dc.contributorFontanilla Duque, Martha Raquel
dc.contributorGrupo de Trabajo en Ingeniería de Tejidos
dc.creatorMillán Cortés, Diana Milena
dc.date.accessioned2022-09-06T14:20:31Z
dc.date.available2022-09-06T14:20:31Z
dc.date.created2022-09-06T14:20:31Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82254
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa carencia de nervios donantes ha conducido al desarrollo de conductos nerviosos para conectar los muñones nerviosos periféricos seccionados y ayudar a prevenir la formación de neuromas. A menudo, los diámetros estándar de estos dispositivos no se pueden adaptar en el momento de la cirugía al diámetro del nervio lesionado. En este trabajo, se desarrollaron soportes para formar conductos nerviosos rellenos con una matriz interna con canales unidireccionales cubiertos por una zona porosa multidireccional. Con tal fin, dos dispersiones de colágeno tipo I (5 mg/g y 8 mg/g) se congelaron secuencialmente utilizando diferentes métodos para obtener seis soportes laminares (NC, P1 a P5) formados por una zona con poros unidireccionales (U) adyacente a una zona de poros multidireccionales (M). Las propiedades fisicoquímicas y microestructurales de los soportes se determinaron y compararon, así como, su biodegradabilidad, el contenido de glutaraldehído residual y su citocompatibilidad. Adicionalmente, a los conductos obtenidos al enrollar los soportes desde la zona unidireccional a la multidireccional se les determinó el módulo de Young. Teniendo en cuenta los resultados de las evaluaciones mencionadas, se escogió el soporte P3 para determinar la proliferación y diferenciación de células mesenquimales de tejido adiposo humano (hASC). Las células sembradas en este soporte se adhirieron, alinearon en la misma dirección que las fibras unidireccionales del soporte, proliferaron y diferenciaron a células de Schwann. Los conductos P3 ajustables elaborados con el soporte P3 se implantaron en lesiones de nervio ciático de 10 mm en un modelo murino de lesión de nervio periférico. En estos ensayos se incluyeron lesiones injertadas con nervio ciático autólogo - considerado el tratamiento estándar - como control. Los resultados in vivo demostraron que el conducto P3 adaptado al diámetro de los muñones nerviosos sirve como guía del crecimiento axonal y promueve la regeneración nerviosa. (Texto tomado de la fuente)
dc.description.abstractShortness of donor nerves has led to the development of nerve conduits that connect sectioned peripheral nerve stumps and help to prevent the formation of neuromas. Often, the standard diameters of these devices cannot be adapted at the time of surgery to the diameter of the nerve injured. In this work, scaffolds were developed to form filled nerve conduits with an inner matrix with unidirectional channels covered by a multidirectional pore zone. Collagen type I dispersions (5 mg/g and 8 mg/g) were sequentially frozen using different methods to obtain six laminar scaffolds (P1 to P5) formed by a unidirectional (U) pore/channel zone adjacent to a multidirectional (M) pore zone. The physicochemical and microstructural properties of the scaffolds were determined and compared, as well as their biodegradability, residual glutaraldehyde and cytocompatibility. Also, the Young’s modulus of the conduits made by rolling up the bizonal scaffolds from the unidirectional to the multidirectional zone was determined. Based on these comparisons, the proliferation and differentiation of hASC were assessed only in the P3 scaffolds. The cells adhered, aligned in the same direction as the unidirectional porous fibers, proliferated, and differentiated into Schwann-like cells. Adjustable conduits made with the P3 scaffold were implanted in rats 10 mm sciatic nerve lesions to compare their performance with that of autologous sciatic nerve grafted lesions. The in vivo results demonstrated that the tested conduit can be adapted to the diameter of the nerve stumps to guide their growth and promote their regeneration.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Biotecnología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationCarvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.
dc.relationPatent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdf
dc.relationSong S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/full
dc.relationPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85
dc.relationGustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.
dc.relationBrill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.
dc.relationHuang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663
dc.relationDaly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.
dc.relationSalvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124
dc.relationGanji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.
dc.relationChang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.
dc.relationForest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.
dc.relationTopp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.
dc.relationBorschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.
dc.relationDadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874– 81.
dc.relationKim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.
dc.relationReid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.
dc.relationRebowe R, Rogers A, Yang X, Kundu S, Smith T, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg. 2018;10(02):61–5.
dc.relationWojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE. Social Impact of Peripheral Nerve Injuries. HAND [Internet]. 2015 Jun 25;10(2):161–7. Available from: http://journals.sagepub.com/doi/10.1007/s11552-014-9692-0
dc.relationRasulić L, Savić A, Vitošević F, Samardžić M, Živković B, Mićović M, et al. Iatrogenic Peripheral Nerve Injuries—Surgical Treatment and Outcome: 10 Years’ Experience. World Neurosurg [Internet]. 2017 Jul;103:841-851.e6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878875017306071
dc.relationGrinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. Biomed Res Int [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/bmri/2014/698256/
dc.relationSachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014;133(2):313–9.
dc.relationTos P, Artiaco S, Papalia I, Marcoccio I, Geuna S, Battiston B. Chapter 14 End‐to‐Side Nerve Regeneration. In 2009. p. 281–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0074774209870141
dc.relationSunderland IRP, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg. 2004;53(4):382–7.
dc.relationMobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng. 2017;4:134–42.
dc.relationIsaacs J, Mallu S, Yan W, Little B. Consequences of oversizing: Nerve-to-nerve tube diameter mismatch. J Bone Jt Surg - Am Vol. 2014;96(17):1461–7.
dc.relationStang F, Keilhoff G, Fansa H. Biocompatibility of different nerve tubes. Vol. 2, Materials. 2009. p. 1480–507.
dc.relationArslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Vol. 7, Medical Devices: Evidence and Research. 2014. p. 405–24.
dc.relationMoore AM, Macewan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, et al. Acellular nerve allografts in peripheral nerve regeneration: A comparative study. Muscle Nerve [Internet]. 2011 Aug;44(2):221–34. Available from: http://doi.wiley.com/10.1002/mus.22033
dc.relationKornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift. 2018;169(9):240–251.
dc.relationKehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Vol. 43, Injury. 2012. p. 553–72.
dc.relationTaras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011;36(9):1441–6.
dc.relationBąk M, Gutlowska O, Wagner E, Gosk J. The role of chitin and chitosan in peripheral nerve reconstruction. Polym Med. 2017;47(1):43–7.
dc.relationWangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: A retrospective analysis. Hand. 2010;5(3):273–7.
dc.relationBoni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25(1):1–21.
dc.relationDu J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: A crucial step towards optimal peripheral nerve regeneration. Vol. 6, Biomaterials Science. 2018. p. 1299–311.
dc.relationChiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Vol. 131, Progress in Neurobiology. 2015. p. 87–104.
dc.relationKim Y tae, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.
dc.relationSpivey EC, Khaing ZZ, Shear JB, Schmidt CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Vol. 33, Biomaterials. 2012. p. 4264–76.
dc.relationChew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.
dc.relationWang Y, Wang W, Wo Y, Gui T, Zhu H, Mo X, et al. Orientated guidance of peripheral nerve regeneration using conduits with a microtube array sheet (MTAS). ACS Appl Mater Interfaces. 2015;7(16):8437–50.
dc.relationBozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):2971–9.
dc.relationBozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75.
dc.relationSuesca E, Dias AMA, Braga MEM, de Sousa HC, Fontanilla MR. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Mater Sci Eng C. 2017;77:333–41.
dc.relationBarrett KE, Barman SM, Boitano S, Brooks HL. Tejido excitable: nervios. In: Fisiología médica. 27th ed. 2016. p. 85–97.
dc.relationSchmidt CE, Leach JB. Neural Tissue Engineering: Strategies for Repair and Regeneration. Annu Rev Biomed Eng. 2003;5(1):293–347.
dc.relationVerkhratsky A, Ho MS, Zorec R, Parpura V. The Concept of Neuroglia. In 2019. p. 1–13. Available from: http://link.springer.com/10.1007/978-981-13-9913-8_1
dc.relationRaasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells [Internet]. 2020 Feb 18;9(2):470. Available from: https://www.mdpi.com/2073-4409/9/2/470
dc.relationCermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, et al. Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2015 Jan;1851(1):51–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1388198114001668
dc.relationPoitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells [Internet]. 2020 Mar 27;9(4):812. Available from: https://www.mdpi.com/2073-4409/9/4/812
dc.relationReina MA, Sala-Blanch X, Arriazu R, Machés F. Microscopic Morphology and Ultrastructure of Human Peripheral Nerves. In: Nerves and Nerve Injuries [Internet]. Elsevier; 2015. p. 91–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012410390000007X
dc.relationKaemmer D, Bozkurt A, Otto J, Junge K, Klink C, Weis J, et al. Evaluation of tissue components in the peripheral nervous system using Sirius red staining and immunohistochemistry: A comparative study (human, pig, rat). J Neurosci Methods. 2010;190(1):112–6.
dc.relationPavelka M, Roth J. Peripheral Nerve: Connective Tissue Components. In: Functional Ultrastructure [Internet]. Vienna: Springer Vienna; 2010. p. 324–5. Available from: http://link.springer.com/10.1007/978-3-211-99390-3_166
dc.relationFaroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: Experimental strategies and future perspectives. Vol. 82, Advanced Drug Delivery Reviews. 2015. p. 160–7.
dc.relationHart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res [Internet]. 2008 Dec 19;30(10):999–1011. Available from: http://www.tandfonline.com/doi/full/10.1179/174313208X362479
dc.relationSeddon HJ. Three types of nerve injury. Brain [Internet]. 1943;66(4):237–88. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/66.4.237
dc.relationRyu J, Beimesch CF, Lalli TJ. (iii) Peripheral nerve repair. Orthop Trauma. 2011;25(3):174–80.
dc.relationDeumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol [Internet]. 2010 Nov;92(3):245–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301008210001723
dc.relationSunderland S. A classification of peripheral nerve injuries producing loss of function. Brain [Internet]. 1951;74(4):491–516. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/74.4.491
dc.relationWolfla CE, Resnick DK, editors. 68 Surgical Techniques for Peripheral Nerve Repair. In: Spine and Peripheral Nerves [Internet]. Stuttgart: Georg Thieme Verlag; 2007. Available from: http://www.thieme-connect.de/products/ebooks/abstract/10.1055/b-0034-84037
dc.relationMillesi H. Bridging defects: autologous nerve grafts. Vol. 100, Acta neurochirurgica. Supplement. 2007. p. 37–8.
dc.relationHussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci [Internet]. 2020;16(1):116–34. Available from: http://www.ijbs.com/v16p0116.htm
dc.relationLundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3):391–414.
dc.relationPhilips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng [Internet]. 2018 Apr 1;15(2):021003. Available from: https://doi.org/10.1088/1741-2552/aaa21a
dc.relationHudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng [Internet]. 2004 Nov;10(9–10):1346–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15588395
dc.relationBrooks DN, Weber R V., Chao JD, Rinker BD, Zoldos J, Robichaux MR, et al. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery [Internet]. 2012 Jan;32(1):1–14. Available from: http://doi.wiley.com/10.1002/micr.20975
dc.relationMeans KR, Rinker BD, Higgins JP, Payne SH, Merrell GA, Wilgis EFS. A Multicenter, Prospective, Randomized, Pilot Study of Outcomes for Digital Nerve Repair in the Hand Using Hollow Conduit Compared With Processed Allograft Nerve. HAND [Internet]. 2016 Jun 17;11(2):144–51. Available from: http://journals.sagepub.com/doi/10.1177/1558944715627233
dc.relationMuheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. Biomed Res Int [Internet]. 2015;2015:1–6. Available from: http://www.hindawi.com/journals/bmri/2015/237507/
dc.relationKonofaos P, Ver Halen J. Nerve Repair by Means of Tubulization: Past, Present, Future. J Reconstr Microsurg [Internet]. 2013 Jan 9;29(03):149–64. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1333316
dc.relationYang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, et al. Repair of Rat Sciatic Nerve Gap by a Silk Fibroin-Based Scaffold Added with Bone Marrow Mesenchymal Stem Cells. Tissue Eng - Part A. 2011;17(17–18):2231–44.
dc.relationTang X, Xue C, Wang Y, Ding F, Yang Y, Gu X. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials [Internet]. 2012 May;33(15):3860–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961212001731
dc.relationMosahebi A, Wiberg M, Terenghi G. Addition of Fibronectin to Alginate Matrix Improves Peripheral Nerve Regeneration in Tissue-Engineered Conduits. Tissue Eng [Internet]. 2003 Apr;9(2):209–18. Available from: https://www.liebertpub.com/doi/10.1089/107632703764664684
dc.relationDing F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, et al. Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic- co -glycolic acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging 50-mm Dog Sciatic Nerve Gaps. Tissue Eng Part A [Internet]. 2010 Dec;16(12):3779–90. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2010.0299
dc.relationFrattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, et al. Mesenchymal Stem Cells in a Polycaprolactone Conduit Promote Sciatic Nerve Regeneration and Sensory Neuron Survival after Nerve Injury. Tissue Eng Part A [Internet]. 2012 Oct;18(19–20):2030–9. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2011.0496
dc.relationKornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift [Internet]. 2019 Jun 13;169(9–10):240–51. Available from: http://link.springer.com/10.1007/s10354-018-0675-6
dc.relationLavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci [Internet]. 2021 Jan 8;22(2):572. Available from: https://www.mdpi.com/1422-0067/22/2/572
dc.relationKim HA, Maurel P. Primary Schwann Cell Cultures. In: Doering LC, editor. Protocols for Neural Cell Culture, Springer Protocols Handbooks. 4th ed. 2009. p. 253–68.
dc.relationSchuh CMAP, Sandoval-Castellanos AM, De Gregorio C, Contreras-Kallens P, Haycock JW. The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In: Cell Engineering and Regeneration [Internet]. Cham: Springer International Publishing; 2020. p. 1–22. Available from: http://link.springer.com/10.1007/978-3-319-37076-7_5-1
dc.relationYi S ZY, Gu X HL, K Z, Qian T GX. Application of stem cells in peripheral nerve regeneration. Burn Trauma [Internet]. 2020;27(8). Available from: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdf
dc.relationJiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci [Internet]. 2017 Jan 5;18(1):94. Available from: http://www.mdpi.com/1422-0067/18/1/94
dc.relationGu Y, Li Z, Huang J, Wang H, Gu X, Gu J. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med [Internet]. 2017 Aug;11(8):2250–60. Available from: http://doi.wiley.com/10.1002/term.2123
dc.relationRicard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol [Internet]. 2011 Jan 1;3(1):a004978–a004978. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004978
dc.relationLin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater [Internet]. 2019 Jan;29(3):1804943. Available from: http://doi.wiley.com/10.1002/adfm.201804943
dc.relationKagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem [Internet]. 2003 Mar 1;88(4):660–72. Available from: http://doi.wiley.com/10.1002/jcb.10413
dc.relationGu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.
dc.relationFornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol [Internet]. 2020 Oct 16;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.554257/full
dc.relationKim Y, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials [Internet]. 2008 Jul;29(21):3117–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002263
dc.relationVijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater [Internet]. 2020 Apr;106:54–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300817
dc.relationhttps://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector.
dc.relationBustos RH, Suesca E, Millán D, González JM, Fontanilla MR. Real-Time Quantification of Proteins Secreted by Artificial Connective Tissue Made from Uni- Or Multidirectional Collagen I Scaffolds and Oral Mucosa Fibroblasts. Anal Chem [Internet]. 2014 Mar 4;86(5):2421–8. Available from: https://pubs.acs.org/doi/10.1021/ac4033164
dc.relationFontanilla MR, Suesca E, Jiménez RA. Procedimiento para la preparación de colágeno tipo 1 y de soportes unidireccionales y multidireccionales que lo contienen. [Internet]. Colombia; WO/2016/071876, 2016. Available from: https://patents.google.com/patent/WO2016071876A1/es?oq=WO%2F2016%2F071876
dc.relationSuesca E. Optimización de la obtención de soportes de colágeno y estudio del efecto de su microestructura en el desarrollo de mucosa oral artificial. 2013.
dc.relationBelbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.
dc.relationDe Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9.
dc.relationReddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Vol. 33, Trends in Biotechnology. 2015. p. 362–9.
dc.relationZhu S-ML. European Patent Office. Method and apparatus for rapidly assaying aldehyde-containing disinfectant [Internet]. EP1256799A2, 2002. Available from: https://patentimages.storage.googleapis.com/49/90/7d/1097d57b3e735c/EP1256799A2.pdf
dc.relationWilliams DF. On the mechanisms of biocompatibility. Biomaterials [Internet]. 2008 Jul;29(20):2941–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002676
dc.relationFerrari M, Cirisano F, Morán MC. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces. 2019;3(2):48.
dc.relationGrundke K, Pöschel K, Synytska A, Frenzel R, Drechsler A, Nitschke M, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications. Adv Colloid Interface Sci [Internet]. 2015 Aug;222:350–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868614002905
dc.relationMetwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C [Internet]. 2019 Nov;104:109883. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493119304576
dc.relationAndersen ND, Srinivas S, Piñero G, Monje P V. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep [Internet]. 2016 Aug 23;6(1):31781. Available from: http://www.nature.com/articles/srep31781
dc.relationAraña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. In: Methods in Molecular Biology [Internet]. 2013. p. 47–61. Available from: http://link.springer.com/10.1007/978-1-62703-511-8_4
dc.relationISO 10993-5, Biological evaluation of medical devices - Part 5: in vitro cytotoxicity tests. 3rd Edition. [Internet]. 2009 [cited 2020 Jun 6]. Available from: https:/www.iso.org/standard/36406.html.
dc.relationGeorgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials [Internet]. 2015 Jan;37:242–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961214010564
dc.relationSun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res Ther [Internet]. 2018 Dec 11;9(1):133. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0884-3
dc.relationKilkenny C, Browne W, Cuthill I, Emerson M, Altman D. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. Animals [Internet]. 2014 Feb 3;4(1):35–44. Available from: http://www.mdpi.com/2076-2615/4/1/35
dc.relationMorton D, Griffiths P. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec [Internet]. 1985 Apr 20;116(16):431–6. Available from: https://veterinaryrecord.bmj.com/lookup/doi/10.1136/vr.116.16.431
dc.relationGuide for the Care and Use of Laboratory Animals [Internet]. Guide for the Care and Use of Laboratory Animals. Washington, D.C.: National Academies Press; 2011. Available from: https://doi.org/10.17226/12910.
dc.relationCosta L, Simoes M, Mauricio A, Varejao A. International Review of Neurobiology. Essays on Peripheral Nerve Repair and Regeneration. In: Elsevier, editor. International Review of Neurobiology. 2009. p. 127–36.
dc.relationMa F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, et al. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci. 2014;15(10):18593–609.
dc.relationvan Neerven SGA, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, et al. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2017;11(12):3349–61.
dc.relationAVMA. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc [Internet]. 2001 Mar;218(5):669–96. Available from: http://avmajournals.avma.org/doi/abs/10.2460/javma.2001.218.669
dc.relationNair M, Best SM, Cameron RE. Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. Appl Sci [Internet]. 2020 Oct 2;10(19):6911. Available from: https://www.mdpi.com/2076-3417/10/19/6911
dc.relationDominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy [Internet]. 2006;8(4):315–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1465324906708817
dc.relationCarvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.
dc.relationPatent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdf
dc.relationhttps://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector sitio consultado el 22/02/2020.
dc.relationSong S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/full
dc.relationPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85
dc.relationGustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.
dc.relationBrill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.
dc.relationHuang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663
dc.relationDaly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.
dc.relationSalvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124
dc.relationGanji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.
dc.relationChang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.
dc.relationForest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.
dc.relationTopp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.
dc.relationBorschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.
dc.relationDadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874–81.
dc.relationKim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.
dc.relationReid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDesarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución