dc.contributorMartínez Martínez, Luis Joel
dc.contributorRodríguez Molano, Luis Ernesto
dc.creatorVelandia Sánchez, Edisson Andrés
dc.date.accessioned2022-09-01T16:08:40Z
dc.date.accessioned2022-09-21T18:56:10Z
dc.date.available2022-09-01T16:08:40Z
dc.date.available2022-09-21T18:56:10Z
dc.date.created2022-09-01T16:08:40Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82236
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3412081
dc.description.abstractLa papa amarilla diploide (Solanum tuberosum Grupo Phureja) es susceptible a condiciones de déficit hídrico, afectando negativamente el potencial de rendimiento. La variabilidad climática aumenta la frecuencia de la sequía, por lo que es necesario generar estrategias que permitan diagnosticar a tiempo y así mitigar los efectos causados por el estrés hídrico en el cultivo. El objetivo de este trabajo fue evaluar el uso de imágenes térmicas y la respuesta espectral para identificar condiciones de estrés hídrico y estado nutricional con relación al N en papa amarilla diploide (Solanum tuberosum Grupo Phureja) cv. Criolla Colombia bajo invernadero. Se establecieron tubérculos-semilla en bolsas con suelo de siete litros de capacidad regadas cada tercer día a capacidad de campo hasta el inicio de tuberización 45 dds (días después de siembra), sometidas a dos regímenes hídricos: i) riego continuo (CW) y, ii) déficit hídrico por suspensión de riego total (SW) durante 13 días, las dosis de fertilización con N fueron 0%, 50%, 100% y 150% de la dosis comercial utilizada para el cultivo. Se usó un modelo factorial completamente al azar de medidas repetidas y análisis descriptivo. Se encontró que a partir de la TD se pudo determinar la deficiencia de agua en las plantas destacando que, bajo condiciones de invernadero, desde el día cinco ddt fue posible detectar el déficit hídrico que presentaron las plantas del cv. Criolla Colombia por medio de la temperatura proveniente de las imágenes térmicas, y con mayor claridad hacia los siete ddt. Se propuso el índice MED556 como importante para la determinación de N en las plantas. Los resultados revelaron índices espectrales como el NDVI y PRInorm presentaron una relación con el LN desde el primer muestreo a los 3 ddt, siendo parámetros que favorablemente se puede usar para determinar el estado del N en las plantas, mientras que índices como el WI representaron mejor el experimento para la determinación del estado hídrico de las plantas. (Texto tomado de la fuente)
dc.description.abstractDiploid yellow potato (Solanum tuberosum Phureja Group) is susceptible to water deficit conditions, negatively affecting yield potential. Climate variability increases the frequency of drought, so it is necessary to generate strategies that allow early diagnosis and thus mitigate the effects caused by water stress on the crop. The objective of this work was to evaluate the use of thermal imaging and spectral response to identify water stress conditions and nutritional status in relation to N in yellow diploid potato (Solanum tuberosum Phureja Group) cv. Criolla Colombia in greenhouse conditions. Seed tubers were established in seven-liter bags with soil, irrigated every third day at field capacity until the onset of tuberization 45 dds (days after planting), subjected to two water regimes: i) continuous irrigation (CW) and, ii) water deficit by suspension of total irrigation (SW) for 13 days, the N fertilization doses were 0%, 50%, 100% and 150% of the commercial dose used for the crop. A completely randomized factorial model with repeated measures and descriptive analysis was used. It was found that from the TD it was possible to determine the water deficiency in the plants, highlighting that, under greenhouse conditions, from day five ddt it was possible to detect the water deficit in the plants of the Criolla Colombia cv. by means of the temperature from the thermal images, and with greater clarity at seven ddt. The MED556 index was proposed as important for the determination of N in the plants. The results revealed spectral indices such as NDVI and PRInorm presented a relationship with LN from the first sampling at 3 ddt, being parameters that can be favorably used to determine the N status of the plants, while indices such as WI better represented the experiment for the determination of the water status of the plants.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisherDepartamento de Agronomía
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationAllen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations, 110–115. https://doi.org/10.1016/S0141-1187(05)80058-6
dc.relationAnderson, M. C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., & Pimstein, A. (2013). An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications. Journal of Hydrometeorology, 14(4), 1035–1056. https://doi.org/10.1175/JHM-D-12-0140.1
dc.relationAriza, W. (2017). Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosums grupo Phureja) en déficit hídrico.
dc.relationAriza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. group phureja). Agronomia Colombiana, 38(1), 48–56. https://doi.org/10.15446/agron.colomb.v38n1.78982
dc.relationBabich, G. A., & Camps, O. I. (1996). Weighted Parzen windows for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5), 567–570. https://doi.org/10.1109/34.494647
dc.relationBanerjee, K., Krishnan, P., & Mridha, N. (2018). Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosystems Engineering, 166, 13–27. https://doi.org/10.1016/j.biosystemseng.2017.10.012
dc.relationBarragán, J. N. (2019). La Papa Incluida - Desempeño y perspectivas económicas del subsector papa 2018-2019. Revista Papa, 47, pag 45-48. https://fedepapa.com/wp-content/uploads/2017/01/REVISTA-47-COMPLETA.pdf
dc.relationBendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012
dc.relationBerni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113(11), 2380–2388. https://doi.org/10.1016/j.rse.2009.06.018
dc.relationBorhan, M. S., Panigrahi, S., Satter, M. A., & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4(4), 275–282. https://doi.org/10.1016/j.inpa.2017.07.005
dc.relationBuitrago, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2016). Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS Journal of Photogrammetry and Remote Sensing, 111, 22–31. https://doi.org/10.1016/j.isprsjprs.2015.11.003
dc.relationCampos, H., & Ortíz, O. (2020). The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind (H. Campos & O. Ortíz, Eds.). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-28683-5
dc.relationCao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., Yue, S., Cheng, S., Ustin, S. L., & Khosla, R. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67. https://doi.org/10.1016/j.compag.2014.08.012
dc.relationCavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote sensing of plant biodiversity. In Remote Sensing of Plant Biodiversity. https://doi.org/10.1007/978-3-030-33157-3
dc.relationCho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193. https://doi.org/10.1016/j.rse.2005.12.011
dc.relationCilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Boschetti, M., Picchi, V., & Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565. https://doi.org/10.3390/rs6076549
dc.relationÇolak, Y., Yazar, A., Sesveren, S., & Çolak, I. (2017). Evaluation of yield and leaf water potantial ( LWP ) for eggplant under varying irrigation regimes using surface and subsurface drip systems Yes. Scientia Horticulturae, 219, 10–21. https://doi.org/10.1016/j.scienta.2017.02.051
dc.relationCosta, J. M., Egipto, R., Sánchez-Virosta, A., Lopes, C. M., & Chaves, M. M. (2019). Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agricultural Water Management, 216(November 2017), 484–496. https://doi.org/10.1016/j.agwat.2018.06.001
dc.relationCruz De Carvalho, M. H. (2008a). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536
dc.relationCruz De Carvalho, M. H. (2008b). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536
dc.relationCucho-Padin, G., Rinza, J., Ninanya, J., Loayza, H., Quiroz, R., & Ramírez, D. A. (2020). Development of an open-source thermal image processing software for improving irrigation management in potato crops (Solanum tuberosum L.). Sensors (Switzerland), 20(2), 1–17. https://doi.org/10.3390/s20020472
dc.relationCunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129–143. https://doi.org/10.1016/j.rse.2016.05.019
dc.relationDalla Costa, L., Delle Vedove, G., Gianquinto, G., Giovanardi, R., & Peressotti, A. (1997). Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress. Potato Research, 40(1), 19–34. https://doi.org/10.1007/BF02407559
dc.relationDeJonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156, 51–62. https://doi.org/10.1016/j.agwat.2015.03.023
dc.relationDevaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for Sustainable Global Food Security. Potato Research, 57(3–4), 185–199. https://doi.org/10.1007/s11540-014-9265-1
dc.relationDuan, T., Chapman, S. C., Guo, Y., & Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 210(May), 71–80. https://doi.org/10.1016/j.fcr.2017.05.025
dc.relationEgea, G., Padilla, C. M., Martinez, J., Fernández, J. E., & Pérez, M. (2017). Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agricultural Water Management, 187, 210–221. https://doi.org/10.1016/J.AGWAT.2017.03.030
dc.relationEzenne, G. I., Jupp, L., Mantel, S. K., & Tanner, J. L. (2019). Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management, 218(March), 158–164. https://doi.org/10.1016/j.agwat.2019.03.034
dc.relationFAO. (2016). Flying robots for food security. Food and Agriculture Organization of the United Nations. http://www.fao.org/zhc/detail-events/en/c/428256/
dc.relationFar, S. T., & Rezaei-Moghaddam, K. (2018). Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Information Processing in Agriculture, 5(1), 173–184. https://doi.org/10.1016/j.inpa.2017.09.001
dc.relationFeng, R., Zhang, Y., Yu, W., Hu, W., Wu, J., Ji, R., Wang, H., & Zhao, X. (2013). Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecologica Sinica, 33(6), 301–307. https://doi.org/10.1016/j.chnaes.2013.09.001
dc.relationGabriel, J. L., Zarco-tejada, P. J., Juan, P. L., Alonso-ayuso, M., Quemada, M., Enrique, P., & Obispo, S. (2017). Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering, 160, 124–133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
dc.relationGao, B.-C. (1996). NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sens. Environ, 7212(April), 257–266.
dc.relationGarcía-Tejero, I. F., Gutiérrez-Gordillo, S., Ortega-Arévalo, C., Iglesias-Contreras, M., Moreno, J. M., Souza-Ferreira, L., & Durán-Zuazo, V. H. (2018). Thermal imaging to monitor the crop-water status in almonds by using the non-water stress baselines. Scientia Horticulturae, 238(April), 91–97. https://doi.org/10.1016/j.scienta.2018.04.045
dc.relationGarcía-Tejero, I., Rubio, A. E., Viñuela, I., Hernández, A., Gutiérrez-Gordillo, S., Rodríguez-Pleguezuelo, C. R., & Durán-Zuazo, V. H. (2018). Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies. Agricultural Water Management, 208(May), 176–186. https://doi.org/10.1016/j.agwat.2018.06.002
dc.relationGeorge, T. S., Taylor, M. A., Dodd, I. C., & White, P. J. (2018). Climate Change and Consequences for Potato Production: a Review of Tolerance to Emerging Abiotic Stress. Potato Research, 60(3–4), 239–268. https://doi.org/10.1007/s11540-018-9366-3
dc.relationGerhards, M., Rock, G., Schlerf, M., & Udelhoven, T. (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International Journal of Applied Earth Observation and Geoinformation, 53, 27–39. https://doi.org/10.1016/j.jag.2016.08.004
dc.relationGetahun, B. B. (2018). Potato Breeding for Nitrogen-Use Efficiency : Constraints , Achievements , and Future Prospects. 2018(10), 269–281.
dc.relationGiraldo, C., Velandia, E. A., Fischer, G., Martínez, L. J., & Gómez-Caro, S. (2020). Hyperspectral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. physali for vascular wilt detection. Revista Colombiana de Ciencias Hortícolas, 14(November), 3–29. https://doi.org/10.17584/rcch.2020v14i3.10938
dc.relationGonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J., & Fereres, E. (2015). Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation Science. https://doi.org/10.1007/s00271-014-0447-z
dc.relationGonzalez-Dugo, V., Zarco-Tejada, P., Berni, J. A. J., Suárez, L., Goldhamer, D., & Fereres, E. (2012). Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agricultural and Forest Meteorology, 154–155, 156–165. https://doi.org/10.1016/j.agrformet.2011.11.004
dc.relationGoyer, A. (2017). Maximizing the Nutritional Potential of Potato: the Case of Folate. Potato Research, 60(3–4), 319–325. https://doi.org/10.1007/s11540-018-9374-3
dc.relationGrant, O. M., Tronina, Ł., Jones, H. G., & Chaves, M. M. (2007). Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, May 2014, 1–11. https://doi.org/10.1093/jxb/erl153
dc.relationGuo, J., Tian, G., Zhou, Y., Wang, M., Ling, N., Shen, Q., & Guo, S. (2016). Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 196, 463–472. https://doi.org/10.1016/j.fcr.2016.08.008
dc.relationGupta, S. D., & Ibaraki, Y. (2015). Plant Image Analysis. In S. D. Gupta & Y. Ibaraki (Eds.), Plant Image Analysis. Taylor & Francis Group. https://doi.org/10.1201/b17441
dc.relationHaboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4
dc.relationHan, M., Zhang, H., DeJonge, K. C., Comas, L. H., & Trout, T. J. (2016). Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 177, 400–409. https://doi.org/10.1016/j.agwat.2016.08.031
dc.relationHu, D. W., Sun, Z. P., Li, T. L., Yan, H. Z., & Zhang, H. (2014). Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. Journal of Integrative Agriculture, 13(5), 1008–1016. https://doi.org/10.1016/S2095-3119(13)60408-6
dc.relationHunt, R., & Rock, B. (1989). Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sensing and Enviroment, 30(1), 43–54. https://doi.org/10.1016/0034-4257(89)90046-1
dc.relationHussain, H., Hussain, S., Khaliq, A., Ashraf, U., & Anjum, S. (2018). Chilling and Drought Stresses in Crop Plants : Implications , Cross Talk , and Potential Management Opportunities. Frontiers in Plant Science, 9(April), 1–21. https://doi.org/10.3389/fpls.2018.00393
dc.relationIhuoma, S. O., & Madramootoo, C. A. (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141, 267–275. https://doi.org/10.1016/j.compag.2017.07.026
dc.relationIshida, T., Kurihara, J., Viray, F. A., Namuco, S. B., Paringit, E. C., Perez, G. J., Takahashi, Y., & Marciano, J. J. (2018). A novel approach for vegetation classification using UAV-based hyperspectral imaging. Computers and Electronics in Agriculture, 144(November 2017), 80–85. https://doi.org/10.1016/j.compag.2017.11.027
dc.relationKassambara, A., & Mundt, F. (2017). Factoextra extract and visualize the results of multivariate data analyses (pp. 337–354).
dc.relationKhanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32. https://doi.org/10.1016/j.compag.2017.05.001
dc.relationKhorsandi, A., Hemmat, A., Mireei, S. A., Amirfattahi, R., & Ehsanzadeh, P. (2018). Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agricultural Water Management, 204, 222–233. https://doi.org/10.1016/j.agwat.2018.04.012
dc.relationKim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2011). Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture, 77(2), 155–160. https://doi.org/10.1016/j.compag.2011.04.008
dc.relationKullberg, E. G., DeJonge, K. C., & Chávez, J. L. (2017). Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural Water Management, 179, 64–73. https://doi.org/10.1016/j.agwat.2016.07.007
dc.relationLahlou, O., Ouattar, S., & Ledent, J. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 23, 257–268. https://doi.org/10.1051/agro
dc.relationLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
dc.relationLi, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123. https://doi.org/10.1016/j.fcr.2013.12.018
dc.relationLiu, F., Jensen, C. R., Shahanzari, A., Andersen, M. N., & Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168(3), 831–836. https://doi.org/10.1016/j.plantsci.2004.10.016
dc.relationLiu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C., & Guo, W. (2018). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144–154. https://doi.org/10.1016/J.AGRFORMET.2018.01.021
dc.relationMahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019
dc.relationMahmud, A., Hossain, M. M., Zakaria, M., Mian, M. A. K., & Karim, M. A. (2015). Effects of water stress on plant canopy, yield attributes and yield of potato. Kasetsart Journal - Natural Science, 49(4), 491–505.
dc.relationMangus, D. L., Sharda, A., & Zhang, N. (2016). Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 121, 149–159. https://doi.org/10.1016/J.COMPAG.2015.12.007
dc.relationMartinez, L. J., & Ramos, A. (2015). Estimation of chlorophyll concentration in maize using spectral reflectance. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(7W3), 65–71. https://doi.org/10.5194/isprsarchives-XL-7-W3-65-2015
dc.relationMehrabi, F., & Sepaskhah, A. R. (2019). Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat. Agricultural Water Management, 223(January), 105688. https://doi.org/10.1016/j.agwat.2019.105688
dc.relationMilroy, S. P., Wang, P., & Sadras, V. (2019). Field Crops Research De fi ning upper limits of nitrogen uptake and nitrogen use e ffi ciency of potato in response to crop N supply. Field Crops Research, 239(May), 38–46. https://doi.org/10.1016/j.fcr.2019.05.011
dc.relationMinisterio de Agricultura y Desarrollo Sostenible. (2019). ESTRATEGIA DE ORDENAMIENTO DE LA PRODUCCIÓN - CADENA PRODUCTIVA DE LA PAPA Y SU INDUSTRIA. In Plan de ordenamiento papa 2019-2023. https://sioc.minagricultura.gov.co/Papa/Normatividad/Plan de Ordenamiento papa 2019-2023.pdf
dc.relationMohd Asaari, M. S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003
dc.relationMompié, E., Martín, R., & Morales, D. (2015). Comportamiento de la acumulación y distribución de masa seca en tres variedades de papa (Solanum tuberosum L .). Cultivos Tropicales, 36(4), 70–76.
dc.relationMotalebifard, R., Najafi, N., Oustan, S., Nyshabouri, M. R., & Valizadeh, M. (2013). The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31–38. https://doi.org/10.1016/j.scienta.2013.07.043
dc.relationMunnaf, M. A., Haesaert, G., van Meirvenne, M., & Mouazen, A. M. (2020). Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Computers and Electronics in Agriculture, 178(July), 105752. https://doi.org/10.1016/j.compag.2020.105752
dc.relationO’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2011). Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98(10), 1523–1535. https://doi.org/10.1016/j.agwat.2011.05.005
dc.relationPancorbo, J. L., Camino, C., Alonso-Ayuso, M., Raya-Sereno, M. D., Gonzalez-Fernandez, I., Gabriel, J. L., Zarco-Tejada, P. J., & Quemada, M. (2021). Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. European Journal of Agronomy, 127(August 2020), 126287. https://doi.org/10.1016/j.eja.2021.126287
dc.relationPanigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati, S., Picchi, V., Pinto, F., Marchesi, A., & Colombo, R. (2014). Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. International Journal of Applied Earth Observation and Geoinformation, 30(1), 167–178. https://doi.org/10.1016/j.jag.2014.02.002
dc.relationPeñuelas, J., & Inoue, Y. (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica, 36(3), 355–360. https://doi.org/10.1023 / A: 1007033503276
dc.relationPeñuelas, J., Pinol, J., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International Journal of Remote Sensing, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396
dc.relationPerakis, K., Lampathaki, F., Nikas, K., Georgiou, Y., Marko, O., & Maselyne, J. (2020). CYBELE – Fostering precision agriculture & livestock farming through secure access to large-scale HPC enabled virtual industrial experimentation environments fostering scalable big data analytics. Computer Networks, 168. https://doi.org/10.1016/j.comnet.2019.107035
dc.relationPoblete, T., Ortega-Farías, S., & Ryu, D. (2018). Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated cabernet sauvignon vineyard. Sensors (Switzerland). https://doi.org/10.3390/s18020397
dc.relationPoirier-Pocovi, M., Volder, A., & Bailey, B. N. (2020). Modeling of reference temperatures for calculating crop water stress indices from infrared thermography. Agricultural Water Management, 233(December 2019), 106070. https://doi.org/10.1016/j.agwat.2020.106070
dc.relationPou, A., Diago, M. P., Medrano, H., Baluja, J., & Tardaguila, J. (2014). Validation of thermal indices for water status identification in grapevine. Agricultural Water Management, 134, 60–72. https://doi.org/10.1016/j.agwat.2013.11.010
dc.relationQuebrajo, L., Perez-Ruiz, M., Pérez-Urrestarazu, L., Martínez, G., & Egea, G. (2018). Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, 165, 77–87. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.08.013
dc.relationRay, S. S., & Jain, N. (2011). Utility of Hyperspectral Data for Potato Late Blight Disease Detection. 39(June), 161–169. https://doi.org/10.1007/s12524-011-0094-2
dc.relationRaza, S. E. A., Prince, G., Clarkson, J. P., & Rajpoot, N. M. (2015). Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE, 10(4), 1–20. https://doi.org/10.1371/journal.pone.0123262
dc.relationRaza, S. E. A., Smith, H. K., Clarkson, G. J. J., Taylor, G., Thompson, A. J., Clarkson, J., & Rajpoot, N. M. (2014). Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PLoS ONE, 9(6), 1–10. https://doi.org/10.1371/journal.pone.0097612
dc.relationRibeiro da Luz, B., & Crowley, J. K. (2007). Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm). Remote Sensing of Environment, 109(4), 393–405. https://doi.org/10.1016/j.rse.2007.01.008
dc.relationRibera-Fonseca, A., Jorquera-Fontena, E., Castro, M., Acevedo, P., Parra, J. C., & Reyes-Diaz, M. (2019). Exploring VIS/NIR reflectance indices for the estimation of water status in highbush blueberry plants grown under full and deficit irrigation. Scientia Horticulturae, 256(April), 108557. https://doi.org/10.1016/j.scienta.2019.108557
dc.relationRodríguez, L. E., Ñustez, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomia Colombiana, 27(3), 289–303.
dc.relationRodríguez-Pérez, L., Ñústez L., C. E., & Moreno F., L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomia Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901
dc.relationRomero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8(September). https://doi.org/10.3389/fpls.2017.01608
dc.relationRouse, J. W. J., Haas, R. H., Deering, D. W., Shell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation, NASA/GSFC Type III Final Report: Greenbelt, MD, USA. 371.
dc.relationRud, R., Cohen, Y., Alchanatis, V., Levi, A., Brikman, R., Shenderey, C., Heuer, B., Markovitch, T., Dar, Z., Rosen, C., Mulla, D., & Nigon, T. (2014). Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precision Agriculture, 15, 273–289. https://doi.org/10.1007/s11119-014-9351-z
dc.relationSalgadoe, A. S. A., Robson, A. J., Lamb, D. W., & Schneider, D. (2019). A non-reference temperature histogram method for determining Tc from ground-based thermal imagery of orchard tree canopies. Remote Sensing, 11(6). https://doi.org/10.3390/RS11060714
dc.relationSantesteban, L. G., di Gennaro, S. F., Herrero-Langreo, A., Miranda, C., Royo, J. B., & Matese, A. (2017). High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2016.08.026
dc.relationSchellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 29(2–3), 59–71. https://doi.org/10.1016/j.eja.2008.05.005
dc.relationScholander, P. F., Hammel, H. T., Bradstreet, E. D., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science, 148(3668), 339–346. https://doi.org/10.1126/science.148.3668.339
dc.relationSeelig, H. D., Hoehn, A., Stodieck, L. S., Klaus, D. M., Adams, W. W., & Emery, W. J. (2008). Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sensing of Environment, 112(2), 445–455. https://doi.org/10.1016/j.rse.2007.05.002
dc.relationSenthilnath, J., Kandukuri, M., Dokania, A., & Ramesh, K. N. (2017). Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Computers and Electronics in Agriculture, 140, 8–24. https://doi.org/10.1016/j.compag.2017.05.027
dc.relationStark, B., Smith, B., & Chen, Y. (2014). Survey of thermal infrared remote sensing for Unmanned Aerial Systems. 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 1294–1299. https://doi.org/10.1109/ICUAS.2014.6842387
dc.relationStruthers, R., Ivanova, A., Tits, L., Swennen, R., & Coppin, P. (2015). Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. International Journal of Applied Earth Observation and Geoinformation, 39, 9–17. https://doi.org/10.1016/j.jag.2015.02.006
dc.relationTilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., & Belford, R. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104(1–3), 77–85. https://doi.org/10.1016/j.fcr.2007.03.023
dc.relationTu, Y.-H., Johansen, K., Phinn, S., & Robson, A. J. (2019). Measuring Canopy Structure and Condition Using Multi-Spectral UAS Imagery in a Horticultural Environment. Remote Sensing, 11(269), 15–17. https://doi.org/10.3390/rs11030269
dc.relationVaro-Martínez, M. Á., Navarro-Cerrillo, R. M., Hernández-Clemente, R., & Duque-Lazo, J. (2017). Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. International Journal of Applied Earth Observation and Geoinformation, 56, 54–64. https://doi.org/10.1016/j.jag.2016.12.002
dc.relationVergara-Díaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., Cairns, J. E., & Araus, J. L. (2016). A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00666
dc.relationVollmer, M., & Möllmann, K.-P. (2018). Infrared Thermal Imaging (Second Edi). WILEY-VCH Verlag GmbH & Co.KGaA.
dc.relationWang, X., Yang, W., Wheaton, A., Cooley, N., & Moran, B. (2010). Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring. Computers and Electronics in Agriculture, 73(1), 74–83. https://doi.org/10.1016/j.compag.2010.04.007
dc.relationZarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337. https://doi.org/10.1016/j.rse.2011.10.007
dc.relationZarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85(1), 109–124. https://doi.org/10.1016/S0034-4257(02)00197-9
dc.relationZhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412. https://doi.org/10.1016/j.compag.2016.06.019
dc.relationZhou, X., Huang, W., Kong, W., Ye, H., Luo, J., & Chen, P. (2016). Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements. Advances in Space Research, 58(9), 1627–1637. https://doi.org/10.1016/j.asr.2016.06.034
dc.relationZhou, Z., Majeed, Y., Diverres Naranjo, G., & Gambacorta, E. M. T. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182(February). https://doi.org/10.1016/j.compag.2021.106019
dc.relationZia, S., Spohrer, K., Merkt, N., Wenyong, D., He, X., & Joachim, M. (2014). Non-invasive water status detection in grapevine ( Vitis vinifera L .) by thermography Non-invasive water status detection in grapevine ( Vitis vinifera L .) by thermography. January 2010. https://doi.org/10.3965/j.issn.1934-6344.2009.04.046-054
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleImágenes térmicas y respuestas espectrales para identificar condiciones de estrés hídrico y estado nutricional con relación al nitrógeno en papa amarilla diploide (Solanum tuberosum Grupo Phureja)
dc.typeTesis


Este ítem pertenece a la siguiente institución