dc.contributorCastrillón Gómez, Omar Danilo
dc.contributorParra Osorio, Liliana
dc.creatorMosquera Navarro, Rodolfo
dc.date.accessioned2021-05-25T17:04:51Z
dc.date.accessioned2022-09-21T18:58:14Z
dc.date.available2021-05-25T17:04:51Z
dc.date.available2022-09-21T18:58:14Z
dc.date.created2021-05-25T17:04:51Z
dc.date.issued2021-02-26
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79556
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3412334
dc.description.abstractEl objetivo del presente trabajo es el desarrollo de un algoritmo inteligente para mejorar la predicción del riesgo psicosocial entre los docentes de colegios públicos en Colombia. El enfoque está compuesto por el modelo de redes neuronales artificiales vinculado a la teoría física de la tensión superficial en los líquidos. Para lograr los objetivos de este estudio, los docentes de colegios públicos han completado la evaluación de la Batería para la evaluación de factores de riesgo psicosocial intralaboral para la identificación del nivel de riesgo. Las variables que componen los factores de riesgo psicosocial se utilizan como entradas y el nivel de riesgo se utiliza como salida en el algoritmo. La eficiencia de la red neuronal de tensión superficial física (RNA-TS) se examina contra los algoritmos árboles de decisión (algoritmo J48), Naïve Bayes (NBC), red neuronal artificial (ANN), máquina de vectores de soporte (SVM), máquinas de vectores de soporte con función de base radial (SVM-RBF), máquina de vector de soporte con escalada de colinas (HC-SVM), el algoritmo híbrido de búsqueda de cuco junto a máquinas vectoriales de soporte (CS-SVM) y el modelo híbrido de máquina de vector de soporte con k-vecino más cercano (k-NN-SVM), utilizando el nivel de sensibilidad, la especificidad, el nivel de exactitud, el porcentaje de error de clasificación y la curva ROC. Los resultados concluyeron que RNA-TS proporciona una mejor clasificación que los demás algoritmos. Por tanto, la RNA-TS se utiliza para predecir y clasificar el nivel de riesgo psicosocial de los docentes de colegios públicos en su actividad laboral. Uno de los temas importantes para aplicar la teoría de la tensión superficial en el entorno del mundo real es desarrollar un modelo que soporte el modelo de aprendizaje automático para reflejar toda la complejidad de los factores psicosociales del mundo en los entornos laborales y permitir su predicción. Los profesores que presentan un riesgo psicosocial muy alto y alto son identificados con un 97,37% de exactitud. Esto ayudará a los gerentes a prever si los trabajadores están satisfechos con su carga de trabajo en el contexto de la higiene y la seguridad laboral. Finalmente, este es el primer estudio que introduce un algoritmo de tensión superficial física adaptado como clasificador inteligente para la predicción eficiente de factores de riesgo psicosocial en docentes de colegios públicos en sistemas académicos.
dc.description.abstractThe main goal of this research is to develop an intelligent algorithm to improve the prediction of psychosocial risk among the state-school teachers in Colombia. The model is composed of artificial neural network backpropagation linked to the physical theory of surface tension in liquids. To achieve the goals of this study, state school teachers have carried out the evaluation of the battery for the evaluation of intra-occupational psychosocial risk factors to identify the risk level. The variables that make up the psychosocial risk factors are used as inputs and the risk level is used as output in the algorithm. The efficiency of the physical surface tension neural network (PST-NN) is examined against decision trees algorithm (algorithm J48), Naïve Bayes (NBC), artificial neural network (ANN), support vector machine (SVM), support vector machines with radial basis function (SVM-RBF), hill climbing random restart - support vector machine hybrid model (HCRR-SVM), cuckoo search - support vector machines hybrid algorithm (CS-SVM) and the k-nearest neighbor – support vector machine hybrid model (k-NN-SVM), for metric evaluation were used, the sensitivity level, specificity, accuracy level, percentage of classification error, and ROC curve. The results concluded that PST-NN provides a better classification than the other algorithms. Therefore, the PST-NN is used to predict and classify the level of psychosocial risk of state-school teachers in their work activity. One of the important topics for applying the theory of surface tension in the real-world environment is to develop a model that supports the machine learning model to reflect all the complexity of the psychosocial factors of the world in work environments and allow its prediction. Teachers who present a very high and high psychosocial risk level were identified with 97.37% accuracy. This will help managers to predict whether workers are satisfied with their workload in the context of occupational hygiene and safety. Finally, this is the first study that introduces a physical surface tension algorithm adapted as an intelligent classifier for the efficient prediction of psychosocial risk factors in state-school teachers in academic systems.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y Organizaciones
dc.publisherDepartamento de Ingeniería Industrial
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationAbma, F. I., Brouwer, S., de Vries, H. J., Arends, I., Robroek, S. J., Cuijpers, M. P., van der Wilt, G. J., Bültmann, U., & van der Klink, J. J. (2016). The capability set for work: Development and validation of a new questionnaire. Scandinavian Journal of Work, Environment & Health, 42(1), 34–42. https://doi.org/10.5271/sjweh.3532 Adamson, A. W., & Gast, A. P. (1967). Arthur W. Adamson, Alice P. Gast—Physical chemistry of surfaces. New York: Interscience Publishers, 150(180). Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13–49. https://doi.org/10.1016/j.tele.2019.01.007 Aliabadi, M. (2015). Prediction of hearing loss among the noise-exposed workers in a steel factory using artificial intelligence approach. Int Arch Occup Environ Health, 88(6), 779–787. Alpaydin, E. (2020). Introduction to Machine Learning (Fourth). The MIT Press. Al-Shargie, F. (2019). Multilevel Assessment of Mental Stress using SVM with ECOC: An EEG Approach [Preprint]. engrXiv. https://doi.org/10.31224/osf.io/7v9ks Anand, R. S., & Kumar, V. (2018). EEG-metric based mental stress detection. Network Biology, 8(1), 25–34. Andayani, U., Nababan, E. B., Siregar, B., Muchtar, M. A., Nasution, T. H., & Siregar, I. (2017). Optimization backpropagation algorithm based on Nguyen-Widrom adaptive weight and adaptive learning rate. 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), 363–367. https://doi.org/10.1109/IEA.2017.7939239 Ansoleaga, E., Portales, U. D., Toro, J. P., & Portales, U. D. (2014). Mental Health and Nature of Work: When the Emotional Demands Becomes Inevitable. Revista Psicologia: Organizações e Trabalh, 14(2), 180–189. Baradaran, V., Ghadami, S., & Malihi, S. E. (2008). A Multi Objective approach for selecting solutions to improve job satisfaction an empirical case analysis. 2008 IEEE International Conference on Industrial Engineering and Engineering Management, 1945–1948. https://doi.org/10.1109/IEEM.2008.4738211 Bauer, G. F., & Hämmig, O. (2014). Bridging Occupational, Organizational and Public Health. Springer Netherlands. https://doi.org/10.1007/978-94-007-5640-3 Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning practice and the bias-variance trade-off. ArXiv:1812.11118 [Cs, Stat]. http://arxiv.org/abs/1812.11118 Benítez, R., Escudero, G., & Kanaan, S. (2014). Inteligencia artificial avanzada (2da ed.). UOC. Berens, J., Schneider, K., Görtz, S., Oster, S., & Burghoff, J. (2019). Early Detection of Students at Risk—Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods. Journal of Educational Data Mining, 11(3), 1–41. Berry, M. V. (1971). The molecular mechanism of surface tension. Physics Education, 6(2). https://doi.org/10.1088/0031-9120/6/2/001 Bitalino. (2017). BITalino [OpenSignals]. http://www.bitalino.com/ Botero Alvarez, C. C. (2013). Riesgo psicosocial intralaboral y “burnout” en docentes universitarios de algunos países latinoamericanos. Cuadernos de Administración, 28(48), 118–133. https://doi.org/10.25100/cdea.v28i48.460 British Standards Institution (BSI). (2011). PAS1010: Guidance on the management of psychosocial risks in the workplace. BSI. Brown, R. C. (1947). The fundamental concepts concerning surface tension and capillarity. Proceedings of the Physical Society, 59(3), 429–448. https://doi.org/10.1088/0959-5309/59/3/310 Bruhn, A., & Frick, K. (2011). Why it was so difficult to develop new methods to inspect work organization and psychosocial risks in Sweden. Safety Science, 49(4), 575–581. https://doi.org/10.1016/j.ssci.2010.07.011 Burke, R. J., & Pignata, S. (2020). Handbook of Research on Stress and Well-Being in the Public Sector (First, Vol. 1). Edward Elgar. Canadian Standards Association. (2013). Psychological health and safety in the workplace—Prevention, promotion, and guidance to staged implementation. Bureau de normalisation du Québec. Cardenas Gonzalo, D. (2015). Influencia de los síntomas físicos sobre el estrés laboral y familiar. Dyna Management, 3(3), 248–262. https://doi.org/10.6036/MN7831 Chakraborty, U. (2020). Artificial Intelligence for All: Transforming Every Aspect of Our Life (1a ed.). Bpb publications. Chen, L., Pan, X., Zhang, Y.-H., Liu, M., Huang, T., & Cai, Y.-D. (2019). Classification of Widely and Rarely Expressed Genes with Recurrent Neural Network. Computational and Structural Biotechnology Journal, 17, 49–60. https://doi.org/10.1016/j.csbj.2018.12.002 Cheng, J., Wang, L., & Xiong, Y. (2019). Ensemble of cuckoo search variants. Computers & Industrial Engineering, 135, 299–313. https://doi.org/10.1016/j.cie.2019.06.015 Cox, T., Griffiths, A., Rial-González, E., & Agencia Europea para la Seguridad y la Salud en el Trabajo. (2006). Investigación sobre el estrés relacionado con el trabajo. Oficina de publicaciones officiales de las Comunidades europeas. Cuixart, C. N. (2012). NTP:926 Factores psicosociales: Metodología de evaluación. Centro Nacional de Condiciones del Trabajo. https://www.insst.es/documents/94886/326879/926w.pdf/cdecbd91-70e8-4cac-b353-9ea39340e699 Czaja, S. J., & Nair, S. N. (2006). Human Factors Engineering and Systems Design. En G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (pp. 32–49). John Wiley & Sons, Inc. https://doi.org/10.1002/0470048204.ch2 Darvishi, E., Khotanlou, H., Khoubi, J., Giahi, O., & Mahdavi, N. (2017). Prediction Effects of Personal, Psychosocial, and Occupational Risk Factors on Low Back Pain Severity Using Artificial Neural Networks Approach in Industrial Workers. Journal of Manipulative and Physiological Therapeutics, 40(7), 486–493. https://doi.org/10.1016/j.jmpt.2017.03.012 Dediu, V., Leka, S., & Jain, A. (2018). Job demands, job resources and innovative work behaviour: A European Union study. European Journal of Work and Organizational Psychology, 27(3), 310–323. https://doi.org/10.1080/1359432X.2018.1444604 Dimsdale, J. E. (2019). Trastorno de síntomas somáticos [Profesional]. Manual MSD. https://www.msdmanuals.com/es/professional/trastornos-psiqui%C3%A1tricos/trastornos-de-s%C3%ADntomas-som%C3%A1ticos-y-relacionados/trastorno-de-s%C3%ADntomas-som%C3%A1ticos Dollard, M. F., & Neser, D. Y. (2013). Worker health is good for the economy: Union density and psychosocial safety climate as determinants of country differences in worker health and productivity in 31 European countries. Social Science & Medicine, 92, 114–123. https://doi.org/10.1016/j.socscimed.2013.04.028 Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (Second). John Wiley & Sons. El Yafrani, M., & Ahiod, B. (2018). Efficiently solving the Traveling Thief Problem using hill climbing and simulated annealing. Information Sciences, 432, 231–244. https://doi.org/10.1016/j.ins.2017.12.011 El-Batawi, M. A. (1988). Psychosocial health problems of workers in developing countries. En Psychosocial factors at work and their relationship with health (1a ed., Vol. 1, pp. 15–20). World Health Organization. Elhoone, H., Zhang, T., Anwar, M., & Desai, S. (2020). Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. International Journal of Production Research, 58(9), 2841–2861. https://doi.org/10.1080/00207543.2019.1671627 Esling, P., & Devis, N. (2020). Creativity in the era of artificial intelligence. ArXiv:2008.05959 [Cs]. http://arxiv.org/abs/2008.05959 Espinoza, L. M., & Villalobos, D. G. (2015). Prevalencia de riesgo psicosocial en un grupo de docentesy directivos del distrito capital [Tesis de Maestría]. Universidad del Rosario. European agency for safety and health and work. (2011). Annual_report_2010_summary_es.pdf. EU-Osha 2010. https://osha.europa.eu/es/publications/annual_report/ar_summary_2010/view European Agency for Safety and Health at Work. (2012). Drivers and barriers for psychosocial risk management: An analysis of the findings of the European Survey of Enterprises on New and Emerging Risks (ESENER). report. Publ. Office of the Europ. Union. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 Fecode. (2015). Acta-de-acuerdos-fecode_MEN-Mayo-7-2015. https://fecode.edu.co/index.php/actas-de-acuerdo Fernandes de Mello, R., & Antonelli Ponti, M. (2018). Machine Learning: A Practical Approach on the Statistical Learning Theory. Springer International Publishing. https://doi.org/10.1007/978-3-319-94989-5 Fowkes, F. M. (1961). Determination of interfacial tensions, contact angles, and dispersion forces in surfaces. 66, 1. Frone, M. R., & Tidwell, M.-C. O. (2015). The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI). Journal of Occupational Health Psychology, 20(3), 273–288. https://doi.org/10.1037/a0038700 Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A. Y. (2014). Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application. Journal of Psychiatric Research, 59, 68–76. https://doi.org/10.1016/j.jpsychires.2014.08.017 García Castro, C. M., & Muñoz Sánchez, A. I. (2013). Health and work of district schools faculty of the district one of Bogotá. AVANCES EN ENFERMERÍA, 13. García-Herrero, S., Lopez-Garcia, J. R., Herrera, S., Fontaneda, I., Báscones, S. M., & Mariscal, M. A. (2017). The Influence of Recognition and Social Support on European Health Professionals’ Occupational Stress: A Demands-Control-Social Support-Recognition Bayesian Network Model. BioMed Research International, 2017, 1–14. https://doi.org/10.1155/2017/4673047 González Fuentes, A., Busto Serrano, N. M., Sánchez Lasheras, F., Fidalgo Valverde, G., & Suárez Sánchez, A. (2020). Prediction of Health-Related Leave Days among Workers in the Energy Sector by Means of Genetic Algorithms. Energies, 13(10), 2475. https://doi.org/10.3390/en13102475 González Herranz, R. (2016). Sistemas de ayuda al diagnóstico y a la terapia funcional en enfermedades neurodegenerativas [Disertación doctoral]. Universidad Politécnica de Madrid. Hadi, W., El-Khalili, N., AlNashashibi, M., Issa, G., & AlBanna, A. A. (2019). Application of data mining algorithms for improving stress prediction of automobile drivers: A case study in Jordan. Computers in Biology and Medicine, 114, 103474. https://doi.org/10.1016/j.compbiomed.2019.103474 Hallner, D., & Hasenbring, M. (2004). Classification of psychosocial risk factors (yellow flags) for the development of chronic low back and leg pain using artificial neural network. Neuroscience Letters, 361(1–3), 151–154. https://doi.org/10.1016/j.neulet.2003.12.107 Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed). Morgan Kaufmann Publishers. Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A review. Safety Science, 122, 104492. https://doi.org/10.1016/j.ssci.2019.09.015 Hernández, M. G. G., Martínez, R. M. R., Maldonado-Macias, A. A., & Leal, J. S. (Eds.). (2020). Work Stress and Psychosocial Factors in the Manufacturing Industry: A Literature Review (First, Vol. 1). IGI Global. https://doi.org/10.4018/978-1-7998-1052-0 Hesser, D. F., & Markert, B. (2019). Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manufacturing Letters, 19, 1–4. https://doi.org/10.1016/j.mfglet.2018.11.001 Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11, 63–91. Houtman, I., van Zwieten, M., Leka, S., Jain, A., & de Vroome, E. (2020). Social Dialogue and Psychosocial Risk Management: Added Value of Manager and Employee Representative Agreement in Risk Perception and Awareness. International Journal of Environmental Research and Public Health, 17(10), 3672. https://doi.org/10.3390/ijerph17103672 Iavicoli, S., Leka, S., Jain, A., Persechino, B., Rondinone, B. M., Ronchetti, M., & Valenti, A. (2014). Hard and soft law approaches to addressing psychosocial risks in Europe: Lessons learned in the development of the Italian approach. Journal of Risk Research, 17(7), 855–869. https://doi.org/10.1080/13669877.2013.822911 Jacobson, S. H., & Yücesan, E. (2004). Analyzing the Performance of Generalized Hill Climbing Algorithms. Journal of Heuristics, 10(4), 387–405. https://doi.org/10.1023/B:HEUR.0000034712.48917.a9 Jain, A., Dediu, V., Zwetsloot, G., & Leka, S. (2017). Workplace Innovation and Wellbeing at Work: A Review of Evidence and Future Research Agenda. En P. Oeij, D. Rus, & F. D. Pot (Eds.), Workplace Innovation (pp. 111–128). Springer International Publishing. https://doi.org/10.1007/978-3-319-56333-6_8 Jasper, J. J. (1972). The Surface Tension of Pure Liquid Compounds. 1(4), 841–1010. https://doi.org/10.1063/1.3253106 Jebelli, H., Khalili, M. M., & Lee, S. (2019). Mobile EEG-Based Workers’ Stress Recognition by Applying Deep Neural Network. En I. Mutis & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 173–180). Springer International Publishing. https://doi.org/10.1007/978-3-030-00220-6_21 Johnson, J. V., & Hall, E. M. (1988). Job strain, work place social support, and cardiovascular disease: A cross-sectional study of a random sample of the Swedish working population. American Journal of Public Health, 78(10), 1336–1342. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415 Jung, J. S., Park, S. J., Kim, E. Y., Na, K.-S., Kim, Y. J., & Kim, K. G. (2019). Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. PLOS ONE, 14(6), e0217639. https://doi.org/10.1371/journal.pone.0217639 Karasek, R. A. (1979). Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Administrative Science Quarterly, 24(2), 285. https://doi.org/10.2307/2392498 Kataoka, H., Kano, H., Yoshida, H., Saijo, A., Yasuda, M., & Osumi, M. (1998). Development of a skin temperature measuring system for non-contact stress evaluation. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), 2, 940–943. https://doi.org/10.1109/IEMBS.1998.745598 Kato, E. R. R., Aranha, G. D. de A., & Tsunaki, R. H. (2018). A new approach to solve the flexible job shop problem based on a hybrid particle swarm optimization and Random-Restart Hill Climbing. Computers & Industrial Engineering, 125, 178–189. https://doi.org/10.1016/j.cie.2018.08.022 Kohonen, T. (1989). Self-Organization and Associative Memory (Vol. 8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-88163-3 Kortum, E., & Leka, S. (2014). Tackling psychosocial risks and work-related stress in developing countries: The need for a multilevel intervention framework. International Journal of Stress Management, 21(1), 7–26. https://doi.org/10.1037/a0035033 Kortum, E., Leka, S., & Cox, T. (2010). Psychosocial risks and work-related stress in developing countries: Health impact, priorities, barriers and solutions. International Journal of Occupational Medicine and Environmental Health, 23(3). https://doi.org/10.2478/v10001-010-0024-5 Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0 Lahmiri, S., & Bekiros, S. (2019). Can machine learning approaches predict corporate bankruptcy? Evidence from a qualitative experimental design. Quantitative Finance, 19(9), 1569–1577. https://doi.org/10.1080/14697688.2019.1588468 Lal, A., Dhinesh, R., Harish, C. S., Moorthy, D. M. J., & Madhumathi, R. (2018). Stress Detection using Machine Learning. International Journal for Trends in Engineering & Technology, 28(1), 37–39. Langenhan, M. K., Leka, S., & Jain, A. (2013). Psychosocial Risks: Is Risk Management Strategic Enough in Business and Policy Making? Safety and Health at Work, 4(2), 87–94. https://doi.org/10.1016/j.shaw.2013.04.003 Larrabee, J. H., Janney, M. A., Ostrow, C. L., Withrow, M. L., Hobbs, G. R., & Burant, C. (2003). Predicting Registered Nurse Job Satisfaction and Intent to Leave: JONA: The Journal of Nursing Administration, 33(5), 271–283. https://doi.org/10.1097/00005110-200305000-00003 Law, K.-Y., & Zhao, H. (2016). Surface wetting: Characterization, contact angle, and fundamentals. (2a ed.). Springer International Publishing. Lawrence, S. A., Jordan, P. J., & Callan, V. J. (2015). Initial validation of the support mobilization for work stressors inventory. Australian Journal of Management, 40(4), 587–612. https://doi.org/10.1177/0312896214528186 Leka, S, & Cox, T. (2011). Guide Prima-EF. Guidance on the European Framework for Psychosocial Risk Management. A Resource for Employers and Workers Representatives. WHO. Leka, Stavroula, Jain, A., & Lerouge, L. (2017). Work-Related Psychosocial Risks: Key Definitions and an Overview of the Policy Context in Europe. En L. Lerouge (Ed.), Psychosocial Risks in Labour and Social Security Law (pp. 1–12). Springer International Publishing. https://doi.org/10.1007/978-3-319-63065-6_1 Leka, Stavroula, Van Wassenhove, W., & Jain, A. (2015). Is psychosocial risk prevention possible? Deconstructing common presumptions. Safety Science, 71, 61–67. https://doi.org/10.1016/j.ssci.2014.03.014 Li, B., Mendenhall, J., & Meiler, J. (2019). Interfaces Between Alpha-helical Integral Membrane Proteins: Characterization, Prediction, and Docking. Computational and Structural Biotechnology Journal, 17, 699–711. https://doi.org/10.1016/j.csbj.2019.05.005 Li, L., Cen, Z.-Y., Tseng, M.-L., Shen, Q., & Ali, M. H. (2021). Improving short-term wind power prediction using hybrid improved cuckoo search arithmetic—Support vector regression machine. Journal of Cleaner Production, 279, 123739. https://doi.org/10.1016/j.jclepro.2020.123739 Li, Z., Sun, D., Zhu, R., & Lin, Z. (2017). Detecting event-related changes in organizational networks using optimized neural network models. PLOS ONE, 12(11), e0188733. https://doi.org/10.1371/journal.pone.0188733 Lippel, K., & Quinlan, M. (2011). Regulation of psychosocial risk factors at work: An international overview. Safety Science, 49(4), 543–546. https://doi.org/10.1016/j.ssci.2010.09.015 Lotfan, S., Shahyad, S., Khosrowabadi, R., Mohammadi, A., & Hatef, B. (2019). Support vector machine classification of brain states exposed to social stress test using EEG-based brain network measures. Biocybernetics and Biomedical Engineering, 39(1), 199–213. https://doi.org/10.1016/j.bbe.2018.10.008 Loy-Benitez, J., Heo, S., & Yoo, C. (2020). Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders. Control Engineering Practice, 97, 104330. https://doi.org/10.1016/j.conengprac.2020.104330 Macleod, D. B. (1923). On a relation between surface tension and density. Transactions of the Faraday Society, 19(July), 38. https://doi.org/10.1039/tf9231900038 Maqsoom, A., Mughees, A., Zahoor, H., Nawaz, A., & Mazher, K. M. (2020). Extrinsic psychosocial stressors and workers’ productivity: Impact of employee age and industry experience. Applied Economics, 52(26), 2807–2820. https://doi.org/10.1080/00036846.2019.1696936 Márquez Gómez, M. (2020). Prediction of work-related musculoskeletal discomfort in the meat processing industry using statistical models. International Journal of Industrial Ergonomics, 75, 102876. https://doi.org/10.1016/j.ergon.2019.102876 Maynard, M. (2020). Maynard, Morgan—Neural Networks_ Introduction to Artificial Neurons, Backpropagation and Multilayer Feedforward Neural Networks with Real-World Applications (Advance. Maynard. McClelland, J. L., & Rumelhart, E. (eds. ). (1986). Parallel Distributed Processing (Vol. 2). MIT Press. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259 Mehanović, D., Mašetić, Z., & Kečo, D. (2020). Prediction of Heart Diseases Using Majority Voting Ensemble Method. En A. Badnjevic, R. Škrbić, & L. Gurbeta Pokvić (Eds.), CMBEBIH 2019 (Vol. 73, pp. 491–498). Springer International Publishing. https://doi.org/10.1007/978-3-030-17971-7_73 Memish, K., Martin, A., Bartlett, L., Dawkins, S., & Sanderson, K. (2017). Workplace mental health: An international review of guidelines. Preventive Medicine, 101, 213–222. https://doi.org/10.1016/j.ypmed.2017.03.017 Meneses, A. A. de M., da Silva, P. V., Nast, F. N., Araujo, L. M., & Schirru, R. (2020). Application of Cuckoo Search algorithm to Loading Pattern Optimization problems. Annals of Nuclear Energy, 139, 107214. https://doi.org/10.1016/j.anucene.2019.107214 Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 3111–3119. Ministerio de Educación. (2015). Decreto_1655_de_2015.pdf. Min_educación. Ministerio de la Protección Social. (2008). Resolución número 002646 de 2008. http://www.saludcapital.gov.co/Documentos%20Salud%20Ocupacional/RESOL.%202646%20DE%202008%20RIESGO%20PSICOSOCIAL.pdf Ministerio del Trabajo. (2014). Decreto_1477_del_5_de_agosto_de_2014. https://www.mintrabajo.gov.co/documents/20147/36482/decreto_1477_del_5_de_agosto_de_2014.pdf/b526be63-28ee-8a0d-9014-8b5d7b299500 Ministerio del trabajo. (2015). Guía técnica general para la Promoción, prevención e intervención de los factorespsicosociales y sus efectos en población trabajadora. Javegraf. http://fondoriesgoslaborales.gov.co/wp-content/uploads/2018/09/01-Guia-tecnica-general.pdf Ministerio del Trabajo, & Organización Iberoamericana de Seguridad Social, Oiss. (2013). II_ENCUESTA_NACIONAL_CONDICIONES_SST_COLOMBIA_2013.pdf (Oiss). Moncada, S., Utzet, M., Molinero, E., Llorens, C., Moreno, N., Galtés, A., & Navarro, A. (2014). The copenhagen psychosocial questionnaire II (COPSOQ II) in Spain-A tool for psychosocial risk assessment at the workplace: Copenhagen Psychosocial Questionnaire II in Spain. American Journal of Industrial Medicine, 57(1), 97–107. https://doi.org/10.1002/ajim.22238 Morrow, A. S., Campos Vega, A. D., Zhao, X., & Liriano, M. M. (2020). Leveraging Machine Learning to Identify Predictors of Receiving Psychosocial Treatment for Attention Deficit/Hyperactivity Disorder. Administration and Policy in Mental Health and Mental Health Services Research, 47(4). https://doi.org/10.1007/s10488-020-01045-y Mosquera Navarro, R. (2019). Psychosocial risk level on teachers schools V1. IEEE Dataport, 1(1). http://dx.doi.org/10.21227/jdzw-7e82 Mosquera Navarro, R., Gómez, O. D. C., Osorio, L. P., & García, A. C. (2018). Classification system for the predicting of psychosocial risk level in public-school teachers based on Artificial Intelligence. XVIII Conferencia de La Asociación Española Para La Inteligencia Artificial (CAEPIA), 1367–1372. Mosquera, R, Castrillón Gómez, O. D., & Parra-Osorio, L. (2019). Algorithm based on Physical Surface Tension for the Prediction of Psychosocial-risk Level in Public School Teachers. [Source Code]. Doi.org/10.24433/CO.4268666.v1.1. (1.1) [Matlab]. Code Ocean. Mosquera, Rodolfo. (2018). Psychosocial Risk Level Colombian Teachers School Repository 2016-2017. Zenodo, 2. https://doi.org/10.5281/zenodo.1298610. Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018a). Support Vector Machines, Naïve Bayes Classifier and Genetic Algorithms for the Prediction of Psychosocial Risks in Teachers of Colombian Public Schools. Información tecnológica, 29(6), 153–162. https://doi.org/10.4067/S0718-07642018000600153 Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018b). Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos utilizando Técnicas de Inteligencia Artificial. Información tecnológica, 29(4), 267–280. https://doi.org/10.4067/S0718-07642018000400267 Mosquera, Rodolfo, Castrillón, O. D., & Parra, L. (2018c). Máquinas de Soporte Vectorial, Clasificador Naïve Bayes y Algoritmos Genéticos para la Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos. Información tecnológica, 29(6), 153–162. https://doi.org/10.4067/S0718-07642018000600153 Mosquera, Rodolfo, Castrillón, O. D., & Parra-Osorio, L. (2019). Aplicación del modelo hibrido k-nearest neighbors- Support Vector Machine para la predicción del riesgo psicosocial en docentes de colegios públicos colombianos. Proceedings of the 17th Latin American and Caribbean Conference for Engineering and Technology, 1, 5. Mosquera, Rodolfo, Gómez, O. D. C., Osorio, L. P., & García, A. C. (2018). Classification system for the predicting of psychosocial risk level in public-school teachers based on Artificial Intelligence. Proceedings of XVIII Conferencia de La Asociación Española Para La Inteligencia Artificial, 1, 1367–1372. Mosquera, Rodolfo, Parra-Osorio, L., & Castrillón, O. D. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información tecnológica, 27(6), 259–272. https://doi.org/10.4067/S0718-07642016000600026 Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine learning: Definitions, methods, and applications. Proceedings of the National Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116 Navascués, G. (1979). Liquid surfaces: Theory of surface tension. Reports on Progress in Physics, 42(7), 59. https://doi.org/10.1088/0034-4885/42/7/002 Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., & Mitliagkas, I. (2019). A Modern Take on the Bias-Variance Tradeoff in Neural Networks. ArXiv:1810.08591 [Cs, Stat]. http://arxiv.org/abs/1810.08591 Niedhammer, I., & Chastang, J.-F. (2013). Psychosocial work factors and sickness absence in 31 countries in Europe. European Journal of Public Health, 23(4), 622–628. Olaya Arévalo, C. (2015). Síndrome de burnout o síndrome de agotamiento profesional (sap) en el trabajo de los docentes distritales de la localidad de usme [Tesis de Maestría]. Pavelka, A., & Prochazka, A. (2004). Algorithms for initialization of neural network weights. Proceedings of the 12th Annual Conference, 453–459. Posada Quintero, J. I., Molano Vergara, P. N., Parra Hernández, R. M., Brito Osorio, F. Y., & Rubio Orozco, E. A. (2019). Prevalencia del Síndrome de Burnout en docentes: Factores asociados al estatuto de vinculación laboral en Colombia. Revista Interamericana de Psicología Ocupacional, 37(2), 119–133. https://doi.org/10.21772/ripo.v37n2a04 Posada-Quintero, H. F., Molano-Vergara, P. N., Parra-Hernández, R. M., & Posada-Quintero, J. I. (2020). Analysis of Risk Factors and Symptoms of Burnout Syndrome in Colombian School Teachers under Statutes 2277 and 1278 Using Machine Learning Interpretation. Social Sciences, 9(3), 30. https://doi.org/10.3390/socsci9030030 Priya, A., Garg, S., & Tigga, N. P. (2020). Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 167, 1258–1267. https://doi.org/10.1016/j.procs.2020.03.442 Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Academic Pathology, 6, 237428951987308. https://doi.org/10.1177/2374289519873088 Restrepo, G. C. (2011). Factores de riesgo psicosocial que afectan el ejercicio pedagógico de los docentes del núcleo educativo no 8 de la ciudadela cuba de pereira [Tesis de Maestría]. Católica de Pereira. Robnik-Sˇ, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1–2), 23–69. https://doi.org/10.1023/A:1025667309714 Robnik-Sˇ, M., & Kononenko, I. (2013). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53, 23–69. Rodriguez, L. (2007). Probabilidad y estadística básica para ingenieros. Escuela Superior Politécnica del LitoralInstituto de Ciencias Matemáticas. Rodríguez-Arce, J., Lara-Flores, L., Portillo-Rodríguez, O., & Martínez-Méndez, R. (2020). Towards an anxiety and stress recognition system for academic environments based on physiological features. Computer Methods and Programs in Biomedicine, 190, 105408. https://doi.org/10.1016/j.cmpb.2020.105408 Rosero, A. C. T., & Álvarez, C. C. B. (2012). Riesgos psicosociales intralaborales en docencia. Revista Iberoamericana de Psicologia: Ciencia y Tecnología., 5(2), 95–106. Rosset, S., & Tibshirani, R. J. (2020). From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation. Journal of the American Statistical Association, 115(529), 138–151. https://doi.org/10.1080/01621459.2018.1424632 Rumelhart, D. E., & MacClelland, J. L. (Eds). (1986). Parallel Distributed Processing (Vol. 1). MIT Press. Salal, Y. K., Abdullaev, S. M., & Kumar, M. (2019). Educational Data Mining: Student Performance Prediction in Academic. International Journal of Engineeringand Advanced Technology, 8(4), 54–59. Santos, M. (2011). Un Enfoque Aplicado del Control Inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(4), 283–296. https://doi.org/10.1016/j.riai.2011.09.016 Sauter, S. L., & Murphy, L. R. (1984). Factores psicosociales y de organización. Enciclopedia de salud y seguridad en el trabajo, 34.2-34.75. Schlkopf, B., Smola, A. J., & Bach, F. (2018). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press. Schweidtmann, A. M., & Mitsos, A. (2019). Deterministic Global Optimization with Artificial Neural Networks Embedded. Journal of Optimization Theory and Applications, 180(3), 925–948. https://doi.org/10.1007/s10957-018-1396-0 Siegrist, J. (1996). Adverse Health Effects of High-Effort/Low-Reward Conditions. Journal of Occupational Health Psychology, 1(1), 27–41. Silva Gutiérrez, B. N., & Vicente Flores, R. (2015). Académicos universitarios y salud ocupacional. Importancia de los factores psicosociales y variables sociodemográficas, el caso de un centro universitario regional de la Universidad de Guadalajara, México. Población y Desarrollo - Argonautas y Caminantes, 10, 33–43. https://doi.org/10.5377/pdac.v10i0.1736 Sriramprakash, S., Prasanna, V. D., & Murthy, O. V. R. (2017). Stress Detection in Working People. Procedia Computer Science, 115, 359–366. https://doi.org/10.1016/j.procs.2017.09.090 Suárez Sánchez, A., Riesgo Fernández, P., Sánchez Lasheras, F., de Cos Juez, F. J., & García Nieto, P. J. (2011). Prediction of work-related accidents according to working conditions using support vector machines. Applied Mathematics and Computation, 218(7), 3539–3552. https://doi.org/10.1016/j.amc.2011.08.100 Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., & Malik, A. S. (2017). Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access, 5, 13545–13556. https://doi.org/10.1109/ACCESS.2017.2723622 Sushant K, S. (2020). A Commentary on the Application of Artificial Intelligence in the Insurance Industry. Trends in Artificial Intelligence, 4(1). https://doi.org/10.36959/643/305 Tettamanzi, A., & Tomassini, M. (2001). Soft Computing. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04335-6 Teuscher, C. (Ed.). (2004). Alan Turing: Life and Legacy of a Great Thinker. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05642-4 Tiffin, P. A., & Paton, L. W. (2018). Rise of the machines? Machine learning approaches and mental health: opportunities and challenges. The British Journal of Psychiatry, 213(3), 509–510. https://doi.org/10.1192/bjp.2018.105 Tuttle, J. F., Vesel, R., Alagarsamy, S., Blackburn, L. D., & Powell, K. (2019). Sustainable NO x emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization. Control Engineering Practice, 93, 104167. https://doi.org/10.1016/j.conengprac.2019.104167 Tyson, W. R., & Miller, W. A. (1977). Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surface Science, 62(1), 267–276. https://doi.org/10.1016/0039-6028(77)90442-3 Tzeng, H.-M., Hsieh, J.-G., & Lin, Y.-L. (2004b). Predicting Nurses’ Intention to Quit With a Support Vector Machine. Computers, Informatics, Nursing, 22(4), 232–242. Uronen, L., Moen, H., Teperi, S., Martimo, K.-P., Hartiala, J., & Salanterä, S. (2020). Towards automated detection of psychosocial risk factors with text mining. Occupational Medicine, 70(3), 203–206. https://doi.org/10.1093/occmed/kqaa022 Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer New York. https://doi.org/10.1007/978-1-4757-2440-0 Vieco Gómez, G. F., & Abello Llanos, R. (2014). Psychosocial factors at work, stress and morbidity around the world. Psicología desde el Caribe, 31(2), 354–385. https://doi.org/10.14482/psdc.31.2.5544 Villalobos F, G. H. (2004). Vigilancia Epidemiológica de los FactoresPsicosociales. Aproximación Conceptual y Valorativa. Ciencia &Trabajo, 6(14), 194–201. Villalobos, G. (2005). Diseño de un sistema de vigilancia epidemiológica de factores de riesgo psicosocial en el trabajo. Escuela Nacional de Salud Pública. Villalobos, G., Vargas M, A., Escobar, J., Jiménez, M. L., & Rondón, M. A. (2010). Batería de instrumentos para la evaluación de factores de riesgo psicosocial (1a ed., Vol. 1). Ministerio de protección social. http://fondoriesgoslaborales.gov.co/documents/publicaciones/estudios/ Wang, S., Cao, Y., Huang, T., Chen, Y., Li, P., & Wen, S. (2020). Sliding mode control of neural networks via continuous or periodic sampling event-triggering algorithm. Neural Networks, 121, 140–147. https://doi.org/10.1016/j.neunet.2019.09.001 Wang, X., Wang, Z., Song, Q., Shen, H., & Huang, X. (2020). A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks. Neural Networks, 121, 329–338. https://doi.org/10.1016/j.neunet.2019.09.032 Weissbrodt, R., & Giauque, D. (2017). Labour inspections and the prevention of psychosocial risks at work: A realist synthesis. Safety Science, 100, 110–124. https://doi.org/10.1016/j.ssci.2017.02.012 Wenhui Liao, Weihong Zhang, Zhiwei Zhu, & Qiang Ji. (2005). A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, 3, 70–70. https://doi.org/10.1109/CVPR.2005.394 Werboz, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysisin Behavioral Sciences. Harvard. Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Stanford Univ Ca Stanford Electronics Labs. Wikimedia Commons. (2006, agosto 26). Waterstrider—Aquarius remigis. WaterstriderEnWiki.Jpg. https://commons.wikimedia.org/wiki/File:WaterstriderEnWiki.jpg Yadav, S. K., & Hashmi, A. (2018). An Investigation of Occupational stress Classification by using Machine Learning Techniques. International Journal of Computer Sciences and Engineering, 6(6), 842–850. https://doi.org/10.26438/ijcse/v6i6.842850 Yang, X.-S. & Suash Deb. (2009). Cuckoo Search via Lévy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 210–214. https://doi.org/10.1109/NABIC.2009.5393690 Ye, L., Ferdinando, H., & Alasaarela, E. (2014). Techniques in Pattern Recognition for School Bullying Prevention: Review and Outlook. Journal of Pattern Recognition Research, 9(1), 50–63. https://doi.org/10.13176/11.586 Yigit, I. O., & Shourabizadeh, H. (2017). An approach for predicting employee churn by using data mining. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–4. https://doi.org/10.1109/IDAP.2017.8090324 Zhou, G., Moayedi, H., Bahiraei, M., & Lyu, Z. (2020). Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. Journal of Cleaner Production, 254, 120082. https://doi.org/10.1016/j.jclepro.2020.120082 Zhou, H., Wang, J., Wu, J., Zhang, L., Lei, P., & Chen, X. (2013). Application of the Hybrid SVM-KNN Model for Credit Scoring. 2013 Ninth International Conference on Computational Intelligence and Security, 174–177. https://doi.org/10.1109/CIS.2013.43 Zubair, M., & Yoon, C. (2020). Multilevel mental stress detection using ultra-short pulse rate variability series. Biomedical Signal Processing and Control, 57, 101736. https://doi.org/10.1016/j.bspc.2019.101736
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSistema de clasificación basado en técnicas inteligentes para identificar el grado de riesgo psicosocial en docentes de educación básica primaria y secundaria en colegios públicos de Colombia
dc.typeTesis


Este ítem pertenece a la siguiente institución