dc.contributorCortes Guerrero, Camilo Andrés
dc.contributorEMC - Electromagnetic Compatibility
dc.creatorMartínez Martínez, Wilmar Hernan
dc.date.accessioned2020-08-23T04:57:24Z
dc.date.available2020-08-23T04:57:24Z
dc.date.created2020-08-23T04:57:24Z
dc.date.issued2020-07-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78187
dc.description.abstractApplications in electric mobility, renewable energy systems, and power systems are experiencing a movement towards bigger voltage differences between power sources and loads. This is due to the advance of battery technology, the introduction of DC distribution systems, and the rapid growth of electric powered vehicles. This voltage difference increases the need for better high voltage-gain converters. Moreover, these converters should offer outstanding efficiencies and compact sizes for their implementation in these applications. Nevertheless, there is an imminent opposition between efficiency, power density and high voltage-gain in power converters, and conventional power converters lack in some of these objectives. Therefore, this work was motivated by the need to research in novel methodologies where volume, efficiency and voltage-gain are optimized in order to obtain a suitable balance that offers high performance. In this context, the main objective of this thesis is the development of a multi-objective optimization design methodology of inductive components for high voltage-gain converters. This objective is carried out through: 1) the evaluation of several high step-up power converters and the proposal of a novel topology. 2) the power loss modeling of the magnetic components of one high voltage-gain topology with emphasis in iron and copper losses. 3) the volume modeling of the converter with special attention to the magnetic components. And 4) the evaluation of two multi-objective optimization approaches to solve problems with opposite objectives as the case of efficiency, power density and voltage-gain in power converters. Consequently, this thesis proposes a new high voltage-gain power converter with Integrated Winding Coupled Inductor (IWCI) with the potential to be applied in systems where high power density and high efficiency are required. Moreover, a benchmark of this proposed converter with outstanding topologies is conducted, being the IWCI converter the one with more potential. After that, this document proposes a detailed magnetic and electric modeling complemented with a power loss and volumetric modeling of not only the magnetic component but also the other components in the converter: semiconductors and capacitors. Finally, combinatorial algorithms are used and improved to optimize efficiency (single-objective) and efficiency-power density (multi-objective) while voltage-gain is kept high. As a result, it was found that improved combinatorial algorithms can deliver results of tens of millions of evaluated designs within minutes.
dc.description.abstractLas aplicaciones en movilidad eléctrica, sistemas de energía renovable y sistemas de energía están experimentando una transición hacia mayores diferencias de voltaje entre las fuentes de energía y las cargas. Esto se debe al avance de la tecnología de baterías, la introducción de sistemas de distribución de DC y el rápido crecimiento del uso de vehículos eléctricos. Esta diferencia de voltaje aumenta la necesidad de mejores convertidores de alta ganancia de voltaje. Además, estos convertidores deben ofrecer eficiencias sobresalientes y tamaños compactos para su implementación en estas aplicaciones. Sin embargo, existe una oposición inminente entre la eficiencia, la densidad de potencia y la alta ganancia de voltaje en los convertidores de potencia. Además, los convertidores de potencia convencionales carecen de algunos de estos objetivos. Por lo tanto, este trabajo fue motivado por la necesidad de investigar en metodologías novedosas donde se optimicen el volumen, la eficiencia y la ganancia de voltaje para obtener un equilibrio adecuado que ofrezca un alto rendimiento. En este contexto, el objetivo principal de esta tesis es el desarrollo de una metodología de diseño de optimización multiobjetivo de componentes inductivos para convertidores de alta ganancia de tensión. Este objetivo se lleva a cabo mediante: 1) la evaluación de varios convertidores elevadores de potencia y la propuesta de una topología novedosa. 2) el modelado de pérdidas de potencia de los componentes magnéticos de una topología de alta ganancia de voltaje con énfasis en las pérdidas de hierro y cobre. 3) el modelado de volumen del convertidor con especial atención a los componentes magnéticos. Y 4) la evaluación de dos enfoques de optimización multiobjetivo para resolver problemas con objetivos opuestos como el caso de eficiencia, densidad de potencia y ganancia de voltaje en convertidores de potencia. En consecuencia, esta tesis propone un nuevo convertidor de potencia de alta ganancia de voltaje con Inductor Acoplado de Devanado Integrado (IWCI del inglés) con potencial para ser aplicado en sistemas donde se requiera alta densidad de potencia y alta eficiencia. Además, se realiza un benchmark de este convertidor propuesto con topologías destacadas, siendo el convertidor IWCI el de mayor potencial. Posteriormente, este documento propone un modelado magnético y eléctrico detallado complementado con un modelado volumétrico y de pérdidas de potencia no solo del componente magnético sino también de los demás componentes del convertidor: semiconductores y condensadores. Finalmente, algoritmos combinatorios se utilizan y se mejoran para optimizar la eficiencia (objetivo único) y la densidad de potencia (multiobjetivo) mientras que la ganancia de voltaje se mantiene alta. Como resultado, se descubrió que los algoritmos combinatorios mejorados pueden ofrecer resultados de decenas de millones de diseños evaluados en minutos.
dc.languageeng
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationC. Butler, “Climate Change, Health and Existential Risks to Civilization: A Comprehensive Review (1989–2013),” Int. J. Environ. Res. Public Health, vol. 15, no. 10, p. 2266, Oct. 2018.
dc.relationIARC – International Agency for Research on Cancer, “IARC: DIESEL ENGINE EXHAUST CARCINOGENIC,” 2012.
dc.relation“Surface air temperature for September 2019,” The Copernicus Programme, 2019. [Online]. Available: https://climate.copernicus.eu/surface-air-temperature-september-2019. [Accessed: 12-Oct-2019].
dc.relation“Surface air temperature maps,” The Copernicus Programme, 2019. [Online]. Available: https://climate.copernicus.eu/surface-air-temperature-maps. [Accessed: 10-Oct-2019].
dc.relation“GISS Surface Temperature Analysis (GISTEMP v4),” NASA - National Aeronautics and Space Administration, 2019. [Online]. Available: https://data.giss.nasa.gov/gistemp/. [Accessed: 10-Oct-2019].
dc.relationL. M. Elliott and W. H. Schaedla, Handbook of transnational environmental crime.
dc.relation“Sources of Greenhouse Gas Emissions,” United States Environmental Protection Agency, 2019. [Online]. Available: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. [Accessed: 10-Oct-2019].
dc.relationEuropean Environment Agency, “Annual European Union greenhouse gas inventory 1990–2017 and inventory report 2019,” 2019.
dc.relationInternational_Energy_Agency, World Energy Outlook 2016. OECD, 2016.
dc.relationJ. W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, “Performance trends and limitations of power electronic systems,” 2010 6th Int. Conf. Integr. Power Electron. Syst., pp. 1–20, 2010.
dc.relationA. Emadi, S. S. Williamson, A. Khaligh, A. Emadi, S. Khaligh, and A. Williamson, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. power Electron., vol. 21, no. 3, pp. 567–577, 2006.
dc.relationG. Bin, L. Jih-Sheng, N. Kees, and Z. Cong, “Hybrid-Switching Full-Bridge DC–DC Converter With Minimal Voltage Stress of Bridge Rectifier, Reduced Circulating Losses, and Filter Requirement for Electric Vehicle Battery Chargers,” IEEE Trans. power Electron., vol. 28, no. 3, pp. 1132–1144, 2013.
dc.relationA. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez-Botas, and V. Esfahanian, “A review of Battery Electric Vehicle technology and readiness levels,” Renew. Sustain. Energy Rev., vol. 78, pp. 414–430, Oct. 2017.
dc.relationC. Suarez and W. Martinez, “Fast and Ultra-Fast Charging for Battery Electric Vehicles – A Review,” in IEEE Energy Conversion Congress and Exposition - ECCE 2019, 2019, pp. 1–7.
dc.relationS. Hosseinpour, H. Chen, and H. Tang, “Barriers to the wide adoption of electric vehicles: A literature review based discussion,” in 2015 Portland International Conference on Management of Engineering and Technology ({PICMET}), 2015.
dc.relationJ. Winterhagen, “No Title,” 2019. [Online]. Available: https://newsroom.porsche.com/en/products/porsch%0Ae-taycan-mission-e-drive-unit-battery-charging-electro-mobilitydossier-%0Asportscar-production-christophorus-387-15827.html. [Accessed: 01-Dec-2019].
dc.relationC.-M. M. Lai, “Development of a Novel Bidirectional {DC}/{DC} Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and {DC}-Microgrids,” Energies, vol. 9, no. 6, p. 410, May 2016.
dc.relationS. Bashash, S. J. J. Moura, and H. K. K. Fathy, “Charge trajectory optimization of plug-in hybrid electric vehicles for energy cost reduction and battery health enhancement,” Am. Control Conf. (ACC), 2010, pp. 5824–5831, 2010.
dc.relationF. Jin and K. G. Shin, “Pack Sizing and Reconfiguration for Management of Large-Scale Batteries,” 2012 IEEE/ACM Third Int. Conf. Cyber-Physical Syst., pp. 138–147, 2012.
dc.relationP. Guo, P. Liu, M. Engineering, P. Guo, and P. Liu, “Research on Development of Electric Vehicles in China,” in 2010 International Conference on Future Information Technology and Management Engineering, 2010, pp. 94–96.
dc.relationT. T. A. T. T. A. T. Burress et al., Evaluation of the 2010 Toyota Prius hybrid synergy drive system, no. March. Office of Scientific and Technical Information (OSTI), 2011.
dc.relationW. Martinez, M. Yamamoto, J. Imaoka, F. Velandia, and C. A. Cortes, “Efficiency optimization of a two-phase interleaved boost DC-DC converter for Electric Vehicle applications,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, 2016, pp. 2474–2480.
dc.relationD. De et al., “Modelling and control of a multi-stage interleaved {DC}{\textendash}{DC} converter with coupled inductors for super-capacitor energy storage system,” {IET} Power Electron., vol. 6, no. 7, pp. 1360–1375, Aug. 2013.
dc.relationW. Li, J. Liu, J. Wu, and X. He, “Design and Analysis of Isolated ZVT Boost Converters for High-Efficiency and High-Step-Up Applications,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2363–2374, Nov. 2007.
dc.relationW. Li and X. He, “ZVT interleaved boost converters for high-efficiency, high step-up DC–DC conversion,” IET Electr. Power Appl., vol. 1, no. 2, p. 284, 2007.
dc.relationK.-B. Park, G.-W. Moon, and M.-J. Youn, “Nonisolated High Step-Up Stacked Converter Based on Boost-Integrated Isolated Converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 577–587, Feb. 2011.
dc.relationL. E. Munoz, J. C. Blanco, J. P. Barreto, N. A. Rincon, and S. D. Roa, “Conceptual design of a hybrid electric off-road vehicle,” in 2012 {IEEE} International Electric Vehicle Conference, 2012, pp. 1–8.
dc.relationP. C. K. Luk and L. C. Rosario, “Power and energy management of a dual-energy source electric vehicle - Policy implementation issues,” Conf. Proc. - IPEMC 2006 CES/IEEE 5th Int. Power Electron. Motion Control Conf., vol. 1, pp. 464–468, 2007.
dc.relationX. Roboam, B. Sareni, and A. Andrade, “More Electricity in the Air: Toward Optimized Electrical Networks Embedded in More-Electrical Aircraft,” {IEEE} Ind. Electron. Mag., vol. 6, no. 4, pp. 6–17, Dec. 2012.
dc.relationB. Sarlioglu and C. T. Morris, “More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft,” {IEEE} Trans. Transp. Electrif., vol. 1, no. 1, pp. 54–64, Jun. 2015.
dc.relationJ. Brombach, A. Lucken, B. Nya, M. Johannsen, and D. Schulz, “Comparison of different electrical {HVDC}-architectures for aircraft application,” in 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, 2012.
dc.relationG. Buticchi, P. Wheeler, S. Bozhko, M. Galea, and C. Gerada, “Multiport {DC}/{DC} Converters for the More Electric Aircraft,” in {CSAA}/{IET} International Conference on Aircraft Utility Systems ({AUS} 2018), 2018.
dc.relationV. Valdivia, A. Lazaro, A. Barrado, P. Zumel, C. Fernandez, and M. Sanz, “Black-Box Modeling of Three-Phase Voltage Source Inverters for System-Level Analysis,” {IEEE} Trans. Ind. Electron., vol. 59, no. 9, pp. 3648–3662, Sep. 2012.
dc.relationB. Karanayil, M. Ciobotaru, and V. G. Agelidis, “Power Flow Management of Isolated Multiport Converter for More Electric Aircraft,” {IEEE} Trans. Power Electron., vol. 32, no. 7, pp. 5850–5861, Jul. 2017.
dc.relationM. Yilmaz and P. T. Krein, “Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, vol. 28, no. 5, pp. 2151–2169, 2012.
dc.relationK. Umetani, S. Arimura, T. Hirano, J. Imaoka, and M. Yamamoto, “Evaluation of the Lagrangian method for deriving equivalent circuits of integrated magnetic components: A case study using the integrated winding coupled inductor,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 495–502.
dc.relationJ. Imaoka and M. Yamamoto, “Characteristics analysis and performance evaluation for interleaved boost converter with integrated winding coupled inductor,” … (ECCE), 2013 IEEE, 2013.
dc.relationM. Pavlovsky, G. Guidi, and A. Kawamura, “Assessment of Coupled and Independent Phase Designs of Interleaved Multiphase Buck/Boost {DC}{\textendash}{DC} Converter for {EV} Power Train,” {IEEE} Trans. Power Electron., vol. 29, no. 6, pp. 2693–2704, Jun. 2014.
dc.relationW. Martinez et al., “High power density DC-DC converter for home energy management systems,” in International Conference on Intelligent Green Building and Smart Grid (IGBSG), 2014, pp. 1–6.
dc.relationT. Kim, W. Qiao, and L. Qu, “A multicell battery system design for electric and plug-in hybrid electric vehicles,” in 2012 IEEE International Electric Vehicle Conference, 2012, pp. 1–7.
dc.relationK.-C. Tseng, C.-C. Huang, and C.-A. Cheng, “A Single-Switch Converter With High Step-Up Gain and Low Diode Voltage Stress Suitable for Green Power-Source Conversion,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 363–372, Jun. 2016.
dc.relationW. Martinez, C. Cortes, J. Imaoka, M. Yamamoto, and J. Imaoka, “Effect of inductor parasitic resistances on the voltage gain of high step-up DC-DC converters for electric vehicle applications,” IET Power Electron., vol. 11, no. 10, pp. 1628–1639, Aug. 2018.
dc.relationW. H. Martinez, C. A. Cortes, L. E. Munoz, M. Yamamoto, L. E. Muñoz, and M. Yamamoto, “Design of a 200 kW electric powertrain for a high performance electric vehicle,” Ing. e Investig., vol. 36, no. 3, p. 66, 2016.
dc.relationT. Azib, C. Larouci, A. Chaibet, and M. Boukhnifer, “Online energy management strategy of a hybrid fuel cell/battery/ultracapacitor vehicular power system,” IEEJ Trans. Electr. Electron. Eng., vol. 9, no. 5, pp. 548–554, Sep. 2014.
dc.relationY. Zhang, Y. Gao, L. Zhou, and M. Sumner, “A Switched-Capacitor Bidirectional DC-DC Converter With Wide Voltage Gain Range for Electric Vehicles With Hybrid Energy Sources,” {IEEE} Trans. Power Electron., vol. 33, no. 11, pp. 9459–9469, Nov. 2018.
dc.relationX. Zhao, C.-S. Yeh, L. Zhang, and J.-S. Lai, “A high-frequency high-step-down converter with coupled inductor for low power applications,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2436–2440.
dc.relationM. Zhang, Y. Xing, H. Wu, H. Hu, and X. Ma, “A dual coupled inductors-based high step-up/step-down bidirectional dc-dc converter for energy storage system,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2958–2963.
dc.relationR. W. Erickson, D. Maksimovic, and D. Maksimović, Fundamentals of Power Electronics, 2nd ed. University of Colorado Boulder, Colorado: Springer {US}, 2001.
dc.relationC. M. Lai, Y. C. Lin, and D. Lee, “Study and implementation of a two-phase interleaved bidirectional DC/DC converter for vehicle and DC-microgrid systems,” Energies, vol. 8, no. 9, pp. 9969–9991, 2015.
dc.relationP. Leijen and N. Kularatna, “Developing a monitoring system for Toyota Prius battery-packs for longer term performance issues,” in 2013 IEEE International Symposium on Industrial Electronics, 2013, pp. 1–6.
dc.relationW. Martinez, J. Imaoka, and M. Yamamoto, “Analysis of output capacitor voltage ripple of the three-phase transformer-linked boost converter,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–9.
dc.relationW. Martinez, M. Noah, M. Yamamoto, and J. Imaoka, “Reverse-Recovery Current Reduction in a ZCS Boost Converter with Saturable Inductors using Nanocrystalline Core Materials Acknowledgments Keywords Review of the proposed recovery-less boost converter,” in 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), 2016, pp. 1–9.
dc.relationB. Ahmad, J. Kyyra, and W. Martinez, “Efficiency Optimization of Interleaved High Step-Up Converter,” in IET Journal of Engineering, vol. 2019, no. 17, pp. 4167–4172.
dc.relationW. Martinez, J. Imaoka, M. Yamamoto, and K. Umetani, “High Step-Up Interleaved Converter for Renewable Energy and Automotive Applications,” in 4th International Conference on Renewable Energy Research and Applications, 2015, pp. 1–6.
dc.relationF. Velandia, W. Martinez, C. A. Cortes, M. Noah, and M. Yamamoto, “Power Loss Analysis of Multi-Phase and Modular Interleaved Boost DC- DC Converters with Coupled Inductor for Electric Vehicles,” in 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), 2016, pp. 1–10.
dc.relationW. Martinez, J. Imaoka, and M. Yamamoto, “ZCS interleaved boost converter with saturable inductors for reverse-recovery reduction,” in 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, 2015, no. June, pp. 855–861.
dc.relationW. Martinez, J. Imaoka, M. Yamamoto, and K. Umetani, “Parasitic Resistance Analysis in a Novel High Step-Up Interleaved Converter for Hybrid Electric Vehicles,” J. Japan Inst. Power Electron., vol. 40, no. 0, pp. 93–104, 2014.
dc.relationW. Martinez, C. A. Cortes, J. Imaoka, K. Umetani, and M. Yamamoto, “Current ripple modeling of an interleaved high step-up converter with coupled inductor,” in Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), 2017 IEEE 3rd International, 2017, pp. 1084–1089.
dc.relationW. Martinez, J. Imaoka, Y. Itoh, M. Yamamoto, and K. Umetani, “Analysis of Coupled-Inductor Configuration for an Interleaved High Step-Up Converter,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) Analysis, 2015, pp. 1–8.
dc.relationW. Martinez and C. Cortes, “High power density interleaved DC-DC converter for a high performance electric vehicle,” in Workshop on Power Electronics and Power Quality Applications (PEPQA), 2013, pp. 1–6.
dc.relationW. Martinez, M. Yamamoto, P. Grbovic, C. A. Cortes, and C. C. Wilmar Martinez, Masayoshi Yamamoto, Petar Grbovic, “Efficiency optimization of a single-phase boost DC-DC converter for electric vehicle applications,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 4279–4285.
dc.relationW. Martinez, C. Cortes, M. Yamamoto, J. Imaoka, and K. Umetani, “Total volume evaluation of high-power density non-isolated DC-DC converters with integrated magnetics for electric vehicles,” IET Power Electron., vol. 10, no. 14, pp. 2010–2020, 2017.
dc.relationW. Martinez, S. Kimura, J. Imaoka, M. Yamamoto, and C. A. Cortes, “Volume Comparison of DC-DC Converters for Electric Vehicles,” in 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) Volume, 2015, pp. 1–6.
dc.relationJ. Imaoka, S. Kimura, W. Martinez, and M. Yamamoto, “A Novel Integrated Magnetic Core Structure Suitable for Transformer-Linked Interleaved Boost Chopper Circuit,” IEEJ J. Ind. Appl., vol. 3, no. 5, pp. 395–404, 2014.
dc.relationW. Martinez and C. Cortes, “Design a DC-DC Converter for a High Performance Electric Vehicle,” in International Conference on Connected Vehicles and Expo (ICCVE), 2012, pp. 1–6.
dc.relationS. Kimura, Y. Itoh, W. Martinez, M. Yamamoto, and J. Imaoka, “Downsizing Effects of Integrated Magnetic Components in High Power Density DC-DC Converters for EV and HEV Applications,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3294–3305, Jul. 2016.
dc.relationW. Martinez, S. Odawara, and K. Fujisaki, “Iron Loss Characteristics Evaluation Using a High-Frequency GaN Inverter Excitation,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1–7, 2017.
dc.relationW. Martinez and C. Suarez, “Current Measurement Issues of a High Frequency GaN Inverter in the MHz Order for Magnetic Characterization,” in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 2728–2733.
dc.relationW. Martinez, C. Cortes, and J. Imaoka, “Coupled Inductor Optimization of a High Step-up Interleaved Boost Converter,” IEEJ J. Ind. Appl., vol. 8, no. 6, pp. 984–990, Nov. 2019.
dc.relationW. Zhou, S. Yang, X. Wu, and K. Sheng, “Optimal design of SiC MOSFETs for 20kW DCDC converter,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, 2017, pp. 443–446.
dc.relationV. R. Vallapaneni and A. V. S. S. Prasad, “Data dependent optimization of ROM structures,” in Proceedings - IEEE International Symposium on Circuits and Systems, 2009, pp. 2749–2752.
dc.relationY. Ikegami, H. Obara, and Y. Sato, “A basic study on chip size determination of MOSFETs to minimize total power loss,” in 9th International Conference on Power Electronics - ECCE Asia: “Green World with Power Electronics”, ICPE 2015-ECCE Asia, 2015, pp. 2261–2266.
dc.relationD. V Malyna, J. L. Duarte, M. A. M. Hendrix, and F. B. M. van Horck, “Multi-objective optimization of power converters using genetic algorithms,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. IEEE.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleModeling and multi-objective optimization of inductive components in high voltage gain power converters
dc.typeOtro


Este ítem pertenece a la siguiente institución