dc.contributor | Sandoval-Hernandez, Adrián Gabriel | |
dc.contributor | Ávila Murillo, Mónica Constanza | |
dc.contributor | Muerte Celular | |
dc.contributor | Productos Naturales Vegetales Bioactivos y Quimica EcoIogica | |
dc.creator | Bustos Rangel, Angie Milena | |
dc.date.accessioned | 2021-09-23T17:45:28Z | |
dc.date.available | 2021-09-23T17:45:28Z | |
dc.date.created | 2021-09-23T17:45:28Z | |
dc.date.issued | 2021-07-13 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80277 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La enfermedad de Alzheimer es la demencia más común en la población mundial, tiene una etiología desconocida y no cuenta con un tratamiento efectivo. Se caracteriza por la agregación del péptido amiloide β y Tau hiperfosforilado, aumento de radicales libres, desregulación lipídica y exitotoxicidad. Teniendo en cuenta esto, los receptores X hepáticos, se postulan como una diana terapéutica, ya que son factores de transcripción que regulan genes encargados de la homeostasis de colesterol y se asocian con mecanismos de eliminación del péptido amiloide β, una menor fosforilación de Tau y una menor respuesta inflamatoria, etc. En este trabajo, se contó con 82 extractos de Angiospermas basales colombianas, a los que se les evaluó su actividad agonista sobre los receptores nucleares LXR β, actividad inhibitoria de acetil colinesterasa y actividad antioxidante, seguida de la evaluación in vivo del efecto protector frente a ambientes tóxicos de paraquat, ceramida y glutamato. Se encontró que, los extractos de Z. martinicense, Zanthoxylum sp., Z. rohifolium, N. reticulata, N. membranácea, Nectandra sp., Myristicaceae sp. 1 y Myristicaceae sp. 2 tienen un efecto agonista sobre LXR β, acompañado de una actividad antioxidante. Adicionalmente, el extracto etanólico de Myriticaceae sp.2 y las fracciones de Z. rhoifolium, Z. martinicense y Zanthoxylum sp., mostraron una marcada actividad inhibitoria de AChE. Por último, Z. rohifolium, disminuye el efecto de concentraciones tóxicas de glutamato. Lo que deja en evidencia el potencial de estos extractos naturales para el tratamiento de la EA. (texto tomado de la fuente) | |
dc.description.abstract | Alzheimer's disease is the most common dementia in the world, has an unknown etiology and d oes not have effective treatment. It is characterized by the aggregation of amyloid peptide β and tau hyperphosphorylation, increased free radicals, lipid deregulation, and excitotoxicity. Considering this, liver X receptors are postulated as a therapeutic target, as they are transcription factors that regulate genes responsible for cholesterol homeostasis and are associated with mechanisms of removal of amyloid peptide β, lower phosphorylation of Tau and lower inflammatory response, etc. In this work, 82 extracts of basal Angiosperms obtained in Colombia were counted, which were evaluated for their agonist activity on LXR β nuclear receptors, continuing with in vitro evaluation of anti-acetylcholinesterase activity and antioxidant activity, followed by in vivo assessment of the protective effect against toxic environments of paraquat, ceramide, and glutamate. Finding that extracts from Z. martinicense, Zanthoxylum sp. Z. rohifolium, N. reticulata, N. membranácea, Nectandra sp., Myristicaceae sp. 1 and Myristicaceae sp. 2 have an agonist effect on LXR β, accompanied by antioxidant activity and particularly, the ethanolic extract of Miriticaceae sp.2 and the fractions of Z. rhoifolium, Z. martinicense and Zanthoxylum sp., showed a marked inhibitory activity of AChE and Z. rohifolium, decreases the effect of toxic concentrations of glutamate. Which highlights the potential of these natural extracts for the treatment of EA. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Departamento de Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abo, K. A., Fred-Jaiyesimi, A. A., & Jaiyesimi, A. E. A. (2008). Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. Journal of Ethnopharmacology, 115(1), 67–71. https://doi.org/10.1016/j.jep.2007.09.005 | |
dc.relation | Ahmad, S., Ullah, F., Sadiq, A., Ayaz, M., Imran, M., Ali, I., Zeb, A., Ullah, F., & Shah, M. R. (2016). Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complementary and Alternative Medicine, 16(1), 1–11. https://doi.org/10.1186/s12906-016-0998-z | |
dc.relation | Alberdi, E., Sánchez-Gómez, M. V., Cavaliere, F., Pérez-Samartín, A., Zugaza, J. L., Trullas, R., Domercq, M., & Matute, C. (2010). Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264–272. https://doi.org/10.1016/j.ceca.2009.12.010 | |
dc.relation | Albert, M. S., DeKosky, S. T., Dicksond, D., Dubois, B., Feldmanf, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease Marilyn. Journal of Alzheimer’s Dement, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008. | |
dc.relation | Andersson, S., Gustafsson, N., Warner, M., & Gustafsson, J.-A. (2005). Inactivation of liver X receptor leads to adult-onset motor neuron degeneration in male mice. Proceedings of the National Academy of Sciences, 102(10), 3857–3862. https://doi.org/10.1073/pnas.0500634102 | |
dc.relation | Apfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., & Pfahl, M. (1994a). A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular and Cellular Biology, 14(10), 7025–7035. https://doi.org/10.1128/MCB.14.10.7025 | |
dc.relation | Apfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., & Pfahl, M. (1994b). A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular and Cellular Biology, 14(10), 7025–7035. http://www.ncbi.nlm.nih.gov/pubmed/7892230 | |
dc.relation | Arboleda, G., Morales, L. C., Benítez, B., & Arboleda, H. (2009). Regulation of ceramide-induced neuronal death: Cell metabolism meets neurodegeneration. Brain Research Reviews, 59(2), 333–346. https://doi.org/10.1016/j.brainresrev.2008.10.001 | |
dc.relation | Ashford, J. W., Sherman, K. A., & Kumar, V. (1989). Advances in Alzheimer therapy: Cholinesterase inhibitors. Neurobiology of Aging, 10(1), 99–105. https://doi.org/10.1016/S0197-4580(89)80017-X Association, A. (2020). World Alzheimer Report 2019. In Alzheimer’s & Dementia (Vol. 16, Issue 3). https://doi.org/10.1002/alz.12068 | |
dc.relation | Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 | |
dc.relation | Atta-ur-Rahman, & Choudhary, M. I. (2001). Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure and Applied Chemistry, 73(3), 555–560. https://doi.org/10.1351/pac200173030555 | |
dc.relation | Azevedo, N. R., Santos, S. C., Miranda, E. G. D. E., Ferri, P. H., Quimica, I. De, Federal, U., Goi, D., & Samambaia, C. (1997). A 2-ACYLCYCLOHEXANE-1,3-DIONE FROM VIROLA OLEIFERA NEUCiRIO. 30, 1375–1377. | |
dc.relation | Báez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3 | |
dc.relation | Bales, K. R., Du, Y., Holtzman, D., Cordell, B., & Paul, S. M. (n.d.). Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Abeta-induced glial activation, NF-kappaB, and apolipoprotein E. Neurobiology of Aging, 21(3), 427–432; discussion 451-3. | |
dc.relation | Barbosa Filho, J. M., Medeiros, K. C. P., Diniz, M. de F. F. M., Batista, L. M., Athayde-Filho, P. F., Silva, M. S., Cunha, E. V. L. da, Almeida, J. R. G. S., & Quintans-Júnior, L. J. (2006). Natural products inhibitors of the enzyme acetylcholinesterase. Revista Brasileira de Farmacognosia, 16(2), 258–285. https://doi.org/10.1590/s0102-695x2006000200021 | |
dc.relation | Bartus, R., Dean, R., Beer, B., & Lippa, A. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414. https://doi.org/10.1126/science.7046051 | |
dc.relation | Bartus, R. T., & Johnson, H. R. (1976). Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacology, Biochemistry and Behavior, 5(1), 39–46. https://doi.org/10.1016/0091-3057(76)90286-0 | |
dc.relation | Beaven, S. W., & Tontonoz, P. (2006). Nuclear Receptors in Lipid Metabolism: Targeting the Heart of Dyslipidemia. Annual Review of Medicine, 57(1), 313–329. https://doi.org/10.1146/annurev.med.57.121304.131428 | |
dc.relation | Bernard, C., Helmer, C., Dilharreguy, B., Amieva, H., Auriacombe, S., Dartigues, J. F., Allard, M., & Catheline, G. (2014). Time course of brain volume changes in the preclinical phase of Alzheimer’s disease. Alzheimer’s and Dementia, 10(2), 143-151.e1. https://doi.org/10.1016/j.jalz.2013.08.279 | |
dc.relation | Berridge, M. J. (2010). Calcium hypothesis of Alzheimer’s disease. Pflugers Archiv European Journal of Physiology, 459(3), 441–449. https://doi.org/10.1007/s00424-009-0736-1 | |
dc.relation | Bezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31(9), 454–463. https://doi.org/10.1016/j.tins.2008.06.005 | |
dc.relation | Binder, L. I., Frankfurter, A., & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous central nervous. Journal of Cell Biology, 101(4), 1371–1378. https://doi.org/10.1083/jcb.101.4.1371 | |
dc.relation | Blanco-Ayala, T., Andérica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48(6), 623–640. https://doi.org/10.3109/10715762.2014.899694 | |
dc.relation | Bottino, C. M., Carvalho, I. A., Alvarez, A. M. M., Avila, R., Zukauskas, P. R., Bustamante, S. E., Andrade, F. C., Hototian, S. R., Saffi, F., & Camargo, C. H. (2005). Cognitive rehabilitation combined with drug treatment in Alzheimer’s disease patients: a pilot study. Clinical Rehabilitation, 19(8), 861–869. https://doi.org/10.1191/0269215505cr911oa | |
dc.relation | Bourguet, W., Vivat, V., Wurtz, J. M., Chambon, P., Gronemeyer, H., & Moras, D. (2000). Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Molecular Cell, 5(2), 289–298. http://www.ncbi.nlm.nih.gov/pubmed/10882070 | |
dc.relation | Bramlett, K. S., Houck, K. A., Borchert, K. M., Dowless, M. S., Kulanthaivel, P., Zhang, Y., Beyer, T. P., Schmidt, R., Thomas, J. S., Michael, L. F., Barr, R., Montrose, C., Eacho, P. I., Cao, G., & Burris, T. P. (2003). A natural product ligand of the oxysterol receptor, liver X receptor. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 291–296. https://doi.org/10.1124/jpet.103.052852 | |
dc.relation | Bu, G. (2009). Apolipoprotein e and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nature Reviews Neuroscience, 10(5), 333–344. https://doi.org/10.1038/nrn2620 | |
dc.relation | Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33(1), 95–130. https://doi.org/10.1016/S0165-0173(00)00019-9 | |
dc.relation | Bus, J. S., Aust, S. D., & Gibson, J. E. (1974). Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochemical and Biophysical Research Communications, 58(3), 749–755. https://doi.org/10.1016/S0006-291X(74)80481-X | |
dc.relation | Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a ser. Free Radical Biology and Medicine, 32(11), 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3 C. | |
dc.relation | Cárdenas-Aguayo, M. del, C. Silva-Lucero, M. del, Cortes-Ortiz, M., Jimnez-Ramos, B., Gmez-Virgilio, L., Ramrez-Rodrguez, G., Vera- Arroyo, E., Fiorentino-Prez, R., Garca, U., Luna-Muoz, J., & A. Meraz Ros, M. (2014). Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity. In Neurochemistry. InTech. https://doi.org/10.5772/57398 | |
dc.relation | Cabrera Martinez, X. A., & Suarez, L. E. C. (2019). METABOLITOS SECUNDARIOS OBTENIDOS DE LA FAMILIA MYRISTICACEAE QUE PRODUCEN INHIBICIÓN ENZIMÁTICA Y ACTIVIDAD BIOLÓGICA. Cai, Z. (2016). Role of berberine in Alzheimer ’ s disease. 2509–2520. | |
dc.relation | Calderón, E., Cogollo, Á., Velásquez-rúa, C., Velásquez-, C., M., S.-G., García, N., & Toro, J. L. (2007). Libro rojo de plantas de Colombia: magnoliáceas, miristicáceas y podocapáceas. | |
dc.relation | Carpentier, M., Robitaille, Y., DesGroseillers, L., Boileau, G., & Marcinkiewicz, M. (2002). Declining Expression of Neprilysin in Alzheimer Disease Vasculature: Possible Involvement in Cerebral Amyloid Angiopathy. Journal of Neuropathology & Experimental Neurology, 61(10), 849–856. https://doi.org/10.1093/jnen/61.10.849 | |
dc.relation | Cassidy, L., Fernandez, F., Johnson, J. B., Naiker, M., Owoola, A. G., & Broszczak, D. A. (2020). Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complementary Therapies in Medicine, 49, 102294. https://doi.org/10.1016/j.ctim.2019.102294 | |
dc.relation | Charlotte M. Taylor, W. D. Á. (2000). Biota Colombiana 1 (1), 2000 Taylor y Devia 106- Myristicacea del Valle del Cauca, Colombia La Familia de Árboles Tropicales Myristicaceae en el Departamento del Valle del Cauca, Colombia. Biota Colombiana, 1(1), 106–108. | |
dc.relation | Chaurasia, B., & Summers, S. A. (2015). Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends in Endocrinology and Metabolism, 26(10), 538–550. https://doi.org/10.1016/j.tem.2015.07.006 | |
dc.relation | Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28 | |
dc.relation | Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1(8), 623–634. https://doi.org/10.1016/0896-6273(88)90162-6 | |
dc.relation | Citron, M., Diehl, T. S., Gordon, G., Biere, A. L., Seubert, P., & Selkoe, D. J. (1996). Evidence that the 42- and 40-amino acid forms of amyloid protein are generated from the -amyloid precursor protein by different protease activities. Proceedings of the National Academy of Sciences, 93(23), 13170–13175. https://doi.org/10.1073/pnas.93.23.13170 | |
dc.relation | Clejan, L., & Cederbaum, A. I. (1989). Synergistic interactions between nadph-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochemical Pharmacology, 38(11), 1779–1786. https://doi.org/10.1016/0006-2952(89)90412-7 | |
dc.relation | Cochemé, H. M., & Murphy, M. P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. Journal of Biological Chemistry, 283(4), 1786–1798. https://doi.org/10.1074/jbc.M708597200 | |
dc.relation | Coe, F. G., & Anderson, G. J. (1996). Screening of medicinal plants used by the Garífuna of Eastern Nicaragua for bioactive compounds. Journal of Ethnopharmacology, 53(1), 29–50. https://doi.org/10.1016/0378-8741(96)01424-9 | |
dc.relation | Committee, N. R. N. (1999). A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 97(2), 161–163. https://doi.org/10.1016/S0092-8674(00)80726-6 | |
dc.relation | Cruciani-Guglielmacci, C., López, M., Campana, M., & le Stunff, H. (2017). Brain ceramide metabolism in the control of energy balance. Frontiers in Physiology, 8(OCT), 1–8. https://doi.org/10.3389/fphys.2017.00787 | |
dc.relation | Cuca, L. E., & Taborda, M. E. (2008). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Revista Colombiana de Química, 36(1), 5–11. | |
dc.relation | Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., & Mattson, M. P. (2004a). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 101(7), 2070–2075. https://doi.org/10.1073/pnas.0305799101 | |
dc.relation | Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., & Mattson, M. P. (2004b). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 101(7), 2070–2075. https://doi.org/10.1073/pnas.0305799101 | |
dc.relation | Czubowicz, K., Wójtowicz, S., Wencel, P. L., & Strosznajder, R. P. (2018). The role of ceramide and SEW 2871 in the transcription of enzymes involved in amyloid β precursor protein metabolism in an experimental model of Alzheimer’s disease. Folia Neuropathologica, 56(3), 196–205. https://doi.org/10.5114/fn.2018.78700 | |
dc.relation | Dani, M., Wood, M., Mizoguchi, R., Fan, Z., Edginton, T., Hinz, R., Win, Z., Brooks, D. J., & Edison, P. (2019). Tau Aggregation Correlates with Amyloid Deposition in Both Mild Cognitive Impairment and Alzheimer’s Disease Subjects. Journal of Alzheimer’s Disease, 70(2), 455–465. https://doi.org/10.3233/JAD-181168 | |
dc.relation | Datta, P. K. (2013). Neuronal Cell Culture. Neuronal Cell Culture: Methods and Protocols, 1078, 35–44. https://doi.org/10.1007/978-1-62703-640-5 | |
dc.relation | Dengiz, C., Prange, C., Gawel, P., Trapp, N., Ruhlmann, L., Boudon, C., & Diederich, F. (2016). Push–pull chromophores by reaction of 2,3,5,6-tetrahalo-1,4-benzoquinones with 4-(N,N-dialkylanilino)acetylenes. Tetrahedron, 72(9), 1213–1224. https://doi.org/10.1016/j.tet.2016.01.017 | |
dc.relation | Deutsch, J. A. (1971). The Cholinergic Synapse and the Site of Memory. Science, 174(4011), 788–794. https://doi.org/10.1126/science.174.4011.788 | |
dc.relation | Dighe, S. N., Mora, E. De, Chan, S., Kantham, S., Mccoll, G., Miles, J. A., Veliyath, S. K., Sreenivas, B. Y., Nassar, Z. D., Silman, I., Sussman, J. L., Weik, M., Mcgeary, R. P., Parat, M., Brazzolotto, X., & Ross, B. P. (2019). Rivastigmine and metabolite analogues with putative Alzheimerâ€TMs disease-modifying properties in a Caenorhabditis elegans model. Communications Chemistry. https://doi.org/10.1038/s42004-019-0133-4 | |
dc.relation | Dreses-Werringloer, U., Lambert, J. C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., Pasquier, F., Galimberti, D., Scarpini, E., Mann, D., Lendon, C., Campion, D., Amouyel, P., Davies, P., Foskett, J. K., … Marambaud, P. (2008). A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer’s Disease Risk. Cell, 133(7), 1149–1161. https://doi.org/10.1016/j.cell.2008.05.048 | |
dc.relation | Dressel, U., Allen, T. L., Pippal, J. B., Rohde, P. R., Lau, P., & Muscat, G. E. O. (2003). The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Molecular Endocrinology (Baltimore, Md.), 17(12), 2477–2493. https://doi.org/10.1210/me.2003-0151 | |
dc.relation | Duyckaerts, C., Delaère, P., & Hauw, J.-J. (1992). Alzheimer’s Disease and Neuroanatomy: Hypotheses and Proposals. 144–155. https://doi.org/10.1007/978-3-642-46776-9_15 Eckman, E. A., & Eckman, C. B. (2005). Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions, 33(5), 1101 LP – 1105. | |
dc.relation | http://www.biochemsoctrans.org/content/33/5/1101.abstract Ehrenborg, E., Saliba Gustafsson, P., Pedrelli, M., Gertow, K., Pourteymour, S., Baldassarre, D., Tremoli, E., De Faire, U., Humphries, S. E., Goncalves, I., Orho-Melander, M., Boren, J., Eriksson, P., Magne, J., & Parini, P. (2019). P728Subclinical atherosclerosis and its progression are modulated by perilipin-2 through a feed-forward loop between LXR and autophagy. European Heart Journal, 40(Supplement_1). https://doi.org/10.1093/eurheartj/ehz747.0332 | |
dc.relation | Elena-Real, C. A., Pasión-Galván, R., Pérez-Artés, M. R., Puerto, M., & Moreno, I. (2012). Posible contribución del paraquat al desarrollo de la enfermedad de Parkinson. Revista de Toxicologia, 29(2), 117–122. | |
dc.relation | Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9 | |
dc.relation | Espitia Corredor, J. A., Cuca Suarez, L. E., & Guerrero Pabon, M. F. (2016). ASSESMENT OF PLATELET ANTIAGGREGANT ACTIVITY OF A FRACTION FROM AN ETHANOLIC EXTRACT OF THE BARK OF Nectandra amazonum Nees. Revista Vitae, 23(2), 119–123. https://doi.org/10.17533/udea.vitae.v23n2a04 | |
dc.relation | Evans, N. A., Facci, L., Owen, D. E., Soden, P. E., Burbidge, S. A., Prinjha, R. K., Richardson, J. C., & Skaper, S. D. (2008). Aβ1–42 reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 175(1), 96–103. https://doi.org/10.1016/j.jneumeth.2008.08.001 | |
dc.relation | Evans, R. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240(4854), 889–895. https://doi.org/10.1126/science.3283939 | |
dc.relation | Filippov, V., Song, M. A., Zhang, K., Vinters, H. V., Tung, S., Kirsch, W. M., Yang, J., & Duerksen-Hughes, P. J. (2012a). Increased ceramide in brains with alzheimer’s and other neurodegenerative diseases. Journal of Alzheimer’s Disease, 29(3), 537–547. https://doi.org/10.3233/JAD-2011-111202 | |
dc.relation | Filippov, V., Song, M. A., Zhang, K., Vinters, H. V., Tung, S., Kirsch, W. M., Yang, J., & Duerksen-Hughes, P. J. (2012b). Increased Ceramide in Brains with Alzheimer’s and Other Neurodegenerative Diseases. Journal of Alzheimer’s Disease, 29(3), 537–547. https://doi.org/10.3233/JAD-2011-111202 | |
dc.relation | Fisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D. A., Bar-Ner, N., Natan, N., Brandeis, R., Elkon, H., Nahum, V., Gershonov, E., LaFerla, F. M., & Medeiros, R. (2016). AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease. Neurodegenerative Diseases, 16(1–2), 95–110. https://doi.org/10.1159/000440864 | |
dc.relation | Fitz, N. F., Cronican, A., Pham, T., Fogg, A., Fauq, A. H., Chapman, R., Lefterov, I., & Koldamova, R. (2010). Liver X Receptor Agonist Treatment Ameliorates Amyloid Pathology and Memory Deficits Caused by High-Fat Diet in APP23 Mice. Journal of Neuroscience, 30(20), 6862–6872. https://doi.org/10.1001/archopht.1992.01080240025017 | |
dc.relation | Fong, L. K., Yang, M. M., Chaves, R. dos S., Reyna, S. M., Langness, V. F., Woodruff, G., Roberts, E. A., Young, J. E., & Goldstein, L. S. B. (2018). Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid- clearance in human astrocytes. Journal of Biological Chemistry, 293(29), 11341–11357. https://doi.org/10.1074/jbc.RA117.000441 | |
dc.relation | Fonteh, A. N., Ormseth, C., Chiang, J., Cipolla, M., Arakaki, X., & Harrington, M. G. (2015). Sphingolipid metabolism correlates with cerebrospinal fluid beta amyloid levels in Alzheimer’s disease. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0125597 | |
dc.relation | Fouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J. M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity—Structure-function relationship analysis. Journal of Steroid Biochemistry and Molecular Biology, 190(April), 173–182. https://doi.org/10.1016/j.jsbmb.2019.03.028 | |
dc.relation | Francis, G. A., Fayard, E., Picard, F., & Auwerx, J. (2003). Nuclear Receptors and the Control of Metabolism. Annual Review of Physiology, 65(1), 261–311. https://doi.org/10.1146/annurev.physiol.65.092101.142528 | |
dc.relation | Friedman, M. (2004). Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry, 52(3), 385–406. https://doi.org/10.1021/jf030490p | |
dc.relation | Fukushima, T., Tanaka, K., Lim, H., & Moriyama, M. (2002). Mechanism of cytotoxicity of paraquat. Environmental Health and Preventive Medicine, 7(3), 89–94. https://doi.org/10.1265/ehpm.2002.89 | |
dc.relation | Gao, M., Zhang, W. cui, Liu, Q. shan, Hu, J. juan, Liu, G. tao, & Du, G. hua. (2008). Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. European Journal of Pharmacology, 591(1–3), 73–79. https://doi.org/10.1016/j.ejphar.2008.06.071 | |
dc.relation | Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., Bullido, M. J., Engelborghs, S., De Deyn, P., Berr, C., Pasquier, F., Dubois, B., Tognoni, G., Fiévet, N., Brouwers, N., Bettens, K., Arosio, B., Coto, E., Del Zompo, M., … Campion, D. (2011). APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903–907. https://doi.org/10.1038/mp.2011.52 | |
dc.relation | Gerretsen, P., & Pollock, B. G. (2011). Drugs with anticholinergic properties: A current perspective on use and safety. Expert Opinion on Drug Safety, 10(5), 751–765. https://doi.org/10.1517/14740338.2011.579899 | |
dc.relation | Gottlieb, O. R. (1979). Chemical studies on medicinal myristicaceae from Amazonia. Journal of Ethnopharmacology, 1(4), 309–323. https://doi.org/10.1016/S0378-8741(79)80001-X | |
dc.relation | Grøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology, 28(11), R645–R649. https://doi.org/10.1016/j.cub.2018.04.080 Hamilton, A., Zamponi, G. W., & Ferguson, S. S. G. (2015). Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Molecular Brain, 8(1), 1–9. https://doi.org/10.1186/s13041-015-0107-0 | |
dc.relation | Hammarstedt, A., Andersson, C. X., Rotter Sopasakis, V., & Smith, U. (2005). The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73(1), 65–75. https://doi.org/10.1016/j.plefa.2005.04.008 | |
dc.relation | Hampel, H., Mesulam, M. M., Cuello, A. C., Khachaturian, A. S., Vergallo, A., Farlow, M. R., Snyder, P. J., Giacobini, E., & Khachaturian, Z. S. (2019). Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. The Journal of Prevention of Alzheimer’s Disease, 6(1), 2–15. https://doi.org/10.14283/jpad.2018.43 | |
dc.relation | Hardy, J., & Higgins, G. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067 Hermans, D., Htay, U. H., & Cooley, S. J. (2007). -Non-pharmacological interventions for wandering of people with dementia in the domestic setting. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD005994.pub2 | |
dc.relation | Hiruma-lima, C. A., Maria, L., Beatriz, A., Almeida, A. De, Pietro, L. De, Campaner, L., Vilegas, W., Regina, A., & Souza, M. (2009). Antiulcerogenic action of ethanolic extract of the resin from Virola surinamensis. 122, 406–409. https://doi.org/10.1016/j.jep.2008.12.023 | |
dc.relation | Hoey, S. E., Williams, R. J., & Perkinton, M. S. (2009). Synaptic NMDA Receptor Activation Stimulates -Secretase Amyloid Precursor Protein Processing and Inhibits Amyloid- Production. Journal of Neuroscience, 29(14), 4442–4460. https://doi.org/10.1523JNEUROSCI.6017-08.2009 | |
dc.relation | Holmström, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology, 15(6), 411–421. https://doi.org/10.1038/nrm3801 | |
dc.relation | Http://www.theplantlist.org/, P. on the I. (2013). The Plant List (2013). Version 1.1. http://www.theplantlist.org Huang, C. (2014). Natural modulators of liver X receptors. Journal of Integrative Medicine, 12(2), 76–85. https://doi.org/10.1016/S2095-4964(14)60013-3 | |
dc.relation | Hussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, M., & Sadiq, A. (2019). Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorganic Chemistry, 91(May), 103128. https://doi.org/10.1016/j.bioorg.2019.103128 | |
dc.relation | Ibarra Estrada, E., Pacheco Sánchez, M., García Mateos, R., San Miguel Chávez, R., Ramírez Valverde, G., & Soto Hernández, R. M. (2011). ACTIVIDAD ANTIOXIDANTE DE ALCALOIDES DE Erythrina americana Miller. Revista Fitotecnia Mexicana, 34(4), 241-246. https://www.redalyc.org/articulo.oa?id=610/61020797003 | |
dc.relation | Islam, B. ul, Jabir, N. R., & Tabrez, S. (2019). The role of mitochondrial defects and oxidative stress in Alzheimer’s disease. Journal of Drug Targeting, 27(9), 932–942. https://doi.org/10.1080/1061186X.2019.1584808 | |
dc.relation | Jacobsen, J. S., Wu, C. C., Redwine, J. M., Comery, T. A., Arias, R., Bowlby, M., Martone, R., Morrison, J. H., Pangalos, M. M., Reinhart, P. H., & Bloom, F. E. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5161–5166. https://doi.org/10.1073/pnas.0600948103 | |
dc.relation | Jadhav, S., Cubinkova, V., Zimova, I., Brezovakova, V., Madari, A., Cigankova, V., & Zilka, N. (2015). Tau-mediated synaptic damage in Alzheimer’s disease. Translational Neuroscience, 6(1), 214–226. https://doi.org/10.1515/tnsci-2015-0023 | |
dc.relation | Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O. ur R., Ullah, F., Ayaz, M., & Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863. https://doi.org/10.1016/j.ejmech.2019.111863 | |
dc.relation | Jang, B. G., In, S., Choi, B., & Kim, M. (2014). Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. NeuroReport, 25(16), 1281–1288. https://doi.org/10.1097/WNR.0000000000000260 | |
dc.relation | Jann, M. W., Shirley, K. L., & Small, G. W. (2002). Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. [Review] [100 refs]. Clinical Pharmacokinetics.41(10):719-39, 41(New Zealand PT-Journal Article PT-Research Support, Non-U.S. Gov’t PT-Review LG-English), 719–739. https://doi.org/10.2165/00003088-200241100-00003 | |
dc.relation | Jaramillo Gomez, J. A., & Arboleda, G. (2010). Analisis del efecto del gen DJ-1 frente a C2-Ceramida, 6-Hidroxidopamina y rotenona y su relación con la via PI3K/AKT en un modelo de neuronas mesencefalicas / Effect analysis of DJ-1 gene front to C2-Ceramide, 6-Hidroxidopamine and rotenone and its relat [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/2712/ | |
dc.relation | Jazvinšćak Jembrek, M., Hof, P. R., & Šimić, G. (2015). Ceramides in Alzheimer’s Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and A β Accumulation. Oxidative Medicine and Cellular Longevity, 2015. https://doi.org/10.1155/2015/346783 | |
dc.relation | Ji, H. F., & Zhang, H. Y. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143–151. https://doi.org/10.1111/j.1745-7254.2008.00752.x | |
dc.relation | Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., & Drachman, D. A. (2000). Statinsandtheriskofdementia. 356, 1627–1631. https://doi.org/10.1016/S0140-6736(00)03155-X | |
dc.relation | Jork, H., Funk, W., Fischer, W., Wimmer, H., & & Burns, D. T. (n.d.). Thin-layer chromatography. Reagents and detection methods. Physical and chemical detection methods: fundamentals, reagents. In 1990 (Vol. 1a). | |
dc.relation | Joseph, S. B., Bradley, M. N., Castrillo, A., Bruhn, K. W., Mak, P. A., Pei, L., Hogenesch, J., O’connell, R. M., Cheng, G., Saez, E., Miller, J. F., & Tontonoz, P. (2004). LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell, 119(2), 299–309. https://doi.org/10.1016/j.cell.2004.09.032 | |
dc.relation | Joshi, G., & A. Johnson, J. (2012). The Nrf2-ARE Pathway: A Valuable Therapeutic Target for the Treatment of Neurodegenerative Diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229. https://doi.org/10.2174/157488912803252023 | |
dc.relation | Kato, R., Iwasaki, K., & Noguchi, H. (1976). Stimulatory effect of FMN and methyl viologen on cytochrome P-450 dependent reduction of tertiary amine N-oxide. Biochemical and Biophysical Research Communications, 72(1), 267–274. https://doi.org/10.1016/0006-291X(76)90989-X | |
dc.relation | Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., & Wahli, W. (1993). Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2160–2164. http://www.ncbi.nlm.nih.gov/pubmed/8384714 | |
dc.relation | Kim, S.-N., Choi, H. Y., Lee, W., Park, G. M., Shin, W. S., & Kim, Y. K. (2008). Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARalpha/gamma activation in 3T3-L1 cells. FEBS Letters, 582(23–24), 3465–3472. https://doi.org/10.1016/j.febslet.2008.09.011 | |
dc.relation | Klinge, C. M. (2000). Estrogen receptor interaction with co-activators and co-repressors☆. Steroids, 65(5), 227–251. https://doi.org/10.1016/S0039-128X(99)00107-5 | |
dc.relation | Kosicek, M., & Hecimovic, S. (2013). Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. International Journal of Molecular Sciences, 14(1), 1310–1322. https://doi.org/10.3390/ijms14011310 | |
dc.relation | Kotani, H., Tanabe, H., Mizukami, H., Makishima, M., & Inoue, M. (2010). Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. Journal of Natural Products, 73(8), 1332–1336. https://doi.org/10.1021/np100120c | |
dc.relation | Kraepelin, E. (1896). Psychiatrie - Ein Lehrbuch für Studierende und Ärzte. Journal of the American Medical Association, 5, 789–814. https://doi.org/10.1001/jama.1939.02800520075036 | |
dc.relation | Krentz, A. J., & Friedmann, P. S. (2006). Type 2 diabetes, psoriasis and thiazolidinediones. International Journal of Clinical Practice, 60(3), 362–363. https://doi.org/10.1111/j.1368-5031.2005.00765.x | |
dc.relation | Kumar, D., & Rub, M. A. (2019). Study of the reaction of ninhydrin with tyrosine in gemini micellar media. RSC Advances, 9(38), 22129–22136. https://doi.org/10.1039/C9RA03557E | |
dc.relation | Kumar, R., & Thompson, E. B. (1999). The structure of the nuclear hormone receptors. Steroids, 64(5), 310–319. https://doi.org/10.1016/S0039-128X(99)00014-8 | |
dc.relation | Kwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer ’ s disease. Experimental Gerontology, 95, 39–43. https://doi.org/10.1016/j.exger.2017.05.014 | |
dc.relation | La, J. De, Ndong, C., Sima-obiang, C., Ondo, J. P., Ndong-atome, G. R., & Abessolo, F. O. (2018). inflammatory and antioxidant activities of Scyphocephalium ochocoa Warb . ( Myristicaceae ), medicinal plant from Gabon. July. | |
dc.relation | LaFerla, F. M. (2002). Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nature Reviews Neuroscience, 3(11), 862–872. https://doi.org/10.1038/nrn960 | |
dc.relation | Lahiri, D. K., Greig, N. H., Pappolla, M. A., & Sambamurti, K. (2016). Ab protein clearance and degradation (ABCD) Pathways and their Role in Alzheimer ’ s Disease. 12(1), 32–46. | |
dc.relation | Lam, Y. A., Pickart, C. M., Alban, A., Landon, M., Jamieson, C., Ramage, R., Mayer, R. J., & Layfield, R. (2000). Inhibition of the ubiquitin-proteasome system in Alzheimer ’ s disease. National Academy of Sciences, 97(18), 9902–9906. https://doi.org/10.1073/pnas.170173897 | |
dc.relation | Larner, A. J. (1999). Hypothesis: amyloid beta-peptides truncated at the N-terminus contribute to the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 20(1), 65–69. https://doi.org/10.1016/S0197-4580(99)00014-7 | |
dc.relation | Lars Ulrik Gerdes, Klausen, I. C., Sihm, I., Faergeman, O., & Vogler, G. P. (1992). Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world. Genetic Epidemiology, 9(3), 155–167. https://doi.org/10.1002/gepi.1370090302 | |
dc.relation | Laudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. Journal of Molecular Endocrinology, 19(3), 207–226. http://www.ncbi.nlm.nih.gov/pubmed/9460643 | |
dc.relation | Le Quesne, P. W., Larrahondo, J. E., & Raffaul, R. F. (1980). Antitumor plants X Constituents of Nectandra rigida”. J Nat Prod, 43, 353–359. Leinenga, G., & Götz, J. (2015). Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Science Translational Medicine, 7(278), 278ra33-278ra33. https://doi.org/10.1126/scitranslmed.aaa2512 | |
dc.relation | Levites, Y., Amit, T., Mandel, S., & Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (‐)‐epigallocatechin‐3‐gallate. The FASEB Journal, 17(8), 1–23. https://doi.org/10.1096/fj.02-0881fje | |
dc.relation | Lin, C. T., Chu, F. H., Tseng, Y. H., Tsai, J. B., Chang, S. T., & Wang, S. Y. (2007). Bioactivity Investigation of Lauraceae Trees Grown in Taiwan. Pharmaceutical Biology, 45(8), 638–644. https://doi.org/10.1080/13880200701538708 | |
dc.relation | Lin, H. R. (2013). Paeoniflorin acts as a liver X receptor agonist. Journal of Asian Natural Products Research, 15(1), 35–45. https://doi.org/10.1080/10286020.2012.742510 | |
dc.relation | Lindwall, G., & Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. Journal of Biological Chemistry, 259(8), 5301–5305. | |
dc.relation | Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein e and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. https://doi.org/10.1038/nrneurol.2012.263 | |
dc.relation | LL, H., AR, M., Anderson, V., & White, J. (1981). Dementia of the alzheimer type: Clinical genetics, natural history, and associated conditions. Archives of General Psychiatry, 38(10), 1085–1090. http://dx.doi.org/10.1001/archpsyc.1981.01780350019001 | |
dc.relation | Lopez, O. L., & Kuller, L. H. (2019). Epidemiology of aging and associated cognitive disorders : Prevalence and incidence of Alzheimer ’ s disease and other dementias. In Geriatric Neurology (1st ed., Vol. 167). Elsevier B.V. https://doi.org/10.1016/B978-0-12-804766-8.00009-1 | |
dc.relation | Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Systematic Identification of Flavonoids. In The Systematic Identification of Flavonoids. https://doi.org/10.1007/978-3-642-88458-0 Madden, S., Spaldin, V., & Park, B. K. (1995). Clinical Pharmacokinetics of Tacrine. Clinical Pharmacokinetics, 28(6), 449–457. https://doi.org/10.2165/00003088-199528060-00003 | |
dc.relation | Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., & Evans, R. M. (1995). The nuclear receptor superfamily: the second decade. Cell, 83(6), 835–839. http://www.ncbi.nlm.nih.gov/pubmed/8521507 | |
dc.relation | Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer ’ s Disease , Parkinson ’ s Disease , and Huntington ’ s Disease : A Mini Review. 2016. https://doi.org/10.1155/2016/8590578 | |
dc.relation | Marco, L., & Carreiras, C. (2006). Galanthamine , a Natural Product for the Treatment of Alzheimer ’ s Disease. 105–111. | |
dc.relation | Mariam, S., Wahab, A., Sivasothy, Y., Yee, L. S., Litaudon, M., Mohamad, J., & Awang, K. (2016). Natural Cholinesterase Inhibitors from Myristica cinnamomea. Bioorganic & Medicinal Chemistry Letters. https://doi.org/10.1016/j.bmcl.2016.05.046 | |
dc.relation | Marques CA. (2001). Importância econômica da Família Lauraceae Lindl. Floresta e Ambiente, 8, 195–206. | |
dc.relation | Marston, A., Kissling, J., & Hostettmann, K. (2002). A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochemical Analysis, 13(1), 51–54. https://doi.org/10.1002/pca.623 | |
dc.relation | Martin, P., Anders, W., Maëlenn, G., Gemma-Claire, A., Yu-Tzu, W., & Matthew, P. (2015). Informe Mundial sobre Alzheimer 2015 Las consecuencias de la demencia análisis de prevalencia, incidencia, coste y tendencias. Psicothema, 16, 297–302. | |
dc.relation | Masoud Tavazoie. (2018). The LXR/ApoE pathway regulates the innate immune system in cancer. Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy. https://doi.org/10.1158/2326-6074.TUMIMM18-IA11 | |
dc.relation | Medina, M., Khachaturian, Z. S., & Rossor, M. (2017). Toward common mechanisms for risk factors in Alzheimer ’ s syndrome. 3, 571–578. https://doi.org/10.1016/j.trci.2017.08.009 | |
dc.relation | Meraz-Ríos, M. A., León, K. I. L.-D., Campos-Peña, V., & Anda-Hernández, M. A. D. R. M.-L. (2010). Tau Oligomers and Aggregation in Alzheimer’s Disease. Jurnal of Neurochemistry, 1353–1367.https://doi.org/https://doi.org/10.1111/j.1471-4159.2009.06511.x | |
dc.relation | Mihailova, D., Yamboliev, I., Zhivkova, Z., Tencheva, J., & Jovovich, V. (1989). Pharmacokinetics of Galanthamine Hydrobromide after Single Subcutaneous and Oral Dosage in Humans. Pharmacology, 39(1), 50–58. https://doi.org/10.1159/000138571 | |
dc.relation | Miyamoto, M., Murphy, T.H., Schnaar, R.L., Coyle, J.T., 1989. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther. 250. | |
dc.relation | Miller, B. C., Eckman, E. A., Sambamurti, K., Dobbs, N., Chow, K. M., Eckman, C. B., Hersh, L. B., & Thiele, D. L. (2003). Amyloid- peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proceedings of the National Academy of Sciences, 100(10), 6221–6226. https://doi.org/10.1073/pnas.1031520100 | |
dc.relation | Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists Society, 48(2), 91–91. https://doi.org/10.1007/BF02635693 | |
dc.relation | Mir, N. T., Saleem, U., Anwar, F., Ahmad, B., Ullah, I., Hira, S., Ismail, T., Ali, T., & Ayaz, M. (2019). Lawsonia inermis markedly improves cognitive functions in animal models and modulate oxidative stress markers in the brain. Medicina (Lithuania), 55(5). https://doi.org/10.3390/medicina55050192 | |
dc.relation | Morales, J. R., Ballesteros, I., Deniz, J. M., Hurtado, O., Vivancos, J., Nombela, F., Lizasoain, I., Castrillo, A., & Moro, M. A. (2008). Activation of Liver X Receptors Promotes Neuroprotection and Reduces Brain Inflammation in Experimental Stroke. Circulation, 118(14), 1450–1459. https://doi.org/10.1161/CIRCULATIONAHA.108.782300 | |
dc.relation | Moreno, S. R. F., Carvalho, J. J., Nascimento, A. L., Pereira, M., Caldas, L. Q. A., & Bernardo-Filho, M. (2011). Effects of a nectandra membranacea extract on labeling of blood constituents with technetium-99m and on the morphology of red blood cells. World Academy of Science, Engineering and Technology, 51(3), 752–756. https://doi.org/10.5281/zenodo.1333194 | |
dc.relation | Mucke, L. (2009). Q & A Alzheimer ’ s disease. 461(October), 895–898. | |
dc.relation | Muñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS ONE, 14(10), 1–22. https://doi.org/10.1371/journal.pone.0223578 | |
dc.relation | Muse, E. D., Yu, S., Edillor, C. R., Tao, J., Spann, N. J., Troutman, T. D., Seidman, J. S., Henke, A., Roland, J. T., Ozeki, K. A., Thompson, B. M., McDonald, J. G., Bahadorani, J., Tsimikas, S., Grossman, T. R., Tremblay, M. S., & Glass, C. K. (2018). Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 115(20), E4680–E4689. https://doi.org/10.1073/pnas.1714518115 | |
dc.relation | Myers, R. H., Schaefer, E. J., Wilson, P. W. F., D’Agostino, R., Ordovas, J. M., Espino, A., Au, R., White, R. F., Knoefel, J. E., Cobb, J. L., McNulty, K. A., Beiser, A., & Wolf, P. A. (1996). Apolipoprotein E ∈4 association with dementia in a population-based study: The Framingham Study. Neurology, 46(3), 673–677. https://doi.org/10.1212/WNL.46.3.673 | |
dc.relation | Naarala, J., Nykvist, P., Tuomala, M., & Savolainen, K. (1993). Excitatory amino acid-induced slow biphasic responses of free intracellular calcium in human neuroblastoma cells. FEBS Letters, 330(2), 222–226. https://doi.org/10.1016/0014-5793(93)80278-3 | |
dc.relation | Nadeem, M., Wai, K., Abas, F., Ahmad, S., Adnan, S., Shah, A., Choudhary, M. I., & Hj, N. (2011). Bioorganic & Medicinal Chemistry Letters New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorganic & Medicinal Chemistry Letters, 21(13), 4097–4103. https://doi.org/10.1016/j.bmcl.2011.04.065 | |
dc.relation | Nampoothiri, M., Reddy, N. D., John, J., Kumar, N., Kutty Nampurath, G., & Rao Chamallamudi, M. (2014). Insulin Blocks Glutamate-Induced Neurotoxicity in Differentiated SH-SY5Y Neuronal Cells. Behavioural Neurology, 2014, 1–8. https://doi.org/10.1155/2014/674164 | |
dc.relation | Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055 | |
dc.relation | Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285 | |
dc.relation | Report A b Secretion and Plaque Formation Depend on Autophagy. CellReports, 5(1), 61–69. https://doi.org/10.1016/j.celrep.2013.08.042 | |
dc.relation | Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356(24), 2457–2471.https://doi.org/10.1056/NEJMoa072761 | |
dc.relation | Novac, N., & Heinzel, T. (2004). Nuclear Receptors: Overview and Classification. Current Drug Target -Inflammation & Allergy, 3(4), 335–346. https://doi.org/10.2174/1568010042634541 | |
dc.relation | Nunan, J., & Small, D. H. (2000). Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Letters, 483(1), 6–10. https://doi.org/10.1016/S0014-5793(00)02076-7 | |
dc.relation | Nwabuisi-Heath, E., Rebeck, G. W., LaDu, M. J., & Yu, C. (2014). ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro. ASN Neuro, 6(1), 21–28. https://doi.org/10.1042/AN200130043 | |
dc.relation | O’Donoghue, M. C., Murphy, S. E., Zamboni, G., Nobre, A. C., & Mackay, C. E. (2018). APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: A review. Cortex, 104, 103–123. https://doi.org/10.1016/j.cortex.2018.03.025 | |
dc.relation | Oliveira de Melo, J., Truiti, M. da C. T., Muscará, M. N., Bolonheis, S. M., Dantas, J. A., Caparroz-Assef, S. M., Cuman, R. K. N., & Bersani-Amado, C. A. (2006). Anti-inflammatory Activity of Crude Extract and Fractions of Nectandra falcifolia Leaves. Biological & Pharmaceutical Bulletin, 29(11), 2241–2245. https://doi.org/10.1248/bpb.29.2241 | |
dc.relation | Ondeyka, J. G., Jayasuriya, H., Herath, K. B., Guan, Z., Schulman, M., Collado, J., Dombrowski, A. W., Kwon, S. S., McCallum, C., Sharma, N., MacNaul, K., Hayes, N., Menke, J. G., & Singh, S. B. (2005). Steroidal and Triterpenoidal Fungal Metabolites as Ligands of Liver X Receptors. The Journal of Antibiotics, 58(9), 559–565. https://doi.org/10.1038/ja.2005.76 | |
dc.relation | Park, I., Lee, H., & Kim, S. (2004). A b -Secretase ( BACE1 ) Inhibitor Hispidin from the Mycelial Cultures of Phellinus linteus. 10–13. https://doi.org/10.1055/s-2004-815491 | |
dc.relation | Parsons, C. G., Danysz, W., & Parsons, C. G. (2017). The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease ... The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease : preclinical e. International Journal of Geriatric Psychiatry, 18(September 2003), S23–S32. https://doi.org/10.1002/gps.938 | |
dc.relation | Parsons, M. P., & Raymond, L. A. (2014). Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 82(2), 279–293. https://doi.org/10.1016/j.neuron.2014.03.030 | |
dc.relation | Paula, P.-C., Angelica Maria, S.-G., Luis, C., & Gloria Patricia, C.-G. (2019). Preventive Effect of Quercetin in a Triple Transgenic Alzheimer’s Disease Mice Model. Molecules, 24(12), 2287. https://doi.org/10.3390/molecules24122287 | |
dc.relation | Pearson, R. C. A., & Powell, T. P. S. (1989). The Neuroanatomy of Alzheimer’s Disease. Reviews in the Neurosciences, 2(2), 101–122. https://doi.org/10.1515/REVNEURO.1989.2.2.101 | |
dc.relation | Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., & Mangelsdorf, D. J. (1998). Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell, 93(5), 693–704. http://www.ncbi.nlm.nih.gov/pubmed/9630215 | |
dc.relation | Phillips, M. C. (2014). Apolipoprotein e isoforms and lipoprotein metabolism. IUBMB Life, 66(9), 616–623. https://doi.org/10.1002/iub.1314 | |
dc.relation | Picard, C., Julien, C., Frappier, J., Miron, J., Théroux, L., Dea, D., Breitner, J. C. S., & Poirier, J. (2018). Alterations in cholesterol metabolism–related genes in sporadic Alzheimer’s disease. Neurobiology of Aging, 66, 180.e1-180.e9. https://doi.org/10.1016/j.neurobiolaging.2018.01.018 | |
dc.relation | Pierrot, N., Ghisdal, P., Caumont, A. S., & Octave, J. N. (2004). Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. Journal of Neurochemistry, 88(5), 1140–1150. https://doi.org/10.1046/j.1471-4159.2003.02227.x | |
dc.relation | Pires, L. M., & Roseira, A. N. (1971). The solvent effect in the use of chloranil as a reagent in the identification of aromatic amines on silica gel thin-layers. Journal of Chromatography A, 56, 59–67. https://doi.org/10.1016/S0021-9673(00)97777-X | |
dc.relation | Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., & Pearson, H. a. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci, 23(13), 5531–5535. https://doi.org/23/13/5531 [pii] | |
dc.relation | Plazas, E. A., Avila, M. C., Delgado, W. A., Patino, O. J., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18 | |
dc.relation | Plazas, E., Casoti R, R., Murillo, M. A., Da Costa, F. B., & Cuca, L. E. (2019). Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. Phytochemistry, 168(April). https://doi.org/10.1016/j.phytochem.2019.112128 | |
dc.relation | Plazas Gonzalez, E., Hagenow, S., Avila Murillo, M., Stark, H., & Cuca Suarez, L. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorganic Chemistry, 98(January), 103722. https://doi.org/10.1016/j.bioorg.2020.103722 | |
dc.relation | Ponci, V., Figueiredo, C., Massaoka, M., de Farias, C., Matsuo, A., Sartorelli, P., & Lago, J. (2015). Neolignans from Nectandra megapotamica (Lauraceae) Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells. Molecules, 20(7), 12757–12768. https://doi.org/10.3390/molecules200712757 | |
dc.relation | Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia, 9(1), 63–75. https://doi.org/10.1016/j.jalz.2012.11.007 | |
dc.relation | Pulley, M.T., Berger, A.R., 2003. Toxic Peripheral Neuropathies, in: Office Practice of Neurology:Second Edition. Elsevier Inc., pp. 616–625. https://doi.org/10.1016/B0-44-306557-8/50100-3 | |
dc.relation | Ramadhan, R., & Phuwapraisirisan, P. (2015). Bioorganic & Medicinal Chemistry Letters New arylalkanones from Horsfieldia macrobotrys , effective antidiabetic agents concomitantly inhibiting a -glucosidase and free radicals. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 83, 6–10. https://doi.org/10.1016/j.bmcl.2015.08.069 | |
dc.relation | Ramawat, K. G., Dass, S., & Mathur, M. (2009). Herbal Drugs: Ethnomedicine to Modern Medicine. Herbal Drugs: Ethnomedicine to Modern Medicine. https://doi.org/10.1007/978-3-540-79116-4 | |
dc.relation | Ramsay, R., & Tipton, K. (2017). Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules, 22(7), 1192. https://doi.org/10.3390/molecules22071192 | |
dc.relation | Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2004). Distúrbios neurodegenerativos. In Farmacologia (Vol. 7). | |
dc.relation | Rangel, K., Fernandes, P., Bittercourt, P. S., Duarte, A., Souza, L. De, Queiroz, A., Souza, L. De, Moura, F., Lima, E. S., Domingo, L., Acho, R., Cássia, R. De, Nunomura, S., Teixeira, A. F., Henrique, H., & Koolen, F. (1809). ( Myristicaceae ) and evaluation of their antioxidant and enzyme inhibition potential. 49(1), 48–53. | |
dc.relation | Reed, B., Villeneuve, S., Mack, W., DeCarli, C., Chui, H. C., & Jagust, W. (2014). Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurology, 71(2), 195–200. https://doi.org/10.1001/jamaneurol.2013.5390 | |
dc.relation | Repa, J. J., & Mangelsdorf, D. J. (2000). The Role of Orphan Nuclear Receptors in the Regulation of Cholesterol Homeostasis. Annual Review of Cell and Developmental Biology, 16(1), 459–481. https://doi.org/10.1146/annurev.cellbio.16.1.459 | |
dc.relation | Rezende, K. R., Davino, S. C., & Barros, S. B. M. (2005). Natural Product Research : Formerly Natural Product Letters Antioxidant activity of aryltetralone lignans and derivatives from Virola sebifera ( Aubl .). November 2014, 37–41. https://doi.org/10.1080/14786410412331302118 | |
dc.relation | Riddell, D. R., Zhou, H., Atchison, K., Warwick, H. K., Atkinson, P. J., Jefferson, J., Xu, L., Aschmies, S., Kirksey, Y., Hu, Y., Wagner, E., Parratt, A., Xu, J., Li, Z., Zaleska, M. M., Jacobsen, J. S., Pangalos, M. N., & Reinhart, P. H. (2008). Impact of Apolipoprotein E (ApoE) Polymorphism on Brain ApoE Levels. Journal of Neuroscience, 28(45), 11445–11453. https://doi.org/10.1523/JNEUROSCI.1972-08.2008 | |
dc.relation | Rincón, E. V. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauraceas y Myristicaceas , sobre los receptores X del hígado (LXRs) ESTEFANIA VALENCIA RINCÓN. 13–15. Robinson, M., Lee, B. Y., & Hane, F. T. (2017). Recent Progress in Alzheimer’s Disease Research, Part 2: Genetics and Epidemiology. Journal of Alzheimer’s Disease : JAD, 57(2), 317–330. https://doi.org/10.3233/JAD-161149 | |
dc.relation | Rohwer, J. G., & Kubitzki, K. (1993). Ecogeographical Differentiation in Nectandra (Lauraceae), and its Historical Implications. In Botanica Acta (Vol. 106, Issue 1). https://doi.org/10.1111/j.1438-8677.1993.tb00342.x | |
dc.relation | Rojsanga, P., Gritsanapan, W., & Suntornsuk, L. (2006). Determination of Berberine Content in the Stem Extracts of Coscinium fenestratum by TLC Densitometry. Medical Principles and Practice, 15(5), 373–378. https://doi.org/10.1159/000094272 | |
dc.relation | Rossouw, D. J., & Engelbrecht, F. M. (1978). The effect of paraquat on the respiration of lung cell fractions. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 54(26), 1101–1104. http://www.ncbi.nlm.nih.gov/pubmed/746468 | |
dc.relation | Rothman, S. M., & Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Annals of Neurology, 19(2), 105–111. https://doi.org/10.1002/ana.410190202 | |
dc.relation | Sakakura, Y., Shimano, H., Sone, H., Takahashi, A., Inoue, K., Toyoshima, H., Suzuki, S., & Yamada, N. (2001). Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis. Biochemical and Biophysical Research Communications, 286(1), 176–183. https://doi.org/10.1006/bbrc.2001.5375 | |
dc.relation | Sakurai, H., Hanyu, H., & Iwamoto, T. (2012). Toward defining the preclinical stages of Alzheimer’s disease. Journal of Tokyo Medical University, 70(3), 332–333. https://doi.org/10.1016/j.jalz.2011.03.003. | |
dc.relation | Toward Sandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 10(12), e0145467. https://doi.org/10.1371/journal.pone.0145467 | |
dc.relation | Sandoval-Hernández, A. G., Restrepo, A., Cardona-Gómez, G. P., & Arboleda, G. (2016). LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 621, 15–21. https://doi.org/10.1016/j.neulet.2016.04.007 | |
dc.relation | Scacchia, R., Gambinab, G., Broggiob, E., Ruggeric, M., & Corbo, R. M. (2008). C-338A polymorphism of the endothelin-converting enzyme (ECE-1) gene and the susceptibility to sporadic late-onset Alzheimer’s disease and coronary artery disease. Disease Marker, 24(3), 175–179. https://doi.org/http://dx.doi.org/10.1155/2008/578304 | |
dc.relation | Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., & Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. The EMBO Journal, 15(19), 5336–5348. http://www.ncbi.nlm.nih.gov/pubmed/8895578 | |
dc.relation | Schultz, J. R. (2000). Role of LXRs in control of lipogenesis. Genes & Development, 14(22), 2831–2838. https://doi.org/10.1101/gad.850400 | |
dc.relation | Scott, H. A., Gebhardt, F. M., Mitrovic, A. D., Vandenberg, R. J., & Dodd, P. R. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer ’ s disease. NBA, 32(3), 553.e1-553.e11. https://doi.org/10.1016/j.neurobiolaging.2010.03.008 | |
dc.relation | Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189–a006189. https://doi.org/10.1101/cshperspect.a006189 | |
dc.relation | Sever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709. https://doi.org/10.1101/cshperspect.a016709 | |
dc.relation | Silva-Filho, A. A., Silva, M. L. A. e, Carvalho, J. C. ., & Bastos., J. K. (2004). “Evaluation of analgesic and anti-inflammatory activities of Nectandra megapotamica (Lauracea) in mice and rats.” J Pharm Pharmacol, 56, 1179. Silva, D., Z., Y., Santos, L., Bolzani, V., & Nair, M. (2007). Lipoperoxidation and Cyclooxygenases 1 and 2 Inhibitory Compounds from Iryanthera juruensis. J. Agric. Food Chem., 55(7), 2569–2574. https://doi.org/10.1021/jf063451x | |
dc.relation | Soscia, S. J., Kirby, J. E., Washicosky, K. J., Tucker, S. M., Ingelsson, M., Hyman, B., Burton, M. A., Goldstein, L. E., Duong, S., Tanzi, R. E., & Moir, R. D. (2010). The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE, 5(3), 1–10. https://doi.org/10.1371/journal.pone.0009505 Souza-Junior, F. J. C., Luz-Moraes, D., Pereira, F. S., Barros, M. A., Fernandes, L. M. P., Queiroz, L. Y., Maia, C. F., Maia, J. G. S., & Fontes-Junior, E. A. (2020). | |
dc.relation | Aniba canelilla (Kunth) Mez (Lauraceae): A Review of Ethnobotany, Phytochemical, Antioxidant, Anti-Inflammatory, Cardiovascular, and Neurological Properties. Frontiers in Pharmacology, 11(May), 1–14. https://doi.org/10.3389/fphar.2020.00699 | |
dc.relation | Suri, S., Heise, V., Trachtenberg, A. J., & Mackay, C. E. (2013). The forgotten APOE allele: A review of the evidence and suggested mechanisms for the protective effect of APOE e2. Neuroscience and Biobehavioral Reviews, 37(10), 2878–2886. https://doi.org/10.1016/j.neubiorev.2013.10.010 | |
dc.relation | Susanti, E. (2019). In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process. AIP Conference Proceedings, 2108(June). https://doi.org/10.1063/1.5109983 | |
dc.relation | Takao, T., Kitatani, F., Watanabe, N., Yagi, A., & Sakata, K. (1994). A Simple Screening Method for Antioxidants and Isolation of Several Antioxidants Produced by Marine Bacteria from Fish and Shellfish. Bioscience, Biotechnology, and Biochemistry, 58(10), 1780–1783. https://doi.org/10.1271/bbb.58.1780 | |
dc.relation | Tang, Y., Lutz, M. W., & Xing, Y. (2018). A systems-based model of Alzheimer’s disease. Alzheimer’s & Dementia, August, 1–4. https://doi.org/10.1016/j.jalz.2018.06.3058 | |
dc.relation | Teboul, M., Enmark, E., Li, Q., Wikström, A. C., Pelto-Huikko, M., & Gustafsson, J. A. (1995). OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 2096–2100. http://www.ncbi.nlm.nih.gov/pubmed/359232 | |
dc.relation | Tenorio, M. (2016). Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Scientia Agropecuaria, 7(4), 419–431. https://doi.org/10.17268/sci.agropecu.2016.04.07 | |
dc.relation | Texidó, L., Martín-Satué, M., Alberdi, E., Solsona, C., & Matute, C. (2011). Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 49(3), 184–190. https://doi.org/10.1016/j.ceca.2011.02.001 | |
dc.relation | Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., De Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., Doddrell, D. M., Wang, Y., Van Erp, T. G. M., Cannon, T. D., & Toga, A. W. (2004). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage, 23(SUPPL. 1), 2–18. https://doi.org/10.1016/j.neuroimage.2004.07.071 | |
dc.relation | Tobore, T. O. (2019). On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurological Sciences, 40(8), 1527–1540. https://doi.org/10.1007/s10072-019-03863-x T | |
dc.relation | önnies, E., & Trushina, E. (2017). Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088 | |
dc.relation | Trousson, A., Bernard, S., Petit, P. X., Liere, P., Pianos, A., El Hadri, K., Lobaccaro, J.-M. A., Said Ghandour, M., Raymondjean, M., Schumacher, M., & Massaad, C. (2009). 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. Journal of Neurochemistry, 109(4), 945–958. https://doi.org/10.1111/j.1471-4159.2009.06009.x | |
dc.relation | Uddin, M. S., Kabir, M. T., Niaz, K., Jeandet, P., Clément, C., Mathew, B., Rauf, A., Rengasamy, K. R. R., Sobarzo-Sánchez, E., Ashraf, G. M., & Aleya, L. (2020). Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer’s Disease. Molecules (Basel, Switzerland), 25(6). https://doi.org/10.3390/molecules25061267 Ugaz, O. L. S. de. (1997). Colorantes naturales (Pontificia). | |
dc.relation | Valledor, A. F., Hsu, L.-C., Ogawa, S., Sawka-Verhelle, D., Karin, M., & Glass, C. K. (2004). Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17813–17818. https://doi.org/10.1073/pnas.0407749101 | |
dc.relation | Vepsäläinen, S., Hiltunen, M., Helisalmi, S., Wang, J., van Groen, T., Tanila, H., & Soininen, H. (2008). Increased expression of Aβ degrading enzyme IDE in the cortex of transgenic mice with Alzheimer’s disease-like neuropathology. Neuroscience Letters, 438(2), 216–220. https://doi.org/10.1016/j.neulet.2008.04.025 | |
dc.relation | Verbon, E. H., Post, J. A., & Boonstra, J. (2012). The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene, 511(1), 1–6. https://doi.org/10.1016/j.gene.2012.08.038 | |
dc.relation | Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2012). Roles of Apolipoprotein E in Alzheimer’s Disease and Other Neurological Disorders. Lancet Neurology, 10(3), 241–252. https://doi.org/10.1016/S1474-4422(10)70325-2.Roles | |
dc.relation | Vetrivel, K. S., & Thinakaran, G. (2010). Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1801(8), 860–867. https://doi.org/10.1016/j.bbalip.2010.03.007 | |
dc.relation | Viennois, E., Mouzat, K., Dufour, J., Morel, L., Lobaccaro, J.-M., & Baron, S. (2012). Selective liver X receptor modulators (SLiMs): what use in human health? Molecular and Cellular Endocrinology, 351(2), 129–141. https://doi.org/10.1016/j.mce.2011.08.036 | |
dc.relation | Viswanathan, A., & Greenberg, S. M. (2011). Cerebral amyloid angiopathy in the elderly. Annals of Neurology, 70(6), 871–880. https://doi.org/10.1002/ana.22516 | |
dc.relation | Voulgaropoulou, S. D., Amelsvoort, T. A. M. J. Van, Prickaerts, J., & Vingerhoets, C. (2019). The e ff ect of curcumin on cognition in Alzheimer ’ s disease and healthy aging : A systematic review of pre-clinical and clinical studies. Brain Research, 1725(August), 146476. https://doi.org/10.1016/j.brainres.2019.146476 | |
dc.relation | Walker, L. C., Pahnke, J., Madauss, M., Vogelgesang, S., Pahnke, A., Herbst, E. W., Stausske, D., Walther, R., Kessler, C., & Warzok, R. W. (2000). Apolipoprotein E4 promotes the early deposition of Aβ42 and then Aβ40 in the elderly. Acta Neuropathologica, 100(1), 36–42. https://doi.org/10.1007/s004010051190 | |
dc.relation | Wang, D., Dong, X., & Wang, C. (2018). Honokiol Ameliorates Amyloidosis and Neuroinflammation and Improves Cognitive Impairment in Alzheimer ’ s Disease Transgenic Mice. September, 470–478. https://doi.org/10.1124/jpet.118.248674 | |
dc.relation | Wang, J., Einarsson, C., Murphy, C., Parini, P., Björkhem, I., Gåfvels, M., & Eggertsen, G. (2006). Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. Journal of Lipid Research, 47(2), 421–430. https://doi.org/10.1194/jlr.M500441-JLR200 | |
dc.relation | Wang, Q., Liu, S., Hu, D., Wang, Z., Wang, L., Wu, T., Wu, Z., Mohan, C., & Peng, A. (2016). Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model. Life Sciences, 157, 116–124. https://doi.org/10.1016/j.lfs.2016.06.009 | |
dc.relation | Wang, Y., & Du, G. (2009). Ginsenoside Rg1 inhibits b -secretase activity in vitro and protects against A b -induced cytotoxicity in PC12 cells. 11(7), 604–612. https://doi.org/10.1080/10286020902843152 | |
dc.relation | Weisgraber, K. H. (1994). Apolipoprotein E: structure-function relationships. Advances in Protein Chemistry, 41(6), 853–872. https://doi.org/10.1016/S0065-3233(08)60642-7 | |
dc.relation | Witschi, H., Kacew, S., Hirai, K., & Côté, M. G. (1977). In vivo oxidation of reduced nicotinamide-adenine dinucleotide phosphate by paraquat and diquat in rat lung. Chemico-Biological Interactions, 19(2), 143–160. https://doi.org/10.1016/0009-2797(77)90027-8 | |
dc.relation | Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., & Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Archives of Neurology. https://doi.org/10.1001/archneur.57.10.1439 | |
dc.relation | Xie, T., Akbar, S., Stathopoulou, M. G., Oster, T., Masson, C., Yen, F. T., & Visvikis-Siest, S. (2018). Epistatic interaction of apolipoprotein E and lipolysis-stimulated lipoprotein receptor genetic variants is associated with Alzheimer’s disease. Neurobiology of Aging, 69, 292.e1-292.e5. https://doi.org/10.1016/j.neurobiolaging.2018.04.013 | |
dc.relation | Xing, Y., Tang, Y., Zhao, L., Wang, Q., Qin, W., Zhang, J. L., & Jia, J. (2016). Plasma Ceramides and Neuropsychiatric Symptoms of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 52(3), 1029–1035. https://doi.org/10.3233/JAD-151158 | |
dc.relation | Yadav, R. S., & Tiwari, N. K. (2014). Lipid Integration in Neurodegeneration: An Overview of Alzheimer’s Disease. Molecular Neurobiology, 50(1), 168–176. https://doi.org/10.1007/s12035-014-8661-5 | |
dc.relation | Yamamoto, T., Anno, M., & Sato, T. (1987). Effects of paraquat on mitochondria of rat skeletal muscle. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 86(2), 375–378. https://doi.org/10.1016/0742-8413(87)90098-3 | |
dc.relation | Yan, D., Zhang, Y., Liu, L., & Yan, H. (2016). Pesticide exposure and risk of Alzheimer’s disease: A systematic review and meta-analysis. Scientific Reports, 6(February), 1–9. https://doi.org/10.1038/srep32222 | |
dc.relation | Yang, C., Li, Q., & Li, Y. (2014). Targeting nuclear receptors with marine natural products. Marine Drugs, 12(2), 601–635. https://doi.org/10.3390/md12020601 | |
dc.relation | Yang, C., Li, Q., & Li, Y. (2014). Targeting nuclear receptors with marine natural products. Marine Drugs, 12(2), 601–635. https://doi.org/10.3390/md12020601 | |
dc.relation | Yasojima, K., Akiyama, H., McGeer, E. G., & McGeer, P. L. (2001). Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neuroscience Letters, 297(2), 97–100. https://doi.org/10.1016/S0304-3940(00)01675-X | |
dc.relation | Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 19–33. https://doi.org/10.1177/1756285612461679 | |
dc.relation | Zekonyte, J., Sakai, K., Nicoll, J. A. R., Weller, R. O., & Carare, R. O. (2016). | |
dc.relation | Quantification of molecular interactions between ApoE, amyloid-beta (Aβ) and laminin: Relevance to accumulation of Aβ in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(5), 1047–1053. https://doi.org/10.1016/j.bbadis.2015.08.025 | |
dc.relation | Zelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E. G., Landreth, G. E., Vinters, H. V., & Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences, 104(25), 10601–10606. https://doi.org/10.1073/pnas.0701096104 | |
dc.relation | Zhang, W., Xiong, H., Callaghan, D., Liu, H., Jones, A., Pei, K., Fatehi, D., Brunette, E., & Stanimirovic, D. (2013). Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging. Fluids and Barriers of the CNS. https://doi.org/10.1186/2045-8118-10-13 | |
dc.relation | Zhao, Z., Xiang, Z., Haroutunian, V., Buxbaum, J. D., Stetka, B., & Pasinetti, G. M. (2007). Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer’s disease. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2006.05.001 | |
dc.relation | Zheng, X., Zhang, Z., Chou, G., Wu, T., Cheng, X., Wang, C., & Wang, Z. (2009). Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay. Archives of Pharmacal Research, 32(9), 1245–1251. https://doi.org/10.1007/s12272-009-1910-x | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer | |
dc.type | Trabajo de grado - Maestría | |