dc.contributor | Rivera Rodríguez, Sergio Raúl | |
dc.contributor | Grupo de Investigación EMC-UN | |
dc.creator | Rivera Pinzón, Luis Antonio | |
dc.date.accessioned | 2020-12-15T16:38:20Z | |
dc.date.available | 2020-12-15T16:38:20Z | |
dc.date.created | 2020-12-15T16:38:20Z | |
dc.date.issued | 2020-07-06 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78723 | |
dc.description.abstract | Modern power systems are highly uncertain with respect to power availability due to the recent emergence of renewable energy sources and the variability of the primary sources of these technologies. Those challenges, and the need to take full advantage of the natural resources available, make optimal scheduling of power systems relevant to both academics and companies in the electricity sector. Operating power systems under efficiency and costeffective standards requires sophisticated optimization techniques. In this master’s project, I present a hybrid optimization tool that combines stochastic and analytical algorithms to program optimal scheduling by minimizing the total costs of generation. This optimization tool was tested in the IEEE 57 Bus Test Case, incorporating solar generation. Results were validated by comparing them with those of the particle swarm metaheuristic algorithm (PSO), a common technique used to minimize non-convex and multidimensional functions,
such as those involved in the study problem. Solar generation costs were modeled using the uncertainty cost method and simulations were performed using MATLAB. The results show that hybrid algorithms have great potential for programming the operation of modern power systems, given that they allow the determination of efficient operating points through efficient computational simulations. | |
dc.description.abstract | Los sistemas de potencia modernos tienen un alto componente de incertidumbre en la disponibilidad de potencia, debido a la entrada masiva de energías renovables durante los últimos años y a la variabilidad de las fuentes primarias de estas tecnologías. Lo anterior, sumado a los retos energéticos actuales que exigen que se aprovechen al máximo los recursos naturales disponibles, hace que la programación de la operación de sistemas de potencia represente un tema de interés para académicos y empresas del sector eléctrico. De esta manera, operar sistemas de potencia bajo estándares de eficiencia y economía requiere técnicas de optimización sofisticadas y el continuo desarrollo de herramientas para hacerlo. Bajo esta consideración, en este trabajo final de maestría se presentó una herramienta de optimización híbrida que combina algoritmos estocásticos y analíticos para programar la operación de sistemas de potencia, minimizando los costos totales de generación. La herramienta de optimización se probó en el sistema de 57 barras de la IEEE incorporando generación solar. Los resultados obtenidos se validaron comparándolos con los del algoritmo metaheurístico de enjambre de partículas (PSO), una técnica reconocida
para minimizar funciones no convexas y multidimensionales, como la de este tipo de problemas. Los costos de generación solar se modelaron a partir del método de costos de incertidumbre y las simulaciones se realizaron en MATLAB. Los resultados muestran que los algoritmos híbridos tienen un gran potencial para la programación de la operación de sistemas de potencia modernos, ya que permiten determinar puntos de operación eficientes con baja carga computacional y tiempos de simulación razonables. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | “Despacho.” [Online]. Available:
https://www.xm.com.co/Paginas/Generacion/despacho.aspx. [Accessed: 21-
Nov-2019]. | |
dc.relation | Ministerio de Minas y Energía, “Ley 143 de Junio 11 de 1994,” D. Of., vol.
1994, no. 41434, p. 347, 1994. | |
dc.relation | W. S. Jwo, C. W. Liu, C. C. Liu, and Y. T. Hsiao, “Hybrid expert system and
simulated annealing approach to optimal reactive power planning,” IEE
Proc. Gener. Transm. Distrib., vol. 142, no. 4, pp. 381–385, 1995. | |
dc.relation | H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” no. 10, pp.
1866–1876, 1968. | |
dc.relation | A. Hughes et al., “Optimal power flow by Newton approach,” Appar. Syst.
Vol. PAS-103, No. 10, no. 10, pp. 2864–2880, 1984. | |
dc.relation | R. C. Burchett, H. H. Happ, and D. R. Vierath, “Quadratically Convergent
Optimal Power Flow,” IEEE Power Eng. Rev., vol. PER-4, no. 11, pp. 34–
35, 1984. | |
dc.relation | X. Wang, X. Shi, H. Zhang, and F. Wang, “Multi-objective optimal dispatch
of wind-integrated power system based on distributed energy storage,”
Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-
Janua, pp. 2788–2792, 2017. | |
dc.relation | J. Jobanputra and C. Kotwal, “Optimal Power Dispatch using Particle
Swarm Optimization,” Proc. - 2018 Int. Conf. Smart Electr. Drives Power
Syst. ICSEDPS 2018, pp. 157–161, 2018. | |
dc.relation | J. Torres-Riveros and S. Rivera-Rodriguez, “Optimal energy dispatch in
multiple periods of time considering the variability and uncertainty of
generation from renewable sources,” Prospectiva, vol. 16, no. 2, pp. 75–81, 2018. | |
dc.relation | I. Rebollo, M. Graña, and C. Hernández, “Aplicación de agoritmos
estocásticos de optimización al problema de la disposición de objetos noconvexo,” Rev. Investig. operacional, vol. 22, no. 2, pp. 184–191, 2001. | |
dc.relation | A. H. Mantawy, Y. L. Abdel-Magid, and S. Z. Seliim, “A simulated annealing
algorithm for unit commitment,” IEEE Trans. Power Syst., vol. 13, no. 1, pp.
197–204, 1998. | |
dc.relation | A. Y. Saber, T. Senjyu, T. Miyagi, N. Urasaki, and T. Funabashi, “Fuzzy Unit
Commitment Scheduling Using Absolutely Stochastic Simulated Annealing,”
IEEE Trans. Power Syst., vol. 21, no. 2, pp. 955–964, 2006. | |
dc.relation | C. L. Chen, “Simulated annealing-based optimal wind-thermal coordination
scheduling,” IEE Proc. Gener. Transm. Distrib., vol. 1, no. 3, pp. 447–455,
2007. | |
dc.relation | E. souza de Cursi and R. Sampaio, Uncertainty quantification and stochastic
modeling with matlab. London: Elsevier Inc, 2015. | |
dc.relation | R. D. Zimmerman and C. E. Murillo-SÁnchez, “Matpower (Version 7.0).”
2019. | |
dc.relation | J. Benavides, Á. Cadena, J. J. González, C. Hidalgo, and A. Piñeros,
Mercado Eléctrico En Colombia: Transición Hacia Una Arquitectura
Descentralizada. Centro de investigación económica y social. Fedesarrollo.,
2018. | |
dc.relation | P. Turmero, “Despacho optimo de la generación.” [Online]. Available:
https://www.monografias.com/trabajos102/despacho-optimogeneracion/despacho-optimo-generacion.shtml. | |
dc.relation | J. J. Grainger and W. D. J. Stevenson, Analisis de Sistemas de Potencia.
Mc Graw Hill, 1996. | |
dc.relation | D. Arango, R. Urrego, and S. Rivera, “Despacho económico en microredes
con penetración de energía renovable usando algoritmo de punto interior y
restricciones lineales,” Ing. y Cienc., vol. 13, no. 25, pp. 123–152, 2017. | |
dc.relation | H. Kamankesh, V. G. Agelidis, and A. Kavousi-Fard, “Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging
demand,” Energy, vol. 100, pp. 285–297, 2016. | |
dc.relation | N. Gómez Molina, “Regulación de frecuencia en sistemas de potencia que
integran fuentes de energías eólicas mediante un controlador PI e imitación
de inercial,” 2017. | |
dc.relation | M. I. Ennes and A. L. Diniz, “A General Equivalent Thermal Cost Function
for Economic Dispatch Problems,” Computing, pp. 1–6, 2012. | |
dc.relation | H. Huang, C. Y. Chung, K. W. Chan, and H. Chen, “Quasi-Monte Carlo
Based Probabilistic Small Signal Stability Analysis for Power Systems With
Plug-In Electric Vehicle and Wind Power Integration," in IEEE Transactions
on Power Systems, vol. 28, no. 3, pp. 3335-3343, Aug. 2013, doi:
10.1109/TPWRS.2013.225,” IEEE Trans. Power Syst., vol. 28, no. 3, pp.
3335–3343, 2013. | |
dc.relation | J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty cost functions for solar
photovoltaic generation, wind energy generation, and plug-in electric
vehicles: mathematical expected value and verification by Monte Carlo
simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207,
2019. | |
dc.relation | S. Surender, P. R. Bijwe, and A. R. Abhyankar, “Real-time economic
dispatch considering renewable power generation variability and uncertainty
over scheduling period,” IEEE Syst. J., vol. 9, no. 4, pp. 1440–1451, 2015. | |
dc.relation | T. P. Chang, “Investigation on Frequency Distribution of Global Radiation
Using Different Probability Density Functions,” Int. J. Appl. Sci. Eng. Int. J.
Appl. Sci. Eng, vol. 8, no. 2, pp. 99–107, 2010. | |
dc.relation | D. Arango, R. Urrego, and S. Rivera, “Robust loss coefficients: Application
to power systems with solar and wind energy,” Int. J. Power Energy
Convers., vol. 9, no. 4, pp. 351–383, 2018. | |
dc.relation | C. Yung-Chung, W.-T. Yang, and C.-C. Liu, “A new method for calculating
loss coefficients [of power systems],” IEEE Trans. Power Syst., vol. 9, no. 3,
pp. 1665–1671, 1994. | |
dc.relation | X. Zheng, C. Jiang, R. Xu, L. Li, and Y. Zhao, “Generation right transaction
cost computation using marginal loss coefficients method,” East China
Electr. Power, 2009. | |
dc.relation | R. Azencott, “Simulated annealing,” Séminaire Bourbaki, vol. 162, pp. 223–
237, 1988. | |
dc.relation | S. German and C.-R. Hwang, “Diffusions for global optimization,” SIAM J.
Control Optim., vol. 24, no. 5, pp. 1031–1043, 1986. | |
dc.relation | RADVER S.A, “Tratamientos Térmicos.” [Online]. Available:
https://www.radver.com/procesos/tratamientos-termicos.html. [Accessed:
10-May-2020]. | |
dc.relation | D. A. M. Giraldo, “Solución Al Problema Del Despacho De Energía En
Sistemas Hidrotérmicos Usando Simulated Annealing,” Sci. Tech., vol. XI,
no. 29, pp. 7–12, 2005. | |
dc.relation | M. Pogu and J. Souza De Cursi, “Global optimization by random
perturbation of the gradient method with a fixed parameter,” J. Glob. Optim.,
vol. 5, no. 2, pp. 159–180, 1994. | |
dc.relation | E. Zeriab, Es-sadek Mohamed. Rachid and S. D. C. . Eduardo, “Application
of an hybrid algorithm in a logistic problem,” J. Adv. Res. Appl. Math., vol. 1,
no. 1, p. 34, 2009. | |
dc.relation | R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower:
Steady-State Operations, Planning and Analysis Tools for Power Systems
Research and Education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–
19, 2011. | |
dc.relation | B. Xu and A. Abu, “Optimal Placement of Phasor Measurement Units for
State Estimation,” Texas A&M University, 2005. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Programación de la operación de sistemas de potencia con generadores solares empleando técnicas de optimización estocásticas | |
dc.type | Otro | |