Classification and
treatment. Ophthalmologica. 2009;223(5):298-305. | |
dc.relation | Funk M, Kriechbaum K, Prager F, et al. Intraocular concentrations of growth factors
and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab.
Investig Ophthalmol Vis Sci. 2009;50(3):1025-1032. | |
dc.relation | Tranos PG, Wickremasinghe SS, Stangos NT, et al. Macular edema. Surv
Ophthalmol. 2004;49(5):470-490. | |
dc.relation | Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate
endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther.
2001;69(3):89-95. | |
dc.relation | Califf RM. Biomarker definitions and their applications. Exp Biol Med.
2018;243(3):213-221. | |
dc.relation | Lai TT, Hsieh YT, Yang CM, et al. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Sci Rep. 2019;9(1). | |
dc.relation | Wintergerst MWM, Schultz T, Birtel J, et al. Algorithms for the automated analysis of age-related macular degeneration biomarkers on optical coherence tomography: A systematic review. Transl Vis Sci Technol. 2017;6(4). | |
dc.relation | Keane PA, Patel PJ, Liakopoulos S, et al. Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol. 2012;57(5):389-414. | |
dc.relation | Kwan CC, Fawzi AA. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Curr Diab Rep. 2019;19(10). | |
dc.relation | Lee H, Jang H, Choi YA, et al. Association between soluble cd14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Investig Ophthalmol Vis Sci. 2018;59(2):715-721. | |
dc.relation | Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography- based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur J Ophthalmol. 2020;30(1):8-18. | |
dc.relation | Yiu G, Welch RJ, Wang Y, et al. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmol Retin. 2020;4(1):67-76. | |
dc.relation | Yu C, Xie S, Niu S, et al. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Med Phys. 2019;46(10):4502-4519. | |
dc.relation | Ozer MD, Batur M, Mesen S, et al. Evaluation of the Initial Optical Coherence Tomography Parameters in Anticipating the Final Visual Outcome of Central Retinal Vein Occlusion. J Curr Ophthalmol. 2020;32(1):46-52. | |
dc.relation | Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1-29. | |
dc.relation | Currie G, Hawk KE, Rohren E, et al. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J Med Imaging Radiat Sci. 2019;50(4):477- 487. | |
dc.relation | Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA - J Am Med Assoc. 2018;320(11):1192-1193. | |
dc.relation | Lakhani P, Gray DL, Pett CR, et al. Hello World Deep Learning in Medical Imaging. J Digit Imaging. 2018;31(3):283-289. | |
dc.relation | Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. | |
dc.relation | Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-e273. | |
dc.relation | Perdomo Charry OJ, González Osorio FA. A Systematic Review of Deep Learning Methods Applied to Ocular Images. Cienc e Ing Neogranadina. 2019;30(1):9-26. | |
dc.relation | Maninis KK, Pont-Tuset J, Arbeláez P, et al. Deep retinal image understanding. In:
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9901 LNCS. Springer Verlag; 2016:140-148. | |
dc.relation | Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digit Med. 2018;1(1). | |
dc.relation | Schlegl T, Waldstein SM, Bogunovic H, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018;125(4):549-558. | |
dc.relation | Roy AG, Conjeti S, Karri SPK, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017;8(8):3627. | |
dc.relation | Alsaih K, Yusoff MZ, Tang TB, et al. Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans. In: Institute of Electrical and Electronics Engineers (IEEE); 2020:68-72. | |
dc.relation | Gao K, Niu S, Ji Z, et al. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Comput Methods Programs Biomed. 2019;176:69-80. | |
dc.relation | Guan L, Yu K, Chen X. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE. In: Angelini ED, Landman BA, eds. Medical Imaging 2019: Image Processing. Vol 10949. SPIE; 2019:110. | |
dc.relation | Chakravarthy U, Goldenberg D, Young G, et al. Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration. In: Ophthalmology. Vol 123. Elsevier Inc.; 2016:1731-1736. | |
dc.relation | Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32(1):77-85. | |
dc.relation | Iannetti L, Spinucci G, Abbouda A, et al. Spectral-Domain Optical Coherence Tomography in Uveitic Macular Edema: Morphological Features and Prognostic
Factors. Ophthalmologica. 2012;228(1):13-8 | |
dc.relation | Munk M, Sacu S, Huf W, et al. Differential diagnosis of macular edema of different
pathophysiologic origins by spectral domain optical coherence tomography. Retina.
2014;34(11):2218-2232. | |
dc.relation | Hassan B, Qin S, Ahmed R, et al. Deep learning based joint segmentation and
characterization of multi-class retinal fluid lesions on OCT scans for clinical use in
anti-VEGF therapy. Comput Biol Med. 2021;136:104727. | |
dc.relation | Tsuji T, Hirose Y, Fujimori K, et al. Classification of optical coherence tomography
images using a capsule network. BMC Ophthalmol. 2020;20(1):114. | |
dc.relation | Karri SP, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-
related macular degeneration. Biomed Opt Express. 2017;8(2):579-592. | |
dc.relation | Sanchez YD, Nieto B, Padilla FD, et al. Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans. In: Brieva J, Lepore N, Romero Castro E, Linguraru MG, eds. 16th International Symposium on Medical Information Processing and Analysis. Vol
11583. SPIE; 2020:38. | |
dc.relation | Kermany DS, Goldbaum M, Cai W et al. Identifying Medical Diagnoses and
Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122-
1131.e9. Dataset disponible en http://dx.doi.org/10.17632/rscbjbr9sj.3 | |
dc.relation | Farsiu S, Chiu SJ, O’Connell RV, et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology. 2014;121(1):162-172. Dataset disponible en línea en:
https://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm | |
dc.relation | Zou KH, Warfield SK, Bharatha A, et al. Statistical Validation of Image Segmentation
Quality Based on a Spatial Overlap Index. Acad Radiol. 2004;11(2):178-189. | |
dc.relation | Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. Proc IEEE Comput Soc
Conf Comput Vis Pattern Recognit. 2018:7132-7141. | |
dc.relation | Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 31st AAAI Conf Artif Intell AAAI 2017. 2016:4278-4284. | |
dc.relation | Softmax Function Definition | DeepAI. Recuperado el 28 de noviembre de 2021 de https://deepai.org/machine-learning-glossary-and-terms/softmax-layer. | |
dc.relation | Ministerio de Salud y Protección Social. Resolución 8430 de 1993. Artículo 10, pp. 3. Bogotá DC; 1993. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RE SOLUCION-8430-DE-1993.PDF | |
dc.relation | Asociación Médica Mundial. Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. Fortaleza; 2013. Disponible
en: https://www.wma.net/es/policies-post/declaracion-de-helsinki- de-la-amm- principios-eticos-para-las-investigaciones-medicas-en-seres- humanos/ | |
dc.relation | Congreso de la República de Colombia. Ley Estatutaria 1581 de 2012. Artículos 5 y 6, pp. 4. Bogotá DC; 2012. Disponible en:
https://www.defensoria.gov.co/public/Normograma%202013_html/Normas/L ey_1581_2012.pdf | |
dc.relation | Organización Panamericana de la Salud (OPS/OMS), Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS). Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos, 4° Edición. [Internet] Ginebra: CIOMS; 2016. Disponible en: cioms.ch/wp-content/uploads/2017/12/CIOMS- EthicalGuideline_SP_INTERIOR- FINAL.pdf | |
dc.relation | Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An Advanced Architecture for Medical Image Segmentation. 2019 IEEE Int Symp Multimed. December 2019:225- 2255. | |
dc.relation | Chen Z, Li D, Shen H, et al. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration. Opt Laser Technol. 2020;122:105830. | |
dc.relation | Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int J Comput Vis. 2016;128(2):336-359. | |
dc.relation | Li F, Chen H, Liu Z, et al. Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed Opt Express.
2019;10(12):6204. | |
dc.relation | Sundararajan M, Schallhorn JM, Doan T, et al. Changes to ophthalmic clinical care
during the coronavirus disease 2019 pandemic. Curr Opin Ophthalmol.
2021;32(6):561-566. | |
dc.relation | Gallardo M, Munk MR, Kurmann T, et al. Machine Learning Can Predict Anti-VEGF
Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema. Ophthalmol Retin. 2021;5(7):604-624. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Clasificación etiológica automatizada de edema macular mediante estrategia de ‘Deep Learning’ aplicada en imágenes adquiridas por OCT de mácula | |
dc.type | Trabajo de grado - Especialidad Médica | |