dc.contributorArdila Barrantes, Harold Duban
dc.contributorChegwin Angarita, Carolina
dc.contributorEstudio de Actividades Metabolicas Vegetales
dc.contributorQuímica de Hongos Macromicetos Colombianos
dc.creatorVega Oliveros, Carolina
dc.date.accessioned2022-08-18T20:07:45Z
dc.date.available2022-08-18T20:07:45Z
dc.date.created2022-08-18T20:07:45Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81964
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLentinula edodes es una especie fúngica perteneciente a los macromicetos para la cual se han reportado metabolitos y proteínas que presentan diversas actividades biológicas con potencial en la industria de alimentos. En la presente tesis doctoral se aporta al conocimiento bioquímico de este potencial, mediante la exploración química y el estudio de bioactividad presente en el micelio de esta especie obtenido mediante fermentación en estado líquido (FEL); estrategia de cultivo biotecnológico que permite la obtención eficiente de material biológico con fines industriales. Para ello inicialmente se determinaron algunos parámetros experimentales para su cultivo en condiciones de laboratorio y se seleccionaron dos medios que presentaron los mejores resultados en la producción de metabolitos y proteínas totales. Posteriormente usando ensayos de actividad biológica in vitro y estrategias propias de la proteómica y la metabolómica, se estudió la composición del micelio producido en dichos medios y se profundizó sobre sus potenciales características nutracéuticas. De acuerdo con los resultados encontrados en la presente investigación, el micelio producido mediante FEL en medios como GPY (Glucosa, Peptona y Levadura) y Bienestarina, presenta metabolitos y proteínas con potenciales usos en la industria de alimentos. Específicamente, el micelio obtenido en medio GPY mostró importante actividad antioxidante evaluada sobre EROs (especies reactivas de oxígeno) y ERN (especies reactivas de nitrógeno); muy posiblemente asociada a la presencia de diferentes compuestos hidroxilados, incluyendo un derivado de tipo flavanona. Así mismo, el micelio generado a partir del medio bienestarina contiene diversas proteínas con usos potenciales en la industria de alimentos, incluyendo algunas lectinas con reportada acción inmunomoduladora. El estudio preliminar de la incorporación del micelio obtenido en un alimento de tipo postre, permitió profundizar sobre el potencial del hongo propagado en GPY para ser usado en la generación de alimentos con potencial nutraceutico. La presente investigación profundiza sobre la bioquímica de la producción de metabolitos y proteínas en esta especie y se constituye como el primer estudio conjunto a nivel proteómico y metabolómico del potencial nutracéutico en macromicetos. (Texto tomado de la fuente)
dc.description.abstractLentinula edodes is a fungal species belonging to the macromycetes for which various biological activities with potential in the food industry have been reported due to its proteins and metabolites. This doctoral thesis contributes to the biochemical knowledge of this potential through chemical exploration and the study of bioactivity present in the mycelium of this species obtained by liquid-state fermentation (FEL); biotechnological cultivation strategy that allows the efficient obtaining of biological material for industrial purposes. For this, some experimental parameters were initially determined for their culture in laboratory conditions, and two liquid media were selected because they induced the mushroom to the best results in the production of metabolites and total proteins. Subsequently, the composition of the mycelium produced was studied using in vitro biological activity tests and strategies of proteomics and metabolomics, and the nutraceutical characteristics potential of their mycelia were studied. According to the results found in the present investigation, the mycelium produced by FEL in GPY media (Glucose, Peptone, and Yeast) and BIE (Bienestarina) presented metabolites and proteins with potential uses in the food industry. Specifically, the mycelium obtained in GPY medium presented important antioxidant activity evaluated on ROS (reactive oxygen species) and RNS (reactive nitrogen species); this antioxidant activity could be associated with the presence of different hydroxylated compounds, including a derivative of the flavanone type. Likewise, the mycelium generated from the BIE medium presented a wide variety of proteins with potential uses in the food industry, including some lectins with reported immunomodulatory action. The preliminary study of incorporating the mycelium obtained in a dessert-type food allowed to deepen the potential of the fungus propagated in GPY to be used in the generation of food formulations with nutraceutical potential. This research delves into the biochemistry of the production of metabolites and proteins in this species and constitutes the first joint study at the proteomic and metabolomic level of the nutraceutical potential in macromycetes.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationRathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5(2):35–46.
dc.relationFinimundy TC, Dillon AJP, Henriques JAP, Ely MR. A Review on General Nutritional Compounds and Pharmacological Properties of the <i>Lentinula edodes</i> Mushroom. Food Nutr Sci. 2014;05(12):1095–105.
dc.relationMajtán J, Kumar P, Koller J, Dragúnová J, Gabriz J. Induction of metalloproteinase 9 secretion from human keratinocytes by pleuran (β-glucan from Pleurotus ostreatus). Zeitschrift für Naturforschung C. 2009;64(7–8):597–600.
dc.relationRai M, Kövics G. Progress in Mycology. Springer Science & Business Media. 2011.
dc.relationDutta S. Role of mushrooms as nutraceutical an overview. Int J Pharma Bio Sci. 2013;4(4):B59–66.
dc.relationPerera PK, Li Y. Mushrooms as a functional food mediator in Preventing and ameliorating diabetes. Funct Food Heal Dis. 2011;4(4):161–71.
dc.relationDe Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD. Medicinal mushrooms in supportive cancer therapies: An approach to anti-cancer effects and putative mechanisms of action. Fungal Divers. 2012;55(July 2012):1–35.
dc.relationPrasad S, Rathore H, Sharma S, Yadav ASS. Medicinal Mushrooms as a Source of Novel Functional Food. Int J Food Sci Nutr Diet. 2015;4(5):221–5.
dc.relationErjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. Proteins of higher fungi–from forest to application. Trends Biotechnol. 2012;30(5):259–73.
dc.relationKavanagh K. Fungi: Biology and Applications. 3oEdición. Wiley Blackwell; 2018.
dc.relationSingdevsachan SK, Auroshree P, Mishra J, Baliyarsingh B, Tayung K, Thatoi H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact Carbohydrates Diet Fibre. 2016;7(1):1–14.
dc.relationRuthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr Polym [Internet]. 2016;136:358–75. Available from: http://dx.doi.org/10.1016/j.carbpol.2015.08.061
dc.relationCubero-Leon E, Peñalver R, Maquet A. Review on metabolomics for food authentication. Food Res Int. 2014;60(December 2016):95–107.
dc.relationRizo J, Cárdenas C, Rodrígez-Sanoja R. Los Alimentos: una Aproximación Proteómica en su Estudio. BioTecnología. 2014;18(3):30–45.
dc.relationWang GZ, Ma CJ, Luo Y, Zhou SS, Zhou Y, Ma XL, et al. Proteome and transcriptome reveal involvement of heat shock proteins and indoleacetic acid metabolism process in Lentinula edodes thermotolerance. Cell Physiol Biochem. 2018;50(5):1617–37.
dc.relationGhorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S. Fungal biotechnology in food and feed processing. Food Res Int. 2009;
dc.relationGerbec B, Tavcar E, Gregori A, Kref S, Berovic M. Solid State Cultivation of Hericium erinaceus Biomass and Erinacine: A Production. J Bioprocess Biotech. 2015;5(2):1–5.
dc.relationHansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem. 2015;50(9):1327–41.
dc.relationChang ST. Overview of Mushroom Cultivation and Utilization as Functional Foods. Mushrooms as Funct Foods. 2009;1–33.
dc.relationVega-Oliveros C. Comparación de la producción de metabolitos secundarios bioactivos con dos fuentes de carbono en la fermentación líquida de una especie de Pleurotus y su uso potencial en un alimento de tipo funcional. Universidad Nacional de Colombia; 2016.
dc.relationSuárez-Arango C. Utilización de la fermentación líquida de Lentinula edodes (Shiitake), para la producción de metabolitos secundarios bioactivos y evaluación de su potencial empleo en la producción de un alimento funcional. [Bogotá D.C.]: Universidad Nacional de Colombia; 2012.
dc.relationRivera Morales OA. Estudio del efecto de la adición del estípite de Shiitake (Lentinula edodes Berk. Pegler) y de un extracto rico en sus polisacáridos sobre las cualidades nutricionales del antipasto/Study of effect of addition of Shiitake stipe (Lentinula edodes Be. Universidad Nacional de Colombia; 2010.
dc.relationPatel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1–15.
dc.relationLi S, Nie Y, Ding Y, Shi L, Tang X. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from Nectria haematococca. Int J Mol Sci [Internet]. 2014;15(10):17751–64. Available from: file:///Users/carolinavegaoliveros/Library/Application
dc.relationTeng BS, Wang CD, Yang HJ, Wu JS, Zhang D, Zheng M, et al. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J Agric Food Chem. 2011;59(12):6492–500.
dc.relationBak WC, Park JH, Park YA, Ka KH. Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology. 2014;42(3):301–4.
dc.relationPhilippoussis A, Diamantopoulou P, Papadopoulou K, Lakhtar H, Roussos S, Parissopoulos G, et al. Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J Microbiol Biotechnol. 2011;27(2):285–97.
dc.relationSakai H, Kajiwara S. Membrane Lipid Profile of an Edible Basidiomycete Lentinula edodes during Growth and Cell Differentiation. Lipids. 2004;39(1):67–73.
dc.relationKalač P. Edible mushrooms - Chemical composition and nutritional value. Elsevier, Academic Press; 2016. 219 p.
dc.relationITC. Trade Map - Centro de Comercio Internacional. 2016.
dc.relationChang S-T, Miles PG, Press CRC. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2o. 2004. 477 p.
dc.relationFerreira ICFRFRFR, Heleno SA, Reis FS, Stojkovic D, Queiroz MJRPPP, Vasconcelos MH, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry [Internet]. 2015;114:38–55.
dc.relationSanodiya B, Thakur G, Baghel R, Prasad G, Bisen P. Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr Pharm Biotechnol [Internet]. 2009;10(8):717–42.
dc.relationSliva D. Cellular and Physiological Effects of Ganoderma lucidum (Reishi). Mini-Reviews Med Chem [Internet]. 2004;4(8):873–9.
dc.relationArango CS, Nieto IJ, Suárez Arango C, Nieto IJ. Cultivo biotecnológico de macrohongos comestibles: una alternativa en la obtención de nutracéuticos. Rev Iberoam Micol. 2013;30(1):1–8.
dc.relationGregori A, Švagelf M, Pohleven J. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol Biotechnol. 2007;45(3):238–49.
dc.relationChegwin-Angarita C. Incidencia del medio y de las condiciones de cultivo en el potencial como nutriceútico de tres especies del género Pleurotus. [Bogotá D.C.]: Universidad Nacional de Colombia; 2014.
dc.relationMusoni M, Destain J, Thonart P, Bahama J-B, Delvigne F. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems. Biotechnol Agron Soc Environ. 2015;19(4):430–42.
dc.relationElisashvili V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms. 2012;14(3):211–39.
dc.relationSmiderle FR, Olsen LM, Ruthes AC, Czelusniak PA, Santana-Filho AP, Sassaki GL, et al. Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr Polym. 2012;87(1):368–76.
dc.relationMatsumoto Y, Saucedo-Castañeda G, Revah S, Shirai K. Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochem. 2004;39(6):665–71.
dc.relationSoto-Cruz O, Saucedo-Castañeda G, Pablos-Hach JL, Gutiérrez-Rojas M, Favela-Torres E. Effect of substrate composition on the mycelial growth of Pleurotus ostreatus. An analysis by mixture and response surface methodologies. Process Biochem. 1999;35(1):127–33.
dc.relationNieto IJ, Chegwin A. C. Influencia del sustrato utilizado para el crecimiento de hongos comestibles sobre sus características nutraceúticas. Rev Colomb Biotecnol. 2010;12:169–78.
dc.relationNieto IJ, Chegwin-Angarita C. The effect of different substrates on triterpenoids and fatty acids in fungi of the genus Pleurotus. J Chil Chem Soc. 2013;58(1):1580–3.
dc.relationNieto IJ, A., Chegwin C. Triterpenoids and fatty acids identified in the edible mushroom Pleurotus sajor-caju. J Chil Chem Soc. 2008;53(2):1515–7.
dc.relationNieto Ramirez IJ, Chegwin-Angarita C, Osorio-Zuluaga HJ. Incorporación de cafeína en el hongo Pleurotus sajor-caju cultivado sobre pulpa de café. Rev Iberoam Micol. 2007;24(1):72–4.
dc.relationChegwin A. C, Nieto R. I. Influencia del medio de cultivo en la producción de metabolitos secundarios del hongo comestible Pleurotus ostreatus cultivado por fermentación en estado líquido empleando harinas de cereales como fuente de carbono. Rev Mex Micol. 2013;37:1–9.
dc.relationAida FMNA, Shuhaimi M, Yazid M, Maaruf AG. Mushroom as a potential source of prebiotics: a review. Trends Food Sci Technol [Internet]. 2009;20(11–12):567–75
dc.relationD. S. P, N.S. N. Comparison of Chemical Composition and Antioxidant Potential of Hydrodistilled Oil and Supercritical Fluid CO2 Extract of Valeriana wallichi DC. J Nat Prod Resour. 2015;1(1):6.
dc.relationEroglu S. Urgan O, MD, Ozge E. Onur, MD, Arzu Denizbasi, MD, Haldun Akoglu, MD, Cigdem Ozpolat, MD, Ebru Akoglu, Md TS, Eroglu S., Toprak S., Urgan O, MD, Ozge E. Onur, MD, Arzu Denizbasi, MD, Haldun Akoglu, MD, Cigdem Ozpolat, MD, Ebru Akoglu M. Progress in Mycology [Internet]. Vol. 33, Saudi Med J. 2012. 3–8 p.
dc.relationMao C-FF, Hsu M-CC, Hwang W-HH. Physicochemical characterization of grifolan: Thixotropic properties and complex formation with Congo Red. Carbohydr Polym. 2007;68(3):502–10.
dc.relationMei Y, Zhu H, Hu Q, Liu Y, Zhao S, Peng N, et al. A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydr Polym [Internet]. 2015;124:90–7.
dc.relationZhang S, Nie S, Huang D, Feng Y, Xie M. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system. J Agric Food Chem [Internet]. 2014;62(7):1581–9.
dc.relationJeong SC, Koyyalamudi SR, Jeong YT, Song CH, Pang G. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. J Med Food [Internet]. 2012;15(1):58–65.
dc.relationLi H, Zhang M, Ma G. Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition [Internet]. 2010;26(5):556–62
dc.relationZhou S, Liu Y, Yang Y, Tang Q, Zhang J. Hypoglycemic activity of polysaccharide from fruiting bodies of the shaggy ink cap medicinal mushroom , Coprinus comatus (Higher Basidiomycetes), on mice induced by alloxan and its potential mechanism. Int J Med Mushrooms [Internet]. 2015;17(10):957–64.
dc.relationXiao C, Wu Q, Xie Y, Zhang J, Tan J. Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct [Internet]. 2015;6(11):3567–75.
dc.relationXiao C, Wu QP, Cai W, Tan J Bin, Yang XB, Zhang JM. Hypoglycemic effects of ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch Pharm Res [Internet]. 2012;35(10):1793–801.
dc.relationSantoyo S, Ramírez-Anguiano AC, Aldars-García L, Reglero G, Soler-Rivas C. Antiviral activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes extracts and polysaccharide fractions against Herpes simplex virus type 1. J Food Nutr Res [Internet]. 2012;51(4):225–35.
dc.relationKanagasabapathy G, Chua KH, Malek SNA, Vikineswary S, Kuppusamy UR. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of B-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells. Food Chem [Internet]. 2014;145:198–204
dc.relationGil-Ramirez A, Caz VV, Smiderle FR, Martin-Hernandez R, Largo C, Tabernero MM, et al. Water-soluble compounds from Lentinula edodes influencing the HMG-CoA reductase activity and the expression of genes involved in the cholesterol metabolism. J Agric Food Chem [Internet]. 2016;64(9):1910–20
dc.relationChandrasekaran G, Young-Chul L, Park H, Wu Y, Shin H-J. Antibacterial and Antifungal Activities of Lectin Extracted from Fruiting Bodies of the. Int J Med Mushrooms [Internet]. 2016;18(4):291–9.
dc.relationZhang GQ, Sun J, Wang HX, Ng TB. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol. 2009;56(3):415–21.
dc.relationLi Y, Zhang G, Ng TB, Wang H. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed Biotechnol [Internet]. 2010;2010.
dc.relationEL-Fakharany EMM, Haroun BMM, TB N, Redwan E-RMRR, Ng TB, Redwan E-RMRR. Oyster mushroom laccase inhibits Hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett [Internet]. 2010;17(8):1031–9.
dc.relationWang W, Chen K, Liu Q, Johnston N, Ma Z, Zhang F, et al. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration. PLoS One. 2014;9(7).
dc.relationGil-Ramírez A, Caz V, Martin-Hernandez R, Marín FR, Largo C, Rodríguez-Casado A, et al. Modulation of cholesterol-related gene expression by ergosterol and ergosterol-enriched extracts obtained from Agaricus bisporus. Eur J Nutr. 2015;1–17
dc.relationGupta RC. Nutraceuticals: Efficacy, Safety and Toxicity. Elsevier. 2016. 1–1022 p.
dc.relationNashar M, Ivanova D. Functional foods: The new concept emerging from the traditional nutrition. Scr Sci Pharm. 2015;2(1):15–28.
dc.relationBenkeblia N. OMIC’s Technologies Tools for food science. Boca Ratón, FL: Taylor & Francis Group; 2012. 418 p.
dc.relationJohanningsmeier SD, Harris GK, Klevorn CM. Metabolomic Technologies for Improving the Quality of Food: Practice and Promise. Annu Rev Food Sci Technol. 2016;7(1):19.1--19.26
dc.relationFuhrer T, Zamboni N. High-throughput discovery metabolomics. Curr Opin Biotechnol [Internet]. 2015;31:73–8.
dc.relationBagchi D, Swaroop A, Bagchi M. Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Second. Wiley Blackwell. Oxford: John Wiley & Sons; 2015. 956–963 p.
dc.relationHalket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56(410):219–43.
dc.relationSenyuva HZ, Gökmen V, Sarikaya EA. Future perspectives in OrbitrapTM-high-resolution mass spectrometry in food analysis: a review. Food Addit Contam Part A [Internet]. 2015;32(10):1568–606.
dc.relationWoldegiorgis AZ, Abate D, Haki GD, Ziegler GR. LC-MS / MS Based Metabolomics to Identify Biomarkers Unique to Laetiporus sulphureus. 2015;4(2):141–53.
dc.relationIbáñez C, García-Cañas V, Valdés A, Simó C. Novel MS-based approaches and applications in food metabolomics. TrAC Trends Anal Chem. 2013;52:100–11.
dc.relationMalheiro R, Guedes de Pinho P, Soares S, da Silva Ferreira AC, Baptista P. Volatile biomarkers for wild mushrooms species discrimination. Food Res Int [Internet]. 2013;54(1):186–94.
dc.relationCarvalho LM, Carvalho F, Bastos M de L, Baptista P, Moreira N, Monforte AR, et al. Non-targeted and targeted analysis of wild toxic and edible mushrooms using gas chromatography – ion trap mass spectrometry. Talanta [Internet]. 2014;118:292–303.
dc.relationMolz P, Ellwanger JH, Iochims Santos CE dos, Ferraz Dias J, de Campos D, Corbellini VA, et al. A metabolomics approach to evaluate the effects of shiitake mushroom (Lentinula edodes) treatment in undernourished young rats. Nucl Instruments Methods Phys Res B Beam Interact with Mater Atoms [Internet]. 2014;318(PART A):194–7.
dc.relationPandohee J, Stevenson PG, Conlan XA, Zhou X, Jones OAH. Off-line two-dimensional liquid chromatography for metabolomics : an example using Agaricus bisporus mushrooms exposed to ... Metabolomics [Internet]. 2015;(June). Available from: http://dx.doi.org/10.1007/s11306-014-0749-4
dc.relationCho IH, Kim YS, Choi HK. Metabolomic discrimination of different grades of pine-mushroom (Tricholoma matsutake Sing.) using 1H NMR spectrometry and multivariate data analysis. J Pharm Biomed Anal [Internet]. 2007;43(3):900–4.
dc.relationLi W, Gu Z, Yang Y, Zhou S, Liu Y, Zhang J. Non-volatile taste components of several cultivated mushrooms. Food Chem. 2014;143:427–31.
dc.relationChiang PD, Yen CT, Mau JL. Non-volatile taste components of canned mushrooms. Food Chem. 2006;97(3):431–7.
dc.relationTsai SY, Wu TP, Huang SJ, Mau JL. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem. 2007;103(4):1457–64.
dc.relationJames P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys [Internet]. 1997;30(4):279–331.
dc.relationLarance M, Lamond AI. Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol [Internet]. 2015;16(5):269–80.
dc.relationDomon B, Gallien S. Recent Advances in Targeted Proteomics for Clinical Applications. Proteomics - Clin Appl. 2015;9(3–4):423–31.
dc.relationLisitsa A, Moshkovskii S, Chernobrovkin A, Ponomarenko E, Archakov A. Profiling proteoforms: promising follow-up of proteomics for biomarker discovery. Expert Rev Proteomics. 2014;11(1):121–9.
dc.relationKriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: A valuable tool for cancer diagnostics (review). Int J Oncol. 2015;46(3):893–906.
dc.relationKussmann M, Panchaud A, Affolter M. Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J Proteome Res. 2010;9(10):4876–87.
dc.relationCarrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Gutiérrez-López GF, Dávila-Ortiz G. Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Eng Rev. 2012;4(4):224–43.
dc.relationLamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E. Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics. 2011;11(11):2212–21.
dc.relationCifuentes A, Rutledge D. Foodomics and food analysis in the post-genomics era. TrAC Trends Anal Chem. 2013;52:1.
dc.relationGarcía JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10(5):1017–24.
dc.relationCepero de García MC, Restrepo Restrepo S, Franco-Molano AE, Cárdenas Toquica M, Vargas Estupiñán N, Uniandes E. Biología de Hongos. 1o. Bogotá D.C.: Universidad de Los AndesDepartamento de CienciasFacultad de Ciencias Biológicas; 2012. 497 p.
dc.relationZapata PA. Evaluación y desarrollo de un medio de cultivo para la producción de biomasa micelial del hongo medicinal Ganoderma lucidum bajo cultivo sumergido. Medellín Fac Ciencias Exactas y Nat Inst Biol Univ Antioquia. 2007;
dc.relationAl-Obaidi JR. Proteomics of edible mushrooms: A mini review. Electrophoresis. 2016;37(10):1257–63.
dc.relationHwang HJ, Kim SW, Yun JW. Modern Biotechnology of Phellinus baumii-From Fermentation to Proteomics. Food Technol Biotechnol. 2007;45(3):306.
dc.relationYap H-YY, Fung S-Y, Ng S-T, Tan C-S, Tan N-H. Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol. 2015;174:437–51.
dc.relationCouturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, et al. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics. 2012;13(1):1.
dc.relationÖzcan S, Yıldırım V, Kaya L, Albrecht D, Becher D, Hecker M, et al. Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response. Proteomics. 2007;7(8):1249–60.
dc.relationRavalason H, Jan G, Mollé D, Pasco M, Coutinho PM, Lapierre C, et al. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol. 2008;80(4):719–33.
dc.relationAl-Obaidi JR. Proteomics of edible mushrooms: A mini-review. Electrophoresis. 2016;37(10):1257–63.
dc.relationBianco L, Perrotta G. Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis. Int J Mol Sci. 2015;16(3):5803–29.
dc.relationBarreiro C, García-Estrada C, Martín JF. Proteomics methodology applied to the analysis of filamentous fungi-new trends for an impressive diverse group of organisms. INTECH Open Access Publisher; 2012.
dc.relationUnwin N, Alberti KGMM. Chronic non-communicable diseases. Ann Trop Med Parasitol. 2006;100(5–6):455–64.
dc.relationRani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93
dc.relationO’Neill S, O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12.
dc.relationPhaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015;30(1):11–26
dc.relationNaik V, Prakash S, Thomas LA. Role of Free Radicals and Effectiveness of Antioxidants in Patients With Osmf and Olp- a Systematic Review. Int J Life Sci Pharma Res. 2018;8(1):58–69.
dc.relationPoprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci [Internet]. 2017;38(7):592–607. Available from: http://dx.doi.org/10.1016/j.tips.2017.04.005
dc.relationKowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta - Mol Basis Dis. 2015;1852(11):2474–83.
dc.relationHalliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med. 1991;91(3 SUPPL. 3).
dc.relationHalliwell B. Reactive Species and Antioxidants. Redox Biology Is.pdf. Plant Physology. 2006;141(June):312–22.
dc.relationMattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol. 2009;44(10):625–33.
dc.relationEl-Tawil AM. Different prevalence of chronic-non-infectious diseases. Iran J Public Health. 2010;39(1):96–9.
dc.relationAsmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–53.
dc.relationPham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.
dc.relationGupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014;15(11):4405–9.
dc.relationSiti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol [Internet]. 2015;71:40–56.
dc.relationCho M-R, Han J-H, Lee H-J, Park YK, Kang M-H. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2015;56(1):49–56.
dc.relationCho M-R, Han J-H, Lee H-J, Park YK, Kang M-H. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2015;56(1):49–56.
dc.relationBhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol Rev. 2014;94(2):329–54.
dc.relationForman HJ. Redox signaling: An evolution from free radicals to aging. Free Radic Biol Med. 2016;97:398–407.
dc.relationSingh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab Res Rev [Internet]. 2015;31(2):113–26.
dc.relationWANG J, ZHAO Y. Astaxanthin in Disease Prevention and Treatment. 2017;4(Bbe):418–22.
dc.relationBuciuman C, Marian E, Tita B, Jurca T, Chis A, Vicas L. Coenzime Q10. Comparative Study Active Substance versus Pharmaceuticals Products. Rev Chim. 2018;69(11):3221–4
dc.relationShrotriya S, Deep G, Lopert P, Patel M, Agarwal R, Agarwal C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells. Mol Carcinog. 2015;54(12):1734–47.
dc.relationChen J. Prevention of obesity-associated colon cancer by (-)-epigallocatechin-3 gallate and curcumin. Transl Gastrointest Cancer; Vol 1, No 3 (October 2012) Transl Gastrointest Cancer. 2012;3(3):243–9.
dc.relationMazarakis N, Snibson K, Licciardi P V., Karagiannis TC. The potential use of L-sulforaphane for the treatment of chronic inflammatory diseases: A review of the clinical evidence. Clin Nutr [Internet]. 2020;39(3):664–75. Available from: https://doi.org/10.1016/j.clnu.2019.03.022
dc.relationRuhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants. 2020;9(6):1–13.
dc.relationSantana-Gálvez J, Villela Castrejón J, Serna-Saldívar SO, Jacobo-Velázquez DA. Anticancer potential of dihydrocaffeic acid: a chlorogenic acid metabolite. CYTA - J Food [Internet]. 2020;18(1):245–8.
dc.relationCarocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51(1):15–25.
dc.relationManganyi MC, Ateba CN. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms. 2020;8(12):1–25.
dc.relationLunardelli Negreiros de Carvalho P, de Oliveira Silva E, Aparecida Chagas-Paula D, Honorata Hortolan Luiz J, Ikegaki M. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review. Mini-Reviews Med Chem. 2016;16(4):259–71
dc.relationNguyen TK, Im KH, Choi J, Shin PG, Lee TS. Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology. 2016;44(4):291–301.
dc.relationKhatua S, Paul S, Acharya K. Mushroom as the Potential Source of New Generation of Antioxidant: A Review. Res J Pharm Technol. 2013;6(5):496–505.
dc.relationPontif M, Cat U, Gran R, Henrique J, Universidade E, Grande R, et al. Mushrooms : Biological characterization , antioxidant properties and interactions with human health. 2014. 272 p.
dc.relationSouilem F, Fernandes Â, Calhelha RC, Barreira JCM, Barros L, Skhiri F, et al. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem. 2017;230:40–8.
dc.relationKanagasabapathy G, Malek SNA, Kuppusamy UR, Vikineswary S. Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of Pleurotus sajor-caju (Fr.) Singer. J Agric Food Chem. 2011;59(6):2618–26.
dc.relationWu XJ, Hansen C. Antioxidant capacity, phenolic content, and polysaccharide content of Lentinus edodes grown in whey permeate-based submerged culture. J Food Sci. 2008;73(1):1–8.
dc.relationBarrios V, Escobar C, Cicero AFG, Burke D, Fasching P, Banach M, et al. A nutraceutical approach (Armolipid Plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: Review of the clinical evidence. Atheroscler Suppl. 2017;24:1–15.
dc.relationLiu HH, Li JJ. Aging and dyslipidemia: A review of potential mechanisms. Ageing Res Rev. 2015;19:43–52.
dc.relationCarvajal C. Lipoproteínas: metabolismo y lipoproteínas aterogénicas. Revisión bibliográfica. Med Leg Costa Rica Edición virtual. 2014;31(2):829–37.
dc.relationHelkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1 - Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg. 2016;50(2):107–18.
dc.relationIqbal J, Al Qarni A, Hawwari A, Alghanem AF, Ahmed G. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr Diabetes Rev. 2017;14(5):427–33.
dc.relationJulve J, Errico TL, Chen X, Santos D, Freixa J, Porcel I, et al. Alteraciones en el contenido proteico y disfunción de lipoproteínas de alta densidad en ratones hiperhomocisteinémicos. Clin e Investig en Arterioscler. 2013;25(4):164–73.
dc.relationNovikova OA, Laktionov PP, Karpenko AA. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells. Ann Vasc Surg. 2018;53:224–33.
dc.relationMorgan AE, Mooney KM, Wilkinson SJ, Pickles NA, Mc Auley MT. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev. 2016;27:108–24.
dc.relationJovanovski E, Yashpal S, Komishon A, Zurbau A, Mejia SB, Ho HVT, et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2018;108(5):922–32.
dc.relationShang HM, Song H, Wang LN, Wu B, Ding GD, Jiang YY, et al. Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on performance, gut microflora, and cholesterol metabolism in broiler chickens. Livest Sci. 2014;167(0):276–85.
dc.relationChen G, Luo YC, Ji BP, Li B, Su W, Xiao ZL, et al. Hypocholesterolemic effects of Auricularia auricula ethanol extract in ICR mice fed a cholesterol-enriched diet. J Food Sci Technol. 2011;48(6):692–8.
dc.relationBerger A, Rein D, Kratky E, Monnard I, Hajjaj H, Meirim I, et al. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids Heal Dis. 2004;3(2).
dc.relationCTT CTT. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.
dc.relationMoosmann B, Behl C. Selenoprotein synthesis and side-effects of statins. Lancet [Internet]. 2004;363(9412):892–4.
dc.relationFinegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol. 2014;21(4):464–74.
dc.relationChegwin-Angarita C, Nieto-Ramírez IJ, Atehortúa L, Sepúlveda A. LJ. Las estatinas: Actividad biológica y producción biotecnológica. Rev la Fac Quim Farm [Internet]. 2012;14(2). Available from: http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/37418
dc.relationde Miranda AM, Rossoni Júnior JV, Souza e Silva L, dos Santos RC, Silva ME, Pedrosa ML. Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis. Eur J Nutr [Internet]. 2017;56(4):1707–17.
dc.relationFajardo Ramos E, Córdoba Andrade L, Enciso Luna JE. La salud de las ciudades en la agenda global de desarrollo: Desafíos para Colombia. Comunidad y Salud [Internet]. 2016;14(2).
dc.relationDietz WH, Gortmaker SL, Chan HTH, Marks JS, Wood R, Foundation J, et al. Chronic Disease Prevention: Tobacco, Physical Activity, and Nutrition for a Healthy Start A Vital Direction for Health and Health Care About the Vital Directions for Health and Health Care Series. Tennessee Dep Heal Ron Z Goetzel, Truven Heal Anal. 2016;
dc.relationMohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol [Internet]. 2014;35(2):114–28.
dc.relationSaarela M. Functional Foods: Concept to Product: Second Edition. Functional Foods: Concept to Product: Second Edition. Elsevier Ltd; 2011. 1–640 p.
dc.relationda Costa JP. A current look at nutraceuticals – Key concepts and future prospects. Trends Food Sci Technol. 2017;62:68–78.
dc.relationVerhagen H, van Loveren H. Status of nutrition and health claims in Europe by mid 2015. Trends Food Sci Technol. 2016;56:39–45.
dc.relationGul K, Singh AK, Jabeen R. Nutraceuticals and Functional Foods: The Foods for the Future World. Crit Rev Food Sci Nutr. 2016;56(16):2617–27.
dc.relationSocial M de la P, Ministerio de la Protección Social. Resolución 333 de 2011: Requisitos de rotulado o etiquetado nutricional para alimentos envasados para consumo humano. República de Colombia 2011 p. 56.
dc.relationValenzuela B A, Valenzuela R, Sanhueza J, Morales I G. Alimentos funcionales, nutraceúticos y foshu: ¿vamos hacia un nuevo concepto de alimentación? Rev Chil Nutr. 2014;41(2):198–204
dc.relationChalé FH, Ancona DB, Campos MRS. Dietary bioactive compounds with potential in preventing pathologies related with overweight and obesity; biologically active peptides. Nutr Hosp. 2014;29(1):10–20.
dc.relationCifuentes A. Foodomics: Advanced mass spectrometry in modern food science and nutrition. Vol. 52. John Wiley & Sons; 2013.
dc.relationZhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):1–17.
dc.relationMohammed A, Adelaiye ABBB, Abubakar MSSS, Abdurahman EMMM, A.Mohammed M. S. Abubakar and E. M. Abdurahman a BA. Effects of aqueous extract of Ganoderma lucidum on blood glucose levels of normoglycemic and alloxan induced diabetic wistar rats. J Med Plants Res. 2007;1(2):34–7.
dc.relationSujatha S, Anand S, Sangeetha KN, Shilpa K, Lakshmi J, Balakrishnan A, et al. Biological evaluation of (3β) -STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int J Diabetes Mellit. 2010;2:101–9.
dc.relationZhen-yuan ZHU, Jing-yi Z, Li-jing C, Xiao-cui LIU, Yang LIU, Wan-xiao W, et al. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of $α$-glucosidase. Chin J Nat Med. 2014;12(4):290–3.
dc.relationGuaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Food Sci Nutr. 2014;3(3):17–179.
dc.relationChandrasekaran G, Lee Y-C, Park H, Wu Y, Shin H-J. Antibacterial and antifungal activities of lectin extracted from fruiting bodies of the Korean cauliflower medicinal mushroom, Sparassis latifolia (Agaricomycetes). Int J Med Mushrooms. 2016;18(4):291–9.
dc.relationGiavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol. 2014;26(February):162–73.
dc.relationCheung PCK. Mushrooms As Functional Foods. New Jersey: John Wiley & Sons; 2008. 279 p.
dc.relationUSDA, IICA. Biblioteca Nacional de Agricultura - Tesauro. Departamento de Agricultura de los Estados Unidos Instituto Interamericano de Cooperación para la Agricultura. 2017.
dc.relationCortés R. M, Chiralt B. A, Puente D. L. Alimentos funcionales: una historia con mucho presente y futuro. Vitae. 2005;12(1):10.
dc.relationBagchi D. Nutraceutical and Functional Food Regulations in the United States and Around the World: Second Edition. Elsevier Inc.; 2014. 1–549 p.
dc.relationSun‐Waterhouse D, Sun-Waterhouse D, Sun‐Waterhouse D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int J Food Sci Technol. 2011;46(5):899–920.
dc.relationZhang Y, Venkitasamy C, Pan Z, Wang W. Recent developments on umami ingredients of edible mushrooms–a review. Trends Food Sci Technol. 2013;33(2):78–92.
dc.relationFerreira ICFR, Gómez PM, Barros L. Wild plants, mushrooms and nuts : functional food properties and applications. 1st ed. Chichester: Wiley Blackwell; 2017.
dc.relationKim J, Lee SM, Bae IY, Park H, Gyu Lee H, Lee S. (1–3)(1–6)‐β‐Glucan‐enriched materials from Lentinus edodes mushroom as a high‐fibre and low‐calorie flour substitute for baked foods. J Sci Food Agric. 2011;91(10):1915–9.
dc.relationMoon B, Lo YM. Conventional and Novel Applications of Edible Mushrooms in Today’s Food Industry. J Food Process Preserv. 2014;38(5):2146–53.
dc.relationOkamura T, Hamada K, Okuda N, Ohsugi M. Effects of Fermentable Sugar Derived from Bunashimeji Mushroom on Fermentation in Bread Processing. 1999;
dc.relationOkamura T, Nishikawa Y, Okuda N, Ohsugi M. Effects of adding mushrooms to dough on gas production and loof volume, J. Cook Sci Jpn. 1998;31(865):30–6.
dc.relationOkamura-Matsui T, Tomoda T, Fukuda S, Ohsugi M. Discovery of alcohol dehydrogenase from mushrooms and application to alcoholic beverages. J Mol Catal B Enzym. 2003;23(2–6):133–44.
dc.relationChun S, Chambers IV E, Chambers D. Perception of pork patties with shiitake (Lentinus edode P.) mushroom powder and sodium tripolyphosphate as measured by Korean and United States consumers. J Sens Stud. 2005;20(2):156–66.
dc.relationCha MH, Heo JY, Lee C, Lo YM, Moon B. Quality and sensory characterization of white jelly mushroom (Tremella Fuciformis) as a meat substitute in pork patty formulation. J Food Process Preserv. 2014;38(4):2014–9
dc.relationKim K, Choi B, Lee I, Lee H, Kwon S, Oh K, et al. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. J Sci Food Agric. 2011;91(9):1561–8
dc.relationRibeiro A, Ruphuy G, Lopes JC, Dias MM, Barros L, Barreiro F, et al. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chem. 2015;188:612–8.
dc.relationXuJie H, Na Z, SuYing X, ShuGang L, BaoQiu Y. Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage. Carbohydr Polym. 2008;73(2):289–94.
dc.relationBrennan MA, Derbyshire E, Tiwari BK, Brennan CS. Enrichment of extruded snack products with coproducts from chestnut mushroom (Agrocybe aegerita) production: Interactions between dietary fiber, physicochemical characteristics, and glycemic load. J Agric Food Chem [Internet]. 2012;60(17):4396–401.
dc.relationPedri ZC, Lozano LMS, Hermann KL, Helm C V., Peralta RM, Tavares LBB. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. Brazilian J Biol. 2015;75(4):940–7.
dc.relationNikitina VE, Tsivileva OM, Pankratov AN, Bychkov NA. Lentinula edodes biotechnology - From lentinan to lectins. Food Technol Biotechnol. 2007;45(3):230–7.
dc.relationvan Kuijk SJA, del Río JC, Rencoret J, Gutiérrez A, Sonnenberg ASM, Baars JJP, et al. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability. J Anim Sci Biotechnol. 2016;7(1):55.
dc.relationFeng YL, Li WQ, Wu XQ, Cheng JW, Ma SY. Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochem Eng J. 2010;49(1):104–12.
dc.relationFazenda ML, Seviour R, McNeil B, Harvey LM. Submerged Culture Fermentation of ‘“Higher Fungi”’: The Macrofungi. In: Laskin A, Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. London: Academic Press is an imprint of Elsevier; 2015. p. 33–92.
dc.relationRahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol. 2016;2016:1–18.
dc.relationStamets P. Growing Gourmet Mushroom [Internet]. Available from: file:///Users/carolinavegaoliveros/Library/Application Support/Mendeley Desktop/Downloaded/Stamets - Unknown - Growing Gourmet Mushroom.pdf
dc.relationSong CH, Cho KY, Nair NG. A synthetic medium for the production of submerged cultures of Lentinus edodes. Mycologia. 1987;79(6):866–76.
dc.relationQin L, Gao JX, Xue J, Chen D, Lin SY, Dong XP, et al. Changes in aroma profile of shiitake mushroom (Lentinus edodes) during different stages of hot air drying. Foods. 2020;9(4):1–12.
dc.relationAhmad S, Ullah F, Zeb A, Ayaz M, Ullah F, Sadiq A. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: Chemical characterization of chloroform fraction and identification of bioactive compounds. BMC Complement Altern Med [Internet]. 2016;16(1):1–10.
dc.relationRubiano Flórez DF. Evaluación del efecto de la variación de ciertos parámetros del cultivo biotecnológico sobre la composción y la potencial actividad antioxidante de un macromiceto. Universidad Nacional de Colombia, sede Bogotá; 2018.
dc.relationWillmott FW. Modern Practice of Gas Chromatography. Vol. 29, Physics Bulletin. 1978. p. 429–429.
dc.relationArce-Cervantes O, Saucedo-García M, Leal Lara H, Ramírez-Carrillo R, Cruz-Sosa F, Loera O. Alternative supplements for Agaricus bisporus production and the response on lignocellulolytic enzymes. Sci Hortic (Amsterdam). 2015;192:375–80.
dc.relationFazenda ML, Seviour R, McNeil B, Harvey LM. Submerged culture fermentation of “Higher Fungi”: the Macrofungi. In: Advances in applied microbiology. 2008. p. 33–103.
dc.relationLee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, et al. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme Microb Technol. 2004;35(5):369–76.
dc.relationYoon LW, Ang TN, Ngoh GC, Chua ASM. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy. 2014;67:319–38.
dc.relationPolizeli MDLTM, Rai M, Lourdes M De, Rai M, Rai M, Polizeli TM, et al. Fungal Enzymes. First. Boca Ratón, FL: CRC Press; 2014.
dc.relationPorras-Arboleda SM, Valdez-Cruz NA, Rojano B, Aguilar C, Rocha-Zavaleta L, Trujillo-Roldán MA. Mycelial submerged culture of new medicinal mushroom, Humphreya coffeata (Berk.) Stey. (Aphyllophoromycetideae) for the production of valuable bioactive metabolites with cytotoxicity, genotoxicity, and antioxidant activity. Int J Med Mushrooms. 2009;11(4):335–50.
dc.relationBraissant O, Bonkat G, Wirz D, Bachmann A. Microbial growth and isothermal microcalorimetry : Growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555:64–71.
dc.relationGonzález-Márquez Á, Ahuactzin-Pérez M, Sánchez C. Lentinula edodes grown on Di(2-ethylhexyl) phthalate-containing media: mycelial growth and enzyme activities. BioResources. 2015;10(4):7898–906.
dc.relationOsman ME, Hassan FRH, Khattab OH, Ahmed WA, El-Henawy HE. Physiological studies on growth of two different strains of <i>Lentinus edodes<i/>. Aust J Basic Appl Sci. 2009;3(4):4094–103.
dc.relationGhada MM. Optimization of Submerged Culture Conditions for Mycelial Biomass Production by Shiitake Mushroom (Lentinus edodes). Res J Agric Biol Sci. 2011;7(4):350–6.
dc.relationEsser K. The Mycota I: Growth, Differentiation and Sexuality. Third Edit. Switzerland: Springer International Publishing; 2016. 526 p.
dc.relationGruen HE, Wong MW. Distribution of cellular amino acids , protein , and total organic nitrogen during fruitbody development in Flammulina velutipes. I. Growth on sawdust medium. Can J Bot. 1982;60.
dc.relationMaheshwari R, Navaraj A. Senescence in fungi: The view from Neurospora. FEMS Microbiol Lett. 2008;280(2):135–43.
dc.relationLee H, Ham E, Yoo Y, Kim E, Shim K, Kim M, et al. Effects of Aeration of Sawdust Cultivation Bags on Hyphal Growth of Lentinula edodes. Mycobiology. 2012;40(3):164–7.
dc.relationBenavides Calvache OL. Estudio químico de la fracción insaponificable del hongo macromiceto Lentinula edodes (Shiitake). Universidad Nacional de Colombia; 2004.
dc.relationNieto IJ, Cucaita E del P. Ácidos grasos, ésteres y esteroles del cuerpo fructífero del hongo Laccaria laccata (Fatty acids, esters and sterols of the Laccaria laccata mushroom). Rev Colomb Química. 2007;36(3).
dc.relationÁvila Castañeda IM. Estudio de los compuestos polifenolicos con énfasis en flavonoides del hongo Lentinula edodes y determinación de la actividad antioxidante”/“Study of the polyphenolic compounds with emphasisoin flavonoids of mushroom Lentinula edodes and determination of. Universidad Nacional de Colombia; 2009.
dc.relationBravo Espejo AL. Determinación de la correlación tiempo de fermentación- características estructurales y cantidad de bioactivos, de Pleurotus cultivados por FEL y su incidencia en el potencial antibiótico del producto biotecnológico. Universidad Nacional de Colombia; 2017.
dc.relationMedina MG. Estudio de la factibilidad del empleo de Hongos Macromicetos como mediadores en el bio-endurecimiento de Plántulas de orquídea. 2018;
dc.relationCho D-B, Seo H-Y, Kim K-S. Analysis of the Volatile Flavor Compounds Produced during the Growth Stages of the Shiitake Mushrooms (Lentinus edodes). J Food Sci Nutr. 2003;8(4):306–14.
dc.relationÇaǧlarirmak N. The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chem. 2007;105(3):1188–94.
dc.relationYang W, Pu H, Wang L, Hu Q, Mariga AM, Zheng H. Effect of bound water on the quality of dried Lentinus edodes during storage. J Sci Food Agric. 2020;100(5):1971–9.
dc.relationWeete JD. Fungal lipid biochemistry: distribution and metabolism. Vol. 1, Monographs in Lipid Research. New York and London: Plenum Press; 1974
dc.relationToledo Marante FJ, Mioso R, Barrera JB, González González JE, Santana Rodríguez JJ, De Laguna IHB. Structural characterization and metabolite profiling of the facultative marine fungus Paecilomyces variotii. Ann Microbiol. 2012;62(4):1601–7.
dc.relationOmarini A, Henning C, Ringuelet J, Zygadlo JA, Albertó E. Volatile composition and nutritional quality of the edible mushroom Polyporus tenuiculus grown on different agro-industrial waste. Int J Food Sci Technol. 2010;45(8):1603–9.
dc.relationYaoita Y, Kikuchi M, Machida K. Terpenoids and sterols from some Japanese mushrooms. Nat Prod Commun. 2014;9(3):419–26.
dc.relationCerqueira F, Watanadilok R, Sonchaeng P, Kijjoa A, Pinto M, Van Ufford HQ, et al. Clionasterol: A potent inhibitor of complement component C1. Planta Med. 2003;69(2):174–6.
dc.relationMcClelland HLO, Jones C, Chubiz LM, Fike DA, Bradley AS. Direct observation of the dynamics of single-cell metabolic activity during microbial diauxic growth. MBio. 2020;11(2).
dc.relationSuccurro A, Segrè D, Ebenhöh O. Emergent Subpopulation Behavior Uncovered with a Community Dynamic Metabolic Model of Escherichia coli Diauxic Growth . mSystems. 2019;4(1):1–16.
dc.relationAssawajaruwan S, Eckard P, Hitzmann B. On-line monitoring of relevant fluorophores of yeast cultivations due to glucose addition during the diauxic growth. Process Biochem [Internet]. 2017;58(April):51–9. Available from: http://dx.doi.org/10.1016/j.procbio.2017.05.007
dc.relationAziza M, Amrane A. Diauxic growth of geotrichum candidum and penicillium camembertii on amino acids and glucose. Brazilian J Chem Eng. 2012;29(2):203–10.
dc.relationKerwin JL. Fatty Acids and Fungal Development: Structure-Activity Relationships. 1987;329–42.
dc.relationLadygina N, Dedyukhina EG, Vainshtein MB. A review on microbial synthesis of hydrocarbons. Process Biochem. 2006;41(5):1001–14.
dc.relationStrobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, et al. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladiurn roseum (NRRL 50072). Microbiology. 2008;154(11):3319–28.
dc.relationZhang H, Peng J, Zhang YR, Liu Q, Pan LQ, Tu K. Discrimination of Volatiles of Shiitakes (Lentinula edodes) Produced during Drying Process by Electronic Nose. Int J Food Eng. 2020;16(1–2):1–13.
dc.relationMohamed E, Farghaly F. Bioactive Compounds of Fresh and Dried Pleurotus ostreatus Mushroom. Int J Biotechnol Wellness Ind. 2014;3(1):4–14.
dc.relationBeier A, Hahn V, Bornscheuer UT, Schauer F. Metabolism of alkenes and ketones by Candida maltosa and related yeasts. AMB Express. 2014;4(1):1–8.
dc.relationWeete JD. Aliphatic hydrocarbons of the fungi. Phytochemistry. 1972;11(4):1201–5.
dc.relationFisher DJ, Holloway PJ, Richmind D V. Fatty Acid and Hydrocarbon Constituents of the Surface and Wall Lipids of Some Fungal Spores. J Gen Microbiol. 1972;72(1):71–8.
dc.relationBird CW, Lynch JM. Formation of hydrocarbons by micro-organisms. Chem Soc Rev. 1974;3(3):309–28.
dc.relationZhou J, Feng T, Ye R. Differentiation of eight commercial mushrooms by electronic nose and gas chromatography-mass spectrometry. J Sensors. 2015;2015.
dc.relationFries N. Effects of volatile organic compounds on the growth and development of fungi. Trans Br Mycol Soc [Internet]. 1973;60(1):1–21. Available from: http://dx.doi.org/10.1016/S0007-1536(73)80055-5
dc.relationReisige K, Gorzelanny C, Daniels U, Moerschbacher BM. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus. 2006;68:33–40.
dc.relationPedrini N, Ortiz-urquiza A, Huarte-bonnet C, Zhang S, Dispirito AA, State O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana : hydrocarbon oxidation within the context of a host-pathogen interaction. 2013;4(February):1–18.
dc.relationGounaris AD, Turkenkopf I, Buckwald S, Young A. Pyruvate Decarboxylase. J Biol Chem. 1971;246(5):1302–9.
dc.relationJanssen FW, Ruelius HW. Alcohol oxidase, a flavoprotein from several basidiomycetes species. Biochim Biophys Acta - Enzymol. 1968;151(2):330–42.
dc.relationSuye SI. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr Microbiol. 1997;34(6):374–7.
dc.relationFries N. Nonanal as a Growth Factor for Wood-rotting Fungi. Nature. 1960;187.
dc.relationNyman B. The Effect of Various Aliphatic Aldehydes and Related Compounds on the Growth of Dipodascus aggregatus. Physiol Plant. 1969;22(6):1322–8.
dc.relationMehta A, Bodh U, Gupta R. Fungal lipases: A review. J Biotech Res. 2017;8(1):58–77.
dc.relationLima VMG, Krieger N, Mitchell DA, Fontana JD. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Eng J. 2004;18(1):65–71.
dc.relationKumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: Advantages and applications. Biol Proced Online [Internet]. 2016;18(1):1–11. Available from: http://dx.doi.org/10.1186/s12575-016-0033-2
dc.relationFarrell EK, Merkler DJ. Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug Discov Today. 2008;13(13–14):558–68.
dc.relationSingh A, Del Poeta M. Sphingolipidomics: An important mechanistic tool for studying fungal pathogens. Front Microbiol. 2016;7(APR):1–14.
dc.relationPohl CH, Kock JLF, Thibane VS. Antifungal free fatty acids: a review. Sci against Microb Pathog Curr Res Technol Adv [Internet]. 2011;1(February):61–71.
dc.relationIbarra VG, Rodríguez A, Quirós B De, Losada PP, Sendón R. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. 2018;
dc.relationFiselier AFK, Biedermann S, Biedermann M, Grob K, Armellini F, Rieger K. Epoxidized soy bean oil ( ESBO ) migrating from the gaskets of lids into food packed in glass jars. 2005;416–22.
dc.relationChaparro JM, Holm DG, Broeckling CD, Prenni JE, Heuberger AL. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds. 2018;5(May):1–22.
dc.relationLee S-Y. Biotransformation of terpenes by Polyporus brumalis and investigation of related enzyme expression by transcriptome analysis. 2014.
dc.relationMäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, et al. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol. 2015;91:63–137.
dc.relationChegwin Angarita C. Incidencia del medio y de las condiciones de cultivo en el potencial como nutricéutico de tres especies del género Pleurotus. Universidad Nacional de Colombia; 2014.
dc.relationNovaes MRCG, Novaes LCG, Taveira VC. Natural Products from Agaricales Medicinal Mushrooms : Biology , Nutritional Properties , and Pharmacological Effects on Cancer Nutricionais e Efeitos Farmacológicos no Câncer. Rev Bras Cancerol. 2007;53(4):411–20
dc.relationMcAfee BJ, Taylor A. A review of the volatile metabolites of fungi found on wood substrates. Nat Toxins. 1999;7(6):283–303.
dc.relationKo H-H, Hung C-F, Wang J-P, Lin C-N. Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry. 2008;69(1):234–9.
dc.relationSiwulski M, Sobieralski K, Golak-Siwulska I, Sokół S, Sękara A. Ganoderma lucidum (Curt.: Fr.) Karst.–health-promoting properties. A review. Herba Pol. 2015;61(3):105–18.
dc.relationXue Z, Zhai L, Yu W, Wang H, Kou X, Peng L, et al. Antitumor and immunomodulatory activity of pleurotus eryngii extract. J Food Biochem [Internet]. 2015;39(1):19–27.
dc.relationWang S, Bao L, Zhao F, Wang Q, Li S, Ren J, et al. Isolation, Identification, and Bioactivity of Monoterpenoids and Sesquiterpenoids from the Mycelia of Edible Mushroom Pleurotus cornucopiae. J Agric Food Chem [Internet]. 2013;61(21):5122–9. Available from: http://dx.doi.org/10.1021/jf401612t
dc.relationWasser SP, Weis AL. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: Current perspectives. Int J Med Mushrooms. 1999;1:31–62.
dc.relationNeelam S, Singh S. Comparative in vitro studies on phytochemical and antibacterial properties of ethanolic extracts of pleurotus florida and pleurotus ostreatus. Int J Pharma Bio Sci [Internet]. 2013;4(3):B396–400.
dc.relationJoshi M, Pathania P, Sagar A. Phytochemical analysis and in vitro antibacterial activity of Russula lepida and Pleurotus ostreatus from North West Himalayas, India. Int J Pharmacogn Phytochem Res [Internet]. 2014;6(4):1032–4.
dc.relationSathyaprabha G, Kumaravel S, Panneerselvam A. Studies on photochemical and vitamin analysis of Pleurotus platypus and Pleurotus oeus by GC/MS and HPLC technique. Int J Pharm Sci Res. 2011;2:2816–21.
dc.relationSasidhara R, Thirunalasundari T. Phytochemicals and antioxidant potentials of pleurotus djamor. J Chem Pharm Res [Internet]. 2014;6(4):950–3.
dc.relationOndeyka JG, Jayasuriya H, Herath KB, Guan Z, Schulman M, Collado J, et al. Steroidal and triterpenoidal fungal metabolites as ligands of liver X receptors. J Antibiot (Tokyo) [Internet]. 2005;58(9):559–65.
dc.relationRavi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacol Immunotoxicol [Internet]. 2013;35(1):101–9.
dc.relationPaterson RRM. Ganoderma–a therapeutic fungal biofactory. Phytochemistry. 2006;67(18):1985–2001.
dc.relationLull C, Wichers HJ, Savelkoul HFJ. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm [Internet]. 2005;2005(2):63–80.
dc.relationShai LJ, McGaw LJ, Aderogba MA, Mdee LK, Eloff JN. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves. J Ethnopharmacol [Internet]. 2008;119(2):238–44.
dc.relationTan M-J, Ye J-M, Turner N, Hohnen-Behrens C, Ke C-Q, Tang C-P, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol. 2008;15(3):263–73.
dc.relationZhang Q, Zuo F, Nakamura N, Ma C-M, Hattori M. Metabolism and pharmacokinetics in rats of ganoderiol F, a highly cytotoxic and antitumor triterpene from Ganoderma lucidum. J Nat Med [Internet]. 2009;63(3):304–10.
dc.relationEastwood D, Nurika I, Eastwood DC, Barker GC. A comparison of ergosterol and PLFA methods for monitoring the growth of ligninolytic fungi during wheat straw solid state cultivation A comparison of ergosterol and PLFA methods for monitoring the growth of ligninolytic fungi during wheat straw solid sta. J Microbiol Methods [Internet]. 2018;148(May):49–54. Available from: https://doi.org/10.1016/j.mimet.2018.03.006
dc.relationLi W, Chen W, Yang Y, Zhang J, Feng J, Yu H, et al. Effects of culture substrates on taste component content and taste quality of Lentinula edodes. Int J Food Sci Technol. 2017;1–11.
dc.relationSharma R, Katoch M, Srivastava PS, Qazi GN. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol. 2009;25(12):2083–94.
dc.relationZhang P, Roytrakul S, Sutheerawattananonda M. Production and purification of glucosamine and angiotensin-I converting enzyme (ACE) inhibitory peptides from mushroom hydrolysates. J Funct Foods. 2017;36:72–83.
dc.relationDe Oliveira JMPF, De Graaff LH. Proteomics of industrial fungi: Trends and insights for biotechnology. Appl Microbiol Biotechnol. 2011;89(2):225–37.
dc.relationLin Q, Long L, Wu L, Zhang F, Wu S, Zhang W, et al. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric. 2017;97(10):3476–80.
dc.relationWu J, Cheung PCKK, Wong K, Huang N. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2: effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre. Food Chem. 2004;85(1):101–5.
dc.relationRubiano Flórez DF, Chegwin-Angarita C, Melo OO, Nieto-Ramírez IJ. Estudio comparativo de la producción de biomasa en fermentación superficial y en estado líquido de macromicetos con diferentes fuentes nutrimentales. Rev Colomb Biotecnol. 2019;21(1):39–46.
dc.relationSasidharan S, Aravindran S, Latha LY, Vijenthi R, Saravanan D, Amutha S. In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity. Molecules. 2010;15(6):4478–89.
dc.relationIsrailides C, Kletsas D, Arapoglou D, Philippoussis A, Pratsinis H, Ebringerová A, et al. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine. 2008;15(6–7):512–9.
dc.relationÖzdemir S, Heerd D, Quitmann H, Zhang Y, Fraatz M, Zorn H, et al. Process Parameters Affecting the Synthesis of Natural Flavors by Shiitake (Lentinula edodes) during the Production of a Non-Alcoholic Beverage. Beverages. 2017;3(2):20.
dc.relationRegina M, Broetto F, Giovannozzi-Sermanni G, Marabotini R, Peranni C. Influence of stationary and bioreactor cultivation on Lentinula edodes (Berk) Pegler lignocellulolitic activity. Brazilian Arch Biol Technol. 2008;51(2):223–33.
dc.relationVetchinkina EP, Pozdnyakova NN, Nikitina VE. Laccase and lectin activities of intracellular proteins produced in a submerged culture of the xylotrophic basidiomycete Lentinus edodes. Curr Microbiol. 2008;57(4):381–5.
dc.relationICBF. Bienestarina Más ®. Instituto Colombiano de Bienestar Familiar (ICBF). 2020.
dc.relationSabir SM, Hayat I, Gardezi SDA. Estimation of sterols in edible fats and oils. Pak J Nutr. 2003;2(3):178–81.
dc.relationShcherba V V, Babitskaya VG. The Carbohydrates of Submerged Mycelium of Xylotrophic Basidiomycetes. Appl Biochem Microbiol. 2004;40(6):551–4.
dc.relationDuBois M, Gilles KA, Hamilton JK, Rebers PaA, Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem [Internet]. 1956;28(3):350–6. Available from: http://dx.doi.org/10.1021/ac60111a017
dc.relationYoo KM, Lee CYCH, Lee H, Moon B, Lee CYCH. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008;106(3):929–36.
dc.relationLitescu SC, Eremia SAV, Tache A, Vasilescu I, Radu GL. The Use of Oxygen Radical Absorbance Capacity (ORAC) and Trolox Equivalent Antioxidant Capacity (TEAC) Assays in the Assessment of Beverages’ Antioxidant Properties. Processing and Impact on Antioxidants in Beverages. Elsevier; 2014. 245–251 p.
dc.relationMareček V, Mikyška A, Hampel D, Čejka P, Neuwirthová J, Malachová A, et al. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J Cereal Sci. 2017;73:40–5.
dc.relationZhang J, Zhang J. The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol. 2016;36(6):1066–77.
dc.relationGwirtz JA, Garcia-Casal MN. Processing maize flour and corn meal food products. Ann N Y Acad Sci. 2014;1312(1):66–75.
dc.relationSalo M-L, Kotilainen K. On the Carbohydrate Composition and nutritive value of some cereals. Agric food Sci. 1970;42(1):21–9.
dc.relationGuzmán C E, de Pablo V S, Yánez G CG, Zacarías H I, Nieto K S. Estudio comparativo de calidad de leche fluida y en polvo. Rev Chil pediatría. 2003 May;74(3):277–86.
dc.relationAndersson R, Fransson G, Tietjen M, Åman P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem. 2009;57(5):2004–8.
dc.relationMacArthur L a., D’Appolonia BL. Comparison of Oat and Wheat Carbohydrates. I. Sugars. Vol. 56, Cereal Chem. 1979. p. 455–7.
dc.relationKarr-Lilienthal LK, Kadzere CT, Grieshop CM, Fahey GC. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest Prod Sci. 2005;97(1):1–12.
dc.relationBinkley WW, Wolfrom ML. Composition of Cane Juice and Cane Final Molasses. Sci reports Ser Sugar Res Found. 1953;(15):291–314.
dc.relationJennings DH. The physiology of fungal nutrition. Cambridge: Cambridge University Press; 1995. 628 p.
dc.relationRatnayake WS, Jackson DS. Gelatinization and solubility of corn starch during heating in excess water: new insights. J Agric Food Chem. 2006;54(10):3712–6.
dc.relationHughes R. Starch, Chemistry and Technology. 3° edition. Whistler RL, BeMiller JN, Paschall EF, editors. San Diego: Academic Press; 2009.
dc.relationEliasson AC. Viscoelastic Behaviour During the Gelatinization of Starch. J Texture Stud. 1986;17:253–65.
dc.relationMalumba P, Janas S, Roiseux O, Sinnaeve G, Masimango T, Sindic M, et al. Comparative study of the effect of drying temperatures and heat-moisture treatment on the physicochemical and functional properties of corn starch. Carbohydr Polym. 2010;79(3):633–41.
dc.relationJaworski NW, Lærke HN, Bach Knudsen KE, Stein HH. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains1. J Anim Sci. 2015;93(3):1103–13.
dc.relationEl-Enshasy HA. Filamentous Fungal Cultures-Process Characteristics, Products, and Applications. Bioprocess Value-Added Prod from Renew Resour. 2007;225–61.
dc.relationFattore E, Fanelli R. Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. Int J Food Sci Nutr. 2013;64(5):648–59.
dc.relationAparna V, Dileep K V., Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chem Biol Drug Des. 2012;80(3):434–9.
dc.relationAndrade JC, Ascenção K, Gullón P, Henriques SMS, Pinto JMS, Rocha-Santos TAP, et al. Production of conjugated linoleic acid by food-grade bacteria: A review. Int J Dairy Technol. 2012;65(4):467–81.
dc.relationKim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol. 2016;7(January):221–44.
dc.relationGranados N, Amengual J, Ribot J, Palou A, Luisa Bonet M. Distinct effects of oleic acid and its trans-isomer elaidic acid on the expression of myokines and adipokines in cell models. Br J Nutr. 2011;105(8):1226–34.
dc.relationJohn VT, Abraham G. Lipase Catalysis. (1).
dc.relationCamire ME, Flint SI. Thermal Processing Effects on Dietary Fiber Composition and Hydration Capacity in Corn Meal, Oat Meal, and Potato Peels [Internet]. Vol. 68, Cereal Chemistry. 1991. p. 645–7.
dc.relationPaper OS. Potato Stillage and Sugar Beet Molasses As a Substrate for Production of Lactic Acid and Probiotic Biomass Krompirova Džibra I Melasa Šećerne Repe Kao Supstrat. 2016;4487:2014–7.
dc.relationWang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):1–28.
dc.relationNalli S, Cooper DG, Nicell JA. Metabolites from the biodegradation of di-ester plasticizers by <i>Rhodococcus rhodochrous<i/>. Sci Total Environ. 2006;366:286–94.
dc.relationElleuch L, Shaaban M, Smaoui S, Mellouli L, Karray-Rebai I, Fourati-Ben L, et al. Bioactive Secondary Metabolites from a New Terrestrial <i>Streptomyces<i/> sp. TN262. Appl Biochem Biotechnol. 2010;162:579–93.
dc.relationRahmayanti F, Suniarti DF, Masud ZA, Wimardhani YS, Subita GP. Phytochemical Compounds of <i>Garcinia Mangostana-Linn<i/> Pericarp Fractions from Ethanolic Extract. J Int Dent Med Res. 2017;10(1):48–51.
dc.relationZhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. J Environ Sci Heal - Part C Environ Carcinog Ecotoxicol Rev [Internet]. 2018;36(3):125–44. Available from: https://doi.org/10.1080/10590501.2018.1490512
dc.relationShaaban MT. Antibacterial activities of hexadecanoic acid methyl ester and green ‐ synthesized silver nanoparticles against multidrug ‐ resistant bacteria. 2021;(January)
dc.relationOthman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP. Elucidation of <i>in-vitro<i/> anti-inflammatory bioactive compounds isolated from <i>Jatropha curcas<i/> L . plant root. BMC Complement Altern Med. 2015;15(11):1–10.
dc.relationWang N, Kuczmanski A, Dubrovska G, Gollasch M. Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue Isometric Contractions of Rat Vessels. 2018;9(May):1–10.
dc.relationMusa AM, Ibrahim MA, Aliyu AB, Abdullahi MS, Tajuddeen N, Ibrahim H, et al. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). J Intercult Ethnopharmacol. 2015;4(2):129–33.
dc.relationOsman SM, Hussein MA. Purslane Seeds Fixed Oil as a Functional Food in Treatment of Obesity Induced by High Fat Diet in Obese Diabetic Mice. Nutr Food. 2015;5(1):1–7.
dc.relationAli A, Javaid A, Shoaib A. GC-MS Analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha. 2017;35:1–8.
dc.relationCravatt BF, Lerner RA, Boger DL. Structure determination of an endogenous sleep-inducing lipid, cis-9-octadecenamide (oleamide): A synthetic approach to the chemical analysis of trace quantities of a natural product. J Am Chem Soc. 1996;118(3):580–90.
dc.relationChehab EW, Raman G, Walley JW, Perea J V., Banu G, Theg S, et al. Rice hidroperxide lyases with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol. 2006;141(1):121–34.
dc.relationTang J. Flavor chemistry of chinese foods. Food Rev Int. 1989;5(3):253–87.
dc.relationWatson SB. Cyanobacterial and eukaryotic algal odour compounds: Signals or by-products? A review of their biological activity. Phycologia. 2003;42(4):332–50.
dc.relationCaboni P, Ntalli NG, Aissani N, Cavoski I, Angioni A. Nematicidal activity of (E, E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J Agric Food Chem. 2012;60(4):1146–51.
dc.relationShahidi F, Ho C-T. Flavor Chemistry of Ethnic Foods. In: Flavor Chemistry of Ethnic Foods. Cancún, Mexico: Flfth Chemical Congress of North America; 1999.
dc.relationGe SB, Li DL, Wang LS, Jiang T, Peng WX. Understanding the bioconversion of Quercus baronii wood during the artificial cultivation of Lentinus edodes. BioResources. 2016;11(3):7654–71.
dc.relationAina DA, Oloke JK, Awoyinka OA, Adebayo EA, Akoni O, Agbolade JO, et al. Comparative cytotoxic effect of metabolites from wild and mutant strains of Schizophylum commune grown in submerged liquid medium. Am J Res Commun [Internet]. 2013;1(7):219–40.
dc.relationCao PF, Wu CG, Dang ZH, Shi L, Jiang AL, Ren A, et al. Effects of exogenous salicylic acid on ganoderic acid biosynthesis and the expression of key genes in the ganoderic acid biosynthesis pathway in the lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms. 2017;19(1):65–73.
dc.relationSchaich KM, Tian X, Xie J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J Funct Foods [Internet]. 2015;14:111–25. Available from: http://dx.doi.org/10.1016/j.jff.2015.01.043
dc.relationSantana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci Technol [Internet]. 2019;88(February):179–93. Available from: https://doi.org/10.1016/j.tifs.2019.03.026
dc.relationSut S, Baldan V, Faggian M, Peron G, Dall`Acqua S. Nutraceuticals, A New Challenge for Medicinal Chemistry. Curr Med Chem. 2016;23(28):3198–223.
dc.relationMotilva MJ, Serra A, Rubió L. Nutrikinetic studies of food bioactive compounds: From in vitro to in vivo approaches. Int J Food Sci Nutr. 2015;66:S41–52.
dc.relationSandireddy R, Ganesh Yerra K, Areti A, Komirishetty P, Kumar A, Yerra VG, et al. Neuroinflammation and Oxidative stress in Diabetic Neuropathy. Futeristic strategies based on these targets. Int J Endocrinol [Internet]. 2014;
dc.relationAvendaño Ayala CJ. Evaluacion de los efectos fisiologicos y bioquimicos de una dextrana en roedores de laboratorio. Universidad Nacional de Colombia sede Bogotá; 2010.
dc.relationSteele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev. 1999;8(5):467–83.
dc.relationLaughton MJ, Evans PJ, Moroney MA, Hoult JRS, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol. 1991;42(9):1673–81.
dc.relationAhmadi Y, Ghorbanihaghjo A, Argani H. The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: A review of molecular mechanisms. Chem Biol Interact [Internet]. 2017;273:273–85. Available from: http://dx.doi.org/10.1016/j.cbi.2017.06.026
dc.relationMorales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, et al. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr Polym. 2020;229:115521.
dc.relationKhan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J, et al. Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol. 2017;101(9):3513–36.
dc.relationRoberta R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free R. 1999;26(9/10):1231–7.
dc.relationOu B, Hampshc-Woodill M, Prior RL. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J Agric Food Chem. 2001;49:4619–26.
dc.relationBoora F, Chirisa E, Mukanganyama S. Evaluation of Nitrite Radical Scavenging Properties of Selected Zimbabwean Plant Extracts and Their Phytoconstituents. J Food Process. 2014;2014:1–7.
dc.relationWhent M, Ping T, Kenworthy W, Yu L. High-throughput assay for detection of soybean lipoxygenase-1. J Agric Food Chem. 2010;58(24):12602–7.
dc.relationGiacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol Res. 2004;50(4):433–40.
dc.relationCutillas AB, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Rosmarinus officinalis L. essential oils from Spain: composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant Biosyst. 2018;152(6):1282–92.
dc.relationYu L, Cao R, Yi W, Yan Q, Chen Z, Ma L, et al. Synthesis of 4-[(diethylamino)methyl]-phenol derivatives as novel cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorganic Med Chem Lett. 2010;20(11):3254–8.
dc.relationPayá M, Halliwell B, Hoult JRS. Peroxyl radical scavenging by a series of coumarins. Free Radic Res. 1992;17(5):293–8.
dc.relationGarcía Ramírez AE. Evaluación in vitro/in vivo de propiedades antioxidantes de clones promisorios de papa criolla (Solanum phureja). 2011;113.
dc.relationSun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol. 2020;105(February 2018):468–82.
dc.relationLee MR, Hou JG, Begum S, Xue JJ, Wang YB, Sung CK. Comparison of constituents, antioxidant potency, and acetylcholinesterase inhibition in Lentinus edodes, Sparassis crispa, and Mycoleptodonoides aitchisonii. Food Sci Biotechnol. 2013;22(6):1747–51.
dc.relationHuang D, Ou B, Prior RL. The Chemistry behind Antioxidant Capacity Assays. J Agric Food Chem. 2005;53:1841–56.
dc.relationZulueta A, Esteve MJ, Frígola A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009;114(1):310–6.
dc.relationMorales D, Piris AJ, Ruiz-rodriguez A, Prodanov M, Soler-Rivas C. Extraction of bioactive compounds against cardiovascular diseases from Lentinula edodes using a sequential extraction method. Biotechnol Prog. 2018;34(3):746–55.
dc.relationNg ZX, Rosman NF. In vitro digestion and domestic cooking improved the total antioxidant activity and carbohydrate-digestive enzymes inhibitory potential of selected edible mushrooms. J Food Sci Technol [Internet]. 2019;56(2):865–77. Available from: https://doi.org/10.1007/s13197-018-3547-6
dc.relationVitrac X, Reignier A, Henri-vitrac C, Minvielle N, Vitrac X, Reignier A, et al. Changes in antioxidant activities and compounds during cultivation of shiitake (Lentinula edodes). In: 7 International Conference on Mushroom Biology and Mushroom Products, Institut National de Recherche Agronomique (INRA). Arcachon, France: UR Unité de recherche Mycologie et Sécurité des Aliments (1264); 2011.
dc.relationApak R, Özyürek M, Güçlü K, Çapanoʇlu E. Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem. 2016;64(5):1046–70.
dc.relationLefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J Chromatogr A [Internet]. 2021;1635:461770. Available from: https://doi.org/10.1016/j.chroma.2020.461770
dc.relationGarcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules. 2010;15(12):8813–26.
dc.relationExplosives F. Nitric Oxide in Biology and Medicine. English. 1896.
dc.relationLundberg JO, Weitzberg E. Biology of nitrogen oxides in the gastrointestinal tract. Gut. 2013;62(4):616–29.
dc.relationDomej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD-implications and relevance for treatment. Int J COPD. 2014;9:1207–24.
dc.relationMashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol [Internet]. 2015;6:297–310. Available from: http://dx.doi.org/10.1016/j.redox.2015.08.006
dc.relationKuhn H, Banthiya S, Van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2015;1851(4):308–30. Available from: http://dx.doi.org/10.1016/j.bbalip.2014.10.002
dc.relationSudha A, Srinivasan P. Bioassay-guided isolation, identification and molecular ligand-target insight of lipoxygenase inhibitors from leaves of Anisomeles malabarica R.Br. Pharmacogn Mag. 2014;10(39):S596–605
dc.relationLi W, Wang J, Chen W, Yang Y, Zhang J, Feng J, et al. Analysis of volatile compounds of Lentinula edodes grown in different culture substrate formulations. Food Res Int [Internet]. 2019;125(March):108517. Available from: https://doi.org/10.1016/j.foodres.2019.108517
dc.relationKhan FI, Rahman S, Queen A, Ahamad S, Ali S, Kim J, et al. Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol. 2017;101(9):3513–36.
dc.relationHautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep. 2018;35(2):147–73.
dc.relationKumar A, Mosa KA, Ji L, Kage U, Dhokane D, Karre S, et al. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit Rev Food Sci Nutr. 2018;58(11):1791–807.
dc.relationGupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, et al. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol. 2021;16(11):2068–86.
dc.relationSeguin P, Tremblay G, Pageau D, Liu W, Turcotte P. Soybean lutein concentration: Impact of crop management and genotypes. Crop Sci. 2011;51(3):1151–60.
dc.relationMohn T, Plitzko I, Hamburger M. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Phytochemistry [Internet]. 2009;70(7):924–34. Available from: http://dx.doi.org/10.1016/j.phytochem.2009.04.019
dc.relationCheng XL, Liu Q, Peng YB, Qi LW, Li P. Steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential. Food Chem [Internet]. 2011;129(4):1785–92. Available from: http://dx.doi.org/10.1016/j.foodchem.2011.06.026
dc.relationMazlan NW, Tate R, Yusoff YM, Clements C, Edrada-Ebel R. Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove plant Avicennia Lanata . Curr Med Chem. 2019;27(11):1815–35.
dc.relationStuart KA, Welsh K, Walker MC, Edrada-Ebel R. Metabolomic tools used in marine natural product drug discovery Kevin. Expert Opin Drug Discov. 2020;15(4):499–522.
dc.relationSari M, Prange A, Lelley JI, Hambitzer R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem [Internet]. 2017;216:45–51. Available from: http://dx.doi.org/10.1016/j.foodchem.2016.08.010
dc.relationMegazyme®. Mushroom and Yeast Beta-Glucan K-YBGL 12/16 [Internet]. 2016. Available from: www.megazyme.com
dc.relationBallesteros Vivas D. Estudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la Química Verde y la Alimentómica. 2020;302.
dc.relationSchymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.
dc.relationFukushima-Sakuno E. Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes. J Antibiot (Tokyo) [Internet]. 2020;73(10):687–96. Available from: http://dx.doi.org/10.1038/s41429-020-0354-x
dc.relationTang L, Shang J, Song C, Yang R, Shang X, Mao W, et al. Untargeted Metabolite Profiling of Antimicrobial Compounds in the Brown Film of Lentinula edodes Mycelium via LC-MS/MS Analysis. ACS Omega. 2020;5(13):7567–75.
dc.relationKwiecien NW, Bailey DJ, Rush MJP, Cole JS, Ulbrich A, Hebert AS, et al. High-Resolution Filtering for Improved Small Molecule Identification via GC/MS. Anal Chem. 2015;87(16):8328–35.
dc.relationKeller BO, Sui J, Young AB, Whittal RM. Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta. 2008;627(1):71–81.
dc.relationDowle AA, Wilson J, Thomas JR. Comparing the Diagnostic Classification Accuracy of iTRAQ, Peak-Area, Spectral-Counting, and emPAI Methods for Relative Quantification in Expression Proteomics. J Proteome Res. 2016;15(10):3550–62.
dc.relationCerletti C, Esposito S, Iacoviello L. Edible mushrooms and beta‐glucans: Impact on human health. Nutrients. 2021;13(7).
dc.relationAl-Obaidi JR, Jambari NN, Ahmad-Kamil EI. Mycopharmaceuticals and nutraceuticals: Promising agents to improve human well-being and life quality. J Fungi. 2021;7(7).
dc.relationRuiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. Cell Surf [Internet]. 2019;5(February):100022. Available from: https://doi.org/10.1016/j.tcsw.2019.100022
dc.relationRop O, Mlcek J, Jurikova T. Beta-glucans in higher fungi and their health effects. Nutr Rev. 2009;67(11):624–31.
dc.relationGrün CH. Structure and biosynthesis of fungal alpha-glucans . Vol. Thesis (Ph, Faculteit Scheikunde. 2003. 144 p.
dc.relationMa G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Wellness [Internet]. 2018;7(2):125–33. Available from: https://doi.org/10.1016/j.fshw.2018.05.002
dc.relationKaur R, Sharma M, Ji D, Xu M, Agyei D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers. 2019;8(1):3–29.
dc.relationAhmad A, Anjum FM, Zahoor T, Nawaz H, Dilshad SMR. Beta glucan: A valuable functional ingredient in foods. Crit Rev Food Sci Nutr. 2012;52(3):201–12.
dc.relationDin A, Chughtai MFJ, Khan MRK, Shahzad A, Khaliq A, Nasir MA. Nutritional and functional perspectives of barley β-glucan. Vol. 25, International Food Research Journal. 2018. p. 1773–84.
dc.relationIshibashi K, Miura NN, Adachi Y, Tamura H, Tanaka S, Ohno N. The solubilization and biological activities of Aspergillus β-(1,3)-d-glucan. FEMS Immunol Med Microbiol. 2004;42:155–66.
dc.relationGil-Ramírez A, Caz V, Smiderle FR, Martin-Hernandez R, Largo C, Tabernero M, et al. Water-Soluble Compounds from Lentinula edodes Influencing the HMG-CoA Reductase Activity and the Expression of Genes Involved in the Cholesterol Metabolism. J Agric Food Chem. 2016;64(9):1910–20.
dc.relationMahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A. Medicinal plants and bioactive natural compounds as inhibitors of HMG-CoA reductase: A literature review. BioFactors. 2020;46(6):906–26.
dc.relationGil-Ramírez A, Morales D, Soler-Rivas C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct. 2018;9(1):53–69.
dc.relationMattila P, Lampi A-M, Ronkainen R, Toivo J, Piironen V. Sterol and vitamin D contents in some wild and cultivated mushrooms. Food Chem. 2002;76:293–8.
dc.relationPhillips KM, Ruggio DM, Horst RL, Minor B, Simon RR, Feeney MJ, et al. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J Agric Food Chem. 2011;59(14):7841–53.
dc.relationSaini RK, RAuf A, Khalil AA, Ko E-Y, Keum Y-S, Anwar S, et al. Edible mushrooms show significant differences in sterols and fatty acid compositions. South African J Bot. 2021;141:344–56.
dc.relationCheung PCK. The nutritional and health benefits of mushrooms. Nutr Bull [Internet]. 2010;35:292–9.
dc.relationYahaya YA, Don MM. Evaluation of Trametes lactinea extracts on the inhibition of hyaluronidase, lipoxygenase and xanthine oxidase activities in Vitro. J Phys Sci. 2012;23(2):1–15.
dc.relationAl-Rubaye AF, Hameed IH, Kadhim MJ. A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. Int J Toxicol Pharmacol Res. 2017;9(01)
dc.relationPutri SP. Application of metabolomics for discrimination and sensory predictive modeling of food products. Futur Sci [Internet]. 2013;38:231–2.
dc.relationAdebo OA, Njobeh PB, Adebiyi JA, Gbashi S, Kayitesi E. Food Metabolomics: A New Frontier in Food Analysis and its Application to Understanding Fermented Foods. Funct Food - Improv Heal through Adequate Food. 2017
dc.relationBeale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, et al. Review of recent developments in GC–MS approaches to metabolomics-based research [Internet]. Vol. 14, Metabolomics. Springer US; 2018. 1–31 p. Available from: http://dx.doi.org/10.1007/s11306-018-1449-2
dc.relationAdebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, et al. Application of gas chromatography-mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol. 2021;56:1514–34.
dc.relationZeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J Pharm Biomed Anal. 2020;190.
dc.relationBang S, Shim SH. Beta resorcylic acid lactones (RALs) from fungi: chemistry, biology, and biosynthesis. Arch Pharm Res [Internet]. 2020;43(11):1093–113. Available from: https://doi.org/10.1007/s12272-020-01275-6
dc.relationQiu X, Cao L, Han R. Analysis of volatile components in different ophiocordyceps sinensis and insect host products. Molecules. 2020;25(7).
dc.relationNeiverth de Freitas E, Alnoch RC, Contato AG, Nogueira KM, Crevelin EJ, Beraldo de Moraes LA, et al. Enzymatic Pretreatment with Laccases from <i>Lentinus sajor-caju<i/> Induces Structural Modification in Lignin and Enhances the Digestibility of Tropical Forage Grass (Panicum maximum) grown under future climate conditions. Int J Mol. 2021;22:9445.
dc.relationAkpuaka A, Ekwenchi MM, Dashak DA, Dildar A. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A.Juss (Neem) leaves. New York Sci J. 2013;6(16):119–24.
dc.relationZahra G, Khadijeh B, Hossein D, Ali S. Essential oil composition of two Scutellaria species from Iran. J Tradit Chinese Med Sci [Internet]. 2019;6(3):244–53. Available from: https://doi.org/10.1016/j.jtcms.2019.07.003
dc.relationMahalakshmi R, Eganathan P, Parida AK. Essential Oil Composition from Seedlings of Jatropha curcas L. J Essent Oil Bear Plants. 2016;19(2):421–32.
dc.relationHashem M, Alamri S, Shathan A, Alrumman S, Moustafa M. Suppression of Phytopathogenic Fungi by Plant Extract of Some Weeds and the Possible Mode of Action. Br Microbiol Res J. 2016;15(3):1–13.
dc.relationMunialo CD, Naumovski N, Sergi D, Stewart D, Mellor DD. Critical evaluation of the extrapolation of data relative to antioxidant function from the laboratory and their implications on food production and human health: a review. Int J Food Sci Technol. 2019;54(5):1448–59.
dc.relationMetelitza DI, Karasyova EI. Initiation and inhibition of free-radical processes in biochemical peroxide systems: A review. Appl Biochem Microbiol. 2007;43(5):481–505.
dc.relationTeoh YP, Don MM. Effect of temperature on schizophyllum commune growth and 4H-pyran-4-one,2,3-dihydro-3, 5-dihydroxy-6-methyl- production using a bubble column bioreactor. Chiang Mai J Sci. 2016;43(3):461–8.
dc.relationTeoh YP, Don MM. Mycelia growth and production of total flavonoids and 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-by Schizophyllum commune using a bubble column bioreactor considering aeration effect and mass transfer study. Chem Biochem Eng Q. 2014;28(4):553–9.
dc.relationPant V. Antioxidant and GC-MS analysis of Thamnolia subuliformis ( Ehrh .) W . L . Culb . from western Himalaya. 2018;7(12):82–8.
dc.relationAC T, MB V, K B, A P. Phytochemical Analysis in the Leaves of Chamaecrista nigricans (Leguminosae). Pharm Anal Acta. 2018;09(03).
dc.relationMotshudi MC, Olaokun OO, Mkolo NM. Evaluation of GC × GC-TOF-MS untargeted metabolomics, cytotoxicity and antimicrobial activity of leaf extracts of Artemisia afra (Jacq.) purchased from three local vendors. J King Saud Univ - Sci [Internet]. 2021;33(4):101422. Available from: https://doi.org/10.1016/j.jksus.2021.101422
dc.relationMuhammad I, Mahwish S, Shagufta K, Saima R, Aneeza R, Sajid Hamid A. Chapter 6. Algae-Based Biologically Active Compounds. In: Algae based polymers, blends, and composites Chemistry, Biotechnology and Materials science. 2017. p. 156–271.
dc.relationSherpa KC, Ghangrekar MM, Banerjee R. A green and sustainable approach on statistical optimization of laccase mediated delignification of sugarcane tops for enhanced saccharification. J Environ Manage [Internet]. 2018;217:700–9. Available from: https://doi.org/10.1016/j.jenvman.2018.04.008
dc.relationNicot PC, Bardin M, Alabouvette C, Köhl J, Ruocco M. Registered Biocontrol Products and their use in Europe. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, EU FR6 project 031499, funded in part by the European Commission International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section (IOBC/WPRS); 2011 p. 1–11.
dc.relationApak R. Current Issues in Antioxidant Measurement. J Agric Food Chem. 2019;67(33):9187–202.
dc.relationNimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–8006.
dc.relationHenry GE, Momin RA, Nair MG, Dewitt DL. Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem. 2002;50(8):2231–4.
dc.relationLobna Elleuch. Cyclic lipopeptides and other bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN272. African J Microbiol Res. 2012;6(9):2202–10.
dc.relationRehman NU, Abed RMM, Hussain H, Khan HY, Khan A, Khan AL, et al. Anti-proliferative potential of cyclotetrapeptides from Bacillus velezensis RA5401 and their molecular docking on G-Protein-Coupled Receptors. Microb Pathog [Internet]. 2018;123:419–25. Available from: https://doi.org/10.1016/j.micpath.2018.07.043
dc.relationSuttiarporn P, Sookwong P, Mahatheeranont S. Fractionation and Identification of Antioxidant Compounds from Bran of Thai Black Rice cv. Riceberry. Int J Chem Eng Appl. 2016;7(2):109–14.
dc.relationIsmail K, Abdullah S, Chong K. Screening for potential antimcrobial compounds from Ganoderma boninense against selected food borne and skin disease pathogens. Int J Pharm Pharm Sci. 2014;6(SUPPL. 2):771–4.
dc.relationVanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind Crops Prod [Internet]. 2020;154(July):112748. Available from: https://doi.org/10.1016/j.indcrop.2020.112748
dc.relationKumari N, Menghani E. Evaluation of antibacterial activity and identification of bioactive metabolites by gcms technique from rhizospheric actinomycetes. Indian J Nat Prod Resour. 2020;11(4):287–94.
dc.relationSelvamani K. Isolation and characterization of chemical constituents from B. amyloliquefaciens and their nematicidal activity. J Entomol Zool Stud. 2020;8(3):2062.
dc.relationKumari N, Menghani E, Mithal R. GCMS analysis of compounds extracted from actinomycetes AIA6 isolates and study of its antimicrobial efficacy. Indian J Chem Technol. 2019;26(4):362–70.
dc.relationHamdi A, Gayar K, Essa A. Halotolerant rhizobacteria and their metabolites for enhancing the growth of two crop seedlings under salinity stress. Egypt J Exp Biol. 2021;17(1):107.
dc.relationNkhili E, Brat P. Reexamination of the ORAC assay: Effect of metal ions. Anal Bioanal Chem. 2011;400(5):1451–8.
dc.relationJacquot C, McGinley CM, Plata E, Holman TR, van der Donk W. Synthesis of 11-Thialinoleic Acid and 14-Thialinoleic Acid, Inhibitors of Soybean and Human Lipoxygenases. Org Biomol Chem. 2008;6(22):4242–4252
dc.relationFerreira S, Saraiva N, Rijo P, Fernandes AS. LoxL2 inhibitors and breast cancer progression. Antioxidants. 2021;10(2):1–16.
dc.relationSadeghian H, Jabbari A. 15-Lipoxygenase inhibitors: A patent review. Expert Opin Ther Pat. 2016;26(1):65–88.
dc.relationSeyedi SM, Jafari Z, Attaran N, Sadeghian H, Saberi MR, Riazi MM. Design, synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors. Bioorganic Med Chem [Internet]. 2009;17(4):1614–22. Available from: http://dx.doi.org/10.1016/j.bmc.2008.12.065
dc.relationSadeghian H, Attaran N, Jafari Z, Reza Saberi M, Pordel M, Mahdi Riazi M. Design and synthesis of 4-methoxyphenylacetic acid esters as 15-lipoxygenase inhibitors and SAR comparative studies of them. Biorgan Med Chem. 2009;17:2327–35.
dc.relationPoletto P, Álvarez-Rivera G, López GD, Borges OMA, Mendiola JA, Ibáñez E, et al. Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: An opportunity for their valorization. Lwt. 2021;146(November 2020).
dc.relationBallesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, et al. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Res Int [Internet]. 2020;130(July 2019):108938. Available from: https://doi.org/10.1016/j.foodres.2019.108938
dc.relationBallesteros-Vivas D, Álvarez-Rivera G, Morantes SJ, Sánchez-Camargo A del P, Ibáñez E, Parada-Alfonso F, et al. An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment. Food Res Int [Internet]. 2019;126(August):108616. Available from: https://doi.org/10.1016/j.foodres.2019.108616
dc.relationBarreto Peixoto JA, Álvarez-Rivera G, Alves RC, Costa ASG, Machado S, Cifuentes A, et al. Comprehensive phenolic and free amino acid analysis of rosemary infusions: Influence on the antioxidant potential. Antioxidants. 2021;10(3):1–20.
dc.relationTan HM, Leong KH, Song J, Mohd Sufian NSF, Mohd Hazli UHA, Chew LY, et al. Antioxidant and LC-QToF-MS/MS analysis of polyphenols in polar and non-polar extracts from Strobilanthes crispus and Clinacanthus nutans. Int Food Res J. 2020;27(5):903–14
dc.relationAgati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020;9(11):1–17.
dc.relationBrunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int J Mol Sci. 2013;14(2):3540–55.
dc.relationMohanta TK. Fungi contain genes associated with flavonoid biosynthesis pathway. J Funct Foods [Internet]. 2020;68(December 2019):103910. Available from: https://doi.org/10.1016/j.jff.2020.103910
dc.relationGil-Ramírez A, Pavo-Caballero C, Baeza E, Baenas N, Garcia-Viguera C, Marín FR, et al. Mushrooms do not contain flavonoids. J Funct Foods. 2016;25:1–13.
dc.relationArif S, Bharwana S, Rizwan M. Mannitol alleviates chromium toxicity in wheat plants in relation to growth , yield , stimulation of anti- oxidativ ... Related papers.
dc.relationSeckin B, Sekmen AH, Türkan I. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul. 2009;28(1):12–20.
dc.relationAndré P, Villain F. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: a literature review. Int J Cosmet Sci. 2017;39(4):355–60.
dc.relationLiu JH, Chen MM, Huang JW, Wann H, Ho LK, Pan WHT, et al. Therapeutic effects and mechanisms of action of mannitol during H <inf>2</inf>O<inf>2</inf>-induced oxidative stress in human retinal pigment epithelium cells. J Ocul Pharmacol Ther. 2010;26(3):249–57.
dc.relationSagar S, Goudar G, Sreedhar M, Panghal A, Sharma P. Characterization of nutritional content and in vitro antioxidant properties of Plantago ovata seeds. Int J Food Nutr Sci. 2020;9(2):27.
dc.relationMironova GD, Khrenov MO, Talanov EY, Glushkova O V., Parfenyuk SB, Novoselova T V., et al. The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Arch Biochem Biophys [Internet]. 2018;654(May):70–6. Available from: https://doi.org/10.1016/j.abb.2018.07.006
dc.relationArbour CA, Imperiali B. Uridine natural products: Challenging targets and inspiration for novel small molecule inhibitors. Bioorganic Med Chem [Internet]. 2020;28(18):115661. Available from: https://doi.org/10.1016/j.bmc.2020.115661
dc.relationXu W, Chooi Y-H, Choi JW, Li S, Vederas JC, Da Silva NA, et al. LovG: The Thioesterase Required for Dihydromonacolin L Release and Lovastatin Nonaketide Synthase Turnover in Lovastatin Biosynthesis. Angew Chemie. 2013;125(25):6600–3.
dc.relationNakamura T, Kunishima M, Masuda M. Dihydromonacolin L and monacolin X, new metabolites those inhibit cholesterol biosynthesis. J Antibiot (Tokyo). 1985;38(3):321–7.
dc.relationKoch L, Lodin A, Herold I, Ilan M, Carmeli S, Yarden O. Sensitivity of Neurospora crassa to a marine-derived Aspergillus tubingensis anhydride exhibiting antifungal activity that is mediated by the MAS1 protein. Mar Drugs. 2014;12(9):4713–31.
dc.relationFischer G. Recent Progress in 1,2-Dithiole-3-thione Chemistry**Respectfully dedicated to Professor Carl Th. Pedersen - the Master of1,2-dithiole-3-thione chemistry [Internet]. Vol. 109, Advances in Heterocyclic Chemistry. Elsevier; 2013. 1–90 p. Available from: http://dx.doi.org/10.1016/B978-0-12-407777-5.00001-4
dc.relationChen CC, Ho CT. Identification of Sulfurous Compounds of Shiitake Mushroom (Lentinus edodes Sing.). J Agric Food Chem. 1986;34(5):830–3.
dc.relationLu M, Cao Y, Xiao J, Song M, Ho CT. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review. Vol. 9, Food and Function. 2018. 4569–4581 p.
dc.relationKeereetaweep J, Kilaru A, Feussner I, Venables BJ, Chapman KD. Lauroylethanolamide is a potent competitive inhibitor of lipoxygenase activity. FEBS Lett [Internet]. 2010;584(14):3215–22. Available from: http://dx.doi.org/10.1016/j.febslet.2010.06.008
dc.relationLiaras K, Fesatidou M, Geronikaki A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules. 2018;23(3).
dc.relationAlkadi H. A Review on Free Radicals and Antioxidants. Infect Disord - Drug Targets. 2018;20(1):16–26.
dc.relationWeidinger A, Kozlov A V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472–84.
dc.relationBarber DA, Harris SR. Oxygen free radicals and antioxidants: A review. Am Pharm. 1994;34(9):26–35.
dc.relationHikino H, Aota K, Takemoto T. Structure and absolute configuration of Kobusone and Isokobusone. Chem Pharm Bull. 1969;17(7):1390–4.
dc.relationAnbari K, Hasanvand A, Andevari AN, Moghadasi M, Abbaszadeh S. Concise overview: A review on natural antioxidants and important herbal plants on gastrointestinal system. Res J Pharm Technol. 2019;12(2):841–7.
dc.relationIshizaka N, Tomiyama K, Katsui N, Murai A, Masamune T. Biological activities of rishitin, an antifungal compound isolated from diseased potato tubers, and its derivatives. Plant Cell Physiol. 1969;10(1):183–92.
dc.relationSzeląg M, Urbaniak A, Bluyssen HAR. A theoretical antioxidant pharmacophore for natural hydroxycinnamic acids. Open Chem. 2015;13(1):17–31.
dc.relationLarsson O. HMG-CoA reductase inhibitors : role in normal and malignant cells. 1996;22:197–212.
dc.relationLennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet. 1997;32(5):403–25.
dc.relationEndo A, Hasumi K. HMG-CoA Reductase Inhibitors. Nat Prod Rep. 1993;10(6):541–50.
dc.relationGarcía-Pelayo MC, García-Peregrín E, Martínez-Cayuela M. Differential translational effects of myristic acid and eicosapentaenoic acid on 3-hydroxy-3-methylglutaryl-CoA reductase from Reuber H35 hepatoma cells. Exp Biol Med. 2004;229(8):781–6.
dc.relationHidalgo FJ, Zamora R. Food Processing Antioxidants [Internet]. 1st ed. Vol. 81, Advances in Food and Nutrition Research. Elsevier Inc.; 2017. 31–64 p. Available from: http://dx.doi.org/10.1016/bs.afnr.2016.10.002
dc.relationSrivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, et al. Applications of fungal cellulases in biofuel production: Advances and limitations. Renew Sustain Energy Rev. 2018;82(September):2379–86.
dc.relationKumar P, Satyanarayana T. Microbial glucoamylases: Characteristics and applications. Crit Rev Biotechnol. 2009;29(3):225–55.
dc.relationWong JH, Ng TB, Cheung RCF, Ye XJ, Wang HX, Lam SK, et al. Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol. 2010;87(4):1221–35.
dc.relationXu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv. 2011;29(6):667–74.
dc.relationFaurobert M, Pelpoir E, Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol Biol. 2007;355(2):9–14.
dc.relationFragner D, Zomorrodi M, Kües U, Majcherczyk A. Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis. 2009;30(14):2431–41.
dc.relationHernández Macedo ML, Ferraz A, Rodríguez J, Ottoboni LMM, De Mello MP, Hernández-macedo ML, et al. Iron regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: Differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two‐dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis. 2002;23(4):655–61.
dc.relationTang LH, Tan Q, Bao DP, Zhang XH, Jian HH, Li Y, et al. Comparative Proteomic Analysis of Light-Induced Mycelial Brown Film Formation in Lentinula edodes. Biomed Res Int. 2016;2016.
dc.relationMartínez AP, Martínez ST, Ardila HD. Condiciones para el análisis electrofóretico de proteínas apoplásticas de tallos y raíces de clavel (Dianthus caryophyllus L.) para estudios proteómicos. Rev Colomb Quim. 2017;46(2):5–16.
dc.relationArdila HD, González Fernández R, Higuera BL, Redondo I, MArtínez ST. Protein Extraction and Gel-Based Separation Methods to Analyze Responses to Pathogens in Carnation (Dianthus caryophyllus L). In: Plant Proteomics. 2007. p. 573–91.
dc.relationHu G, Koh J, Yoo M-J, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). Planta. 2014;240:1237–51.
dc.relationBio-Rad Laboratories Inc. QuickStart Bradford Protein Assay - Instruction Manual. 2000.
dc.relationValledor L, Weckwerth W. An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workfl ow for Plant and Microbial Proteomics. In: Plant proteomics: Methods and protocols Class III peroxidases. Totowa: Humana Press; 2014. p. 347–57.
dc.relationPark SG, Yoo S il, Ryu DS, Lee H, Ahn YJ, Ryu H, et al. Long-read transcriptome data for improved gene prediction in Lentinula edodes. Data Br. 2017;15:454–8.
dc.relationChen L, Gong Y, Cai Y, Liu W, Zhou Y, Xiao Y, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One. 2016;11(8):1–20.
dc.relationShim D, Park SG, Kim K, Bae W, Lee GW, Ha BS, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24–5.
dc.relationSakamoto Y, Nakade K, Sato S, Yoshida K, Miyazaki K, Natsume S, et al. Lentinula edodes genome survey and postharvest transcriptome analysis. Appl Environ Microbiol. 2017 May 1;83(10).
dc.relationGonzález-Fernández R, Prats E, Jorrín-Novo J V. Proteomics of plant pathogenic fungi. J Biomed Biotechnol. 2010;2010.
dc.relationSebastiana M, Figueiredo A, Monteiro F, Martins J, Franco C, Coelho AV, et al. A possible approach for gel-based proteomic studies in recalcitrant woody plants. Springerplus. 2013;2(1):210.
dc.relationHandbook-GE. 2-D Electrophoresis. Principles and methods. Suécia: Editora Elanders Tofters.; 2005.
dc.relationRabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73(11):2064–77.
dc.relationStoll DA, Link S, Kulling S, Geisen R, Schmidt-Heydt M. Comparative proteome analysis of Penicillium verrucosum grown under light of short wavelength shows an induction of stress-related proteins associated with modified mycotoxin biosynthesis. Int J Food Microbiol. 2014;175:20–9.
dc.relationSircar G, Chakrabarti HS, Saha B, Gupta-Bhattacharya S. Identification of aero-allergens from Rhizopus oryzae: An immunoproteomic approach. J Proteomics. 2012;77:455–68.
dc.relationSanti L, Silva WOB, Pinto AFM, Schrank A, Vainstein MH. Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biol. 2010;114(4):312–9.
dc.relationWu X, Gong F, Wang W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics. 2014;14:645–58.
dc.relationGonzález Fernández R, Jorrín Novo J V. Proteomic Protocols for the Study of Filamentous Fungi. In: Laboratory protocols in fungal biology: current methods in fungal biology. Springer Science & Business Media.; 2012.
dc.relationLiang Y, Chen Y, Liu H, Luan R, Che T, Jiang S, et al. The tumor rejection effect of protein components from medicinal fungus. Biomed Prev Nutr. 2011;1(4):245–54.
dc.relationWang SX, Zhang GQ, Shuang Z, Xu F, Zhou Y, Geng XL, et al. Purification and Characterization of a Novel Lectin with Antiphytovirus Activities from the wild Mushroom Paxillus involutus. Protein Lett. 2013;20:767–74.
dc.relationTsai P-F, Ma C-Y, Wu JS-B. A novel glycoprotein from mushroom Hypsizygus marmoreus (Peck) Bigelow with growth inhibitory effect against human leukaemic U937 cells. Food Chem. 2013;141(2):1252–8.
dc.relationCui F, Zan X, Li Y, Sun W, Yang Y, Ping L. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutr Cancer. 2016;68(2):267–79.
dc.relationCui F, Zan X, Li Y, Yang Y, Sun W, Zhou Q. Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa. Int J Biol Macromol. 2013;62:684–90.
dc.relationGygi SP, Aebersold R. Mass spectrometry and proteomics. Curr Opin Chem Biol. 2000;4(5):489–94.
dc.relationEsser K. The Mycota II: Genetics and Biotechnology. Second edi. Kück U, editor. Berlin: Springer; 2004. 439 p.
dc.relationTan YH, Moore D. Glucose catabolic pathways in Lentinula edodes determined with radiorespirometry and enzymic analysis. Mycol Res. 1995;99(7):859–66.
dc.relationRonne H. Glucose repression in fungi. Trends Genet. 1995;11(1):12–7.
dc.relationOkamoto K, Imashiro K, Akizawa Y, Onimura A, Yoneda M, Nitta Y, et al. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett. 2010;32(7):909–13.
dc.relationMaehara T, Ichinose H, Furukawa T, Ogasawara W, Takabatake K, Kaneko S. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes. Fungal Biol [Internet]. 2013;117(3):220–6. Available from: http://dx.doi.org/10.1016/j.funbio.2013.02.002
dc.relationHiyama R, Gisusi S, Harada A. Evaluation of waste mushroom medium from cultivation of shiitake mushroom (Lentinula edodes) as feedstock of enzymic saccharification. J Wood Sci. 2011;57(5):429–35.
dc.relationDeveau A, Kohler A, Frey-Klett P, Martin F. The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol. 2008;180(2):379–90.
dc.relationVarrot A, Basheer SM, Imberty A. Fungal lectins: Structure, function and potential applications. Curr Opin Struct Biol. 2013;23(5):678–85.
dc.relationDeeba F, Pruthi V, Negi YS. Aromatic hydrocarbon biodegradation activates neutral lipid biosynthesis in oleaginous yeast. Bioresour Technol. 2018;255(January):273–80.
dc.relationRadivojevic J, Minovska G, Senerovic L, O’Connor K, Jovanovic P, Savic V, et al. Synthesis of γ-nitroaldehydes containing quaternary carbon in α-position using 4-oxaloacrotonate tautomerase whole-cell bioacatalyst. RSC Adv. 2014;4(105):60502–10.
dc.relationAwoyinka OA, Aina DA, Oloke JK, Majolagbe ON, Akoni OI. Comparative Study of the Haemagglutination Capabilities of Lectin Extracted from Submerged Cultures of Wild and Mutant Strains of Schizophyllum commune. Open Access Libr J. 2014;1(07):1.
dc.relationSingh RS, Bhari R, Kaur HP. Mushroom lectins: Current status and future perspectives. Crit Rev Biotechnol. 2010;30(2):99–126.
dc.relationZhang G, Sun J, Wang H, Ng TB. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine. 2010;17(10):775–81.
dc.relationLevy I, Shoseyov O. Cellulose-binding domains: Biotechnological applications. Biotechnol Adv. 2002;20(3–4):191–213.
dc.relationHarris AD, Ramalingam C. Xylanases and its Application in Food Industry: A Review. J Exp Sci. 2010;1(7):01–11.
dc.relationBlättel V, Larisika M, Pfeiffer P, Nowak C, Eich A, Eckelt J, et al. β-1,3-Glucanase from delftia tsuruhatensis strain MV01 and its potential application in vinification. Appl Environ Microbiol. 2011;77(3):983–90.
dc.relationXu Z, Sha Y, Liu C, Li S, Liang J, Zhou J, et al. l-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for l-ribose production. Appl Microbiol Biotechnol. 2016;100(21):9003–11.
dc.relationPeterbauer CK, Volc J. Pyranose dehydrogenases: Biochemical features and perspectives of technological applications. Appl Microbiol Biotechnol. 2010;85(4):837–48.
dc.relationWen L, Huang HM, Juang RH, Lin CT. Biochemical characterization of 1-Cys peroxiredoxin from Antrodia camphorata. Appl Microbiol Biotechnol. 2007;73(6):1314–22.
dc.relationRuth O, Hamid N, Ishamel C. Extraction of phenolic compounds: A review. Curr Res Food Sci [Internet]. 2021;4(December 2020):200–14. Available from: https://doi.org/10.1016/j.crfs.2021.03.011
dc.relationKurtzman RHJ. Mushrooms: sources for modern western medicine. Micol Apl Int. 2005;17(2):21–33.
dc.relationTharanathan RN, Kittur FS. Chitin - The Undisputed Biomolecule of Great Potential. Crit Rev Food Sci Nutr. 2003;43(1):61–87.
dc.relationReinheimer MA. Diseño Conceptual de Procesos en Ingeniería de Alimentos. Incroporación de la Microestructura en el Análisis. Universidad Nacional del Litoral; 2011.
dc.relationCappellesso G, Thomé KM. Technological innovation in food supply chains : systematic literature review. 2019;121(10):2413–28.
dc.relationChemat F, Vian MA, Fabiano-Tixier A-S, Nutrizio M, Jambrak AR, Munekata PES, et al. A review of sustainable and intensidfied techniques for extraction of food and natural productos. Green Chem. 2020;22(2325–2353).
dc.relationOzyurt B, Mogili P, Mierau B, Sunol SG, Sunol AK. DESIGN OF PRODUCTS AND PROCESSES. 1996;20(96):73–8.
dc.relationSneeden EY, Harris HH, Pickering IJ, Prince RC, Johnson S, Li X, et al. The Sulfur Chemistry of Shiitake Mushroom. J Am Chem Soc. 2004;126(2):458–9.
dc.relationZhang L, Dong X, Feng X, Ibrahim SA, Huang W, Liu Y. Effects of drying process on the volatile and non-volatile flavor compounds of lentinula edodes. Foods. 2021;10(11):1–13.
dc.relationUribe CVC, Palacio LMA. Enfermedades crónicas no transmisibles. Salud Uninorte. 2010;26(2).
dc.relationMihafu FD, Issa JY, Kamiyango MW. Implication of sensory evaluation and quality assessment in food product development: A review. Curr Res Nutr Food Sci. 2020;8(3):690–702.
dc.relationClydesdale FM. Critical Reviews in Food Science and Nutrition Color as a factor in food choice Color as a Factor in Food Choice. Crit Rev Food Sci Nutr. 1993;33(1):83–101.
dc.relationHernandez E. Evaluación Sensorial. 1°. Bogotá D.C.: Universidad Nacional Abierta y a Distancia; 2005. 128 p.
dc.relationEspinosa Manfugás JE. Evaluación Sensorial de los Alimentos. La Habana: Ministerio de Educación Superior; 2007. 129 p.
dc.relationWatts BM, Ylimaki GL, Jeffery LE. Métodos sensoriales básicos para la evaluación de alimentos. 3°. Otawwa: Centro Internacional de Investigaciones para el Desarrollo; 1992. 170 p.
dc.relationWei J, Chen L, Qiu X, Hu W, Sun H, Chen X, et al. Optimizing refining temperatures to reduce the loss of essential fatty acids and bioactive compounds in tea seed oil. Food Bioprod Process [Internet]. 2015;94:136–46. Available from: http://dx.doi.org/10.1016/j.fbp.2015.02.003
dc.relationLee K, Lee H, Choi Y, Kim Y, Jeong HS, Lee J. Effect of different cooking methods on the true retention of vitamins, minerals, and bioactive compounds in shiitake mushrooms (Lentinula edodes). Food Sci Technol Res. 2019;25(1):115–22.
dc.relationNugraha R, Andreu-perez J. Neuromarketing empirical approaches and food choice : A systematic review.
dc.relationKönig LM, Renner B. Colourful = healthy? Exploring meal colour variety and its relation to food consumption. Food Qual Prefer. 2017;64:66–71.
dc.relationTuorila H. From sensory evaluation to sensory and consumer research of food: An autobiographical perspective. Food Qual Prefer [Internet]. 2015;40(PB):255–62. Available from: http://dx.doi.org/10.1016/j.foodqual.2014.05.006
dc.relationBorges G, Degeneve A, Mullen W, Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem. 2010;58(7):3901–9.
dc.relationBuřičová L, Andjelkovic M, Čermáková A, Réblová Z, Jurček O, Kolehmainen E, et al. Antioxidant capacity and antioxidants of strawberry, blackberry, and raspberry leaves. Czech J Food Sci. 2011;29(2):181–9.
dc.relationEn negocio del Champiñon, Setas Colombianas domina. El Tiempo [Internet]. 2005 Nov 24; Available from: https://www.eltiempo.com/archivo/documento/MAM-1839780
dc.relationJean-Louis Bresson, Flynn A, Heinonen M, Hulshof K, Korhonen H, Lagiou P, et al. Scientific Opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations ( ID 754 , 755 , 757 , 801 , 1465 , 2934 ) and maintenance or achievement of a normal body weight ( ID 820 , 823 ). EFSA J. 2009;7(9):1254.
dc.relationGibbs PA, Seviour RJ, Schmid F. Growth of filamentous fungi in submerged culture: Problems and possible solutions. Crit Rev Biotechnol. 2000;20(1):17–48.
dc.relationA. Philippoussis1 PD and GZ, Zervakis2 G. Monitoring of Mycelial Growth and Fructification of Lentinula Edodes on Several Agricultural Residues. Mushroom Biol Mushroom Prod. 2002;(February):279–87.
dc.relationLefeber T, Janssens M, Camu N, De Vuyst L. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl Environ Microbiol. 2010;76(23):7708–16.
dc.relationKim SW, Hwang HJ, Park JP, Cho YJ, Song CH, Yun JW. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Lett Appl Microbiol. 2002;34(1):56–61.
dc.relationMeng F, Liu X, Jia L, Song Z, Deng P, Fan K. Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydr Polym. 2010;79(3):700–4.
dc.relationElisashvili V. Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). Int J Med Mushrooms. 2012;14(3):211–39.
dc.relationDu W, Hua Z. Technology of submerged culture of Grifola frondosa and its influence factors. Nongye Gongcheng Xuebao/Transactions Chinese Soc Agric Eng. 2004;20(2):231.
dc.relationPapagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22(3):189–259.
dc.relationPark JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol [Internet]. 2001;33(1):76–81.
dc.relationTang Y-J, Zhu L-W, Li H-M, Li D-S. Submerged culture of mushrooms in bioreactors - Challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol [Internet]. 2007;45(3):221–9.
dc.relationVega-Oliveros C, Chegwin-Angarita C, Ardila-Barrantes HD. Condiciones para el análisis de proteínas del micelio de Lentinula edodes obtenido por fermentación en estado líquido. Rev Colomb Q. 2019;48(3):3–12.
dc.relationZhong JJ, Tang YJ. Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng Biotechnol. 2004;87(May 2015):25–59.
dc.relationPostemsky PD, Bidegain MA, González-Matute R, Figlas ND, Cubitto MA. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour Technol [Internet]. 2017;231:85–93. Available from: http://dx.doi.org/10.1016/j.biortech.2017.01.064
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de la composición del hongo Lentinula edodes usando herramientas ómicas y su potencial en la producción de un alimento funcional
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución