Artículo de revista
On analytic families of conformal maps
Fecha
2017-01-01Registro en:
ISSN: 2357-4100
Autor
Becker, Jochen
Pommerenke, Christian
Institución
Resumen
Let Λ be a domain in C and let fλ(z) = z + a0(λ) + a1(λ)z −1 + ... be meromorphic in D∗ := {z ∈ C : |z| 1} ∪ {∞}. We assume that fλ(z) is holomorphic in λ ∈ Λ for fixed z.The main theorem states: Let Λ0 be a subdomain of Λ such that fλ is univalent in D∗ for λ ∈ Λ0. If fλ0 has a quasiconformal extension to the closure of D∗ for one λ0 ∈ Λ0 then fλ has a quasiconformal extension for all λ ∈ Λ0.This result is related to a theorem of Mañé, Sad and Sullivan (1983) where the assumptions are however different. The main tool of our proof is the Grunsky inequality for univalent functions. Sea Λ a dominio en C y sea fλ(z) = z + a0(λ) + a1(λ)z −1 + ... meromorfa en D∗ := {z ∈ C : |z| 1} ∪ {∞}. Suponemos que fλ(z) es holomorfa en λ ∈ Λ para z fijo.El teorema principal dice: Sea Λ0 un subdominio de Λ tal que fλ es univalente en D∗ para λ ∈ Λ0. Si fλ0 tiene una extensión cuasiconforme a la clausura de D∗ para un λ0 ∈ Λ0 entonces fλ tiene una extensión cuasiconforme para todo λ ∈ Λ0.Este resultado está relacionado a un teorema de Mañé, Sad y Sullivan (1983) donde sin embargo las hipótesis son diferentes. Para nuestra demostración la herramienta principal es la desigualdad de Grunsky para funciones univalentes.