dc.relation | Abram, J.J., Dyke, J.G., 2018. Structural Loop Analysis of Complex Ecological Systems. Ecol. Econ. 154, 333–342. https://doi.org/10.1016/j.ecolecon.2018.08.011
Ahmad, S., Prashar, D., 2010. Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resour Manag. 24, 3371–3395. https://doi.org/10.1007/s11269-010-9611-2
Alexander, S.M., Andrachuk, M., Armitage, D., 2016. Navigating governance networks for community-based conservation. Front. Ecol. Environ. 14, 155–164. https://doi.org/10.1002/fee.1251
An, L., 2012. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Modell. 229, 25–36. https://doi.org/10.1016/j.ecolmodel.2011.07.010
Anderies, J.M., Janssen, M. a, Ostrom, E., 2004. A Framework to Analyze the Robustness of Social-Ecological Systems from an Institutional Perspective. Ecol. Soc. 9, 1–18. https://doi.org/18
Anselme, B., Bousquet, F., Lyet, A., Etienne, M., Fady, B., Le Page, C., 2010. Modelling of spatial dynamics and biodiversity conservation on Lure mountain (France). Environ. Model. Softw. 25, 1385–1398. https://doi.org/10.1016/j.envsoft.2009.09.001
Anwar, S.M., Jeanneret, C.A., Parrott, L., Marceau, D.J., 2007. Conceptualization and implementation of a multi-agent model to simulate whale-watching tours in the St. Lawrence Estuary in Quebec, Canada. Environ. Model. Softw. 22, 1775–1787. https://doi.org/10.1016/j.envsoft.2007.02.007
Aumann, C.A., 2006. A methodology for developing simulation models of complex systems. https://doi.org/10.1016/j.ecolmodel.2006.11.005
Bagstad, K.J., Johnson, G.W., Voigt, B., Villa, F., 2013. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 4, 117–125. https://doi.org/10.1016/j.ecoser.2012.07.012
Baños-González, I., Martínez-Fernández, J., Esteve-Selma, M.Á., 2013. Dynamic simulation of socio-ecological Systems: sustainability in Biosphere Reserves. Ecosistemas 22, 74–83. https://doi.org/10.7818/ecos.2013.22-3.11
Barlas, Y., 1996. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 12, 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4
Barnaud, C., Bousquet, F., Trebuil, G., 2008. Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand. https://doi.org/10.1016/j.ecolecon.2007.10.022
BenDor, T.K., Kaza, N., 2012. A theory of spatial system archetypes. Syst. Dyn. Rev. 28, 109–130. https://doi.org/10.1002/sdr.1470
Berrouet, L., Villegas-Palacio, C., Botero, V., 2019. A social vulnerability index to changes in ecosystem services provision at local scale: A methodological approach. Environ. Sci. Policy 93, 158–171.
Berrouet, L.M., 2018. Vulnerabilidad de sistemas sociales frente a la modificación de servicios ecosistémicos en cuencas hidrográficas de media montaña. Universidad Nacional de Colombia Sede Medellín.
Berrouet, L.M., Machado, J., Villegas-Palacio, C., 2018. Vulnerability of socio—ecological systems: A conceptual Framework. Ecol. Indic. 84, 632–647. https://doi.org/10.1016/j.ecolind.2017.07.051
Bodin, O., Tengo, M., 2012. Disentangling intangible social-ecological systems. Glob. Environ. Chang. 22, 430–439. https://doi.org/10.1016/j.gloenvcha.2012.01.005
Bolognesi, T., Ciancia, V., 2017. Exploring nominal cellular automata. J. Log. Algebr. Methods Program. 93, 23–41. https://doi.org/10.1016/J.JLAMP.2017.08.001
Bousquet, F., Le Page, C., 2004. Multi-agent simulations and ecosystem management: A review. Ecol. Modell. 176, 313–332. https://doi.org/10.1016/j.ecolmodel.2004.01.011
Chan, K.M.A., Guerry, A.D., Balvanera, P., Klain, S., Satterfield, T., Basurto, X., Bostrom, A., Chuenpagdee, R., Gould, R., Halpern, B.S., Hannahs, N., Levine, J., Norton, B., Ruckelshaus, M., Russell, R., Tam, J., Woodside, U., 2012. Where are Cultural and Social in Ecosystem Services? A Framework for Constructive Engagement. Bioscience 62, 744–756. https://doi.org/10.1525/bio.2012.62.8.7
Change, I.P. on C., 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of hte Intergovernmental Panel on Climate Change.
Chen, Y., Bakker, M.M., Ligtenberg, A., Bregt, A.K., 2016. How are feedbacks represented in land models? Land 5, 29. https://doi.org/10.3390/land5030029
Ciftcioglu, G.C., 2017. Assessment of the resilience of socio-ecological production landscapes and seascapes: A case study from Lefke Region of North Cyprus. Ecol. Indic. 73, 128–138. https://doi.org/10.1016/j.ecolind.2016.09.036
Claessens, L., Schoorl, J.M., Verburg, P.H., Geraedts, L., Veldkamp, A., 2009. Modelling interactions and feedback mechanisms between land use change and landscape processes. Agric. Ecosyst. Environ. 129, 157–170. https://doi.org/10.1016/j.agee.2008.08.008
Collins, Scott L, Carpenter, S.R., Swinton, S.M., Orenstein, D.E., Childers, D.L., Gragson, T.L., Grimm, N.B., Grove, J.M., Harlan, S.L., Kaye, J.P., Knapp, A.K., Kofinas, G.P., Magnuson, J.J., McDowell, W.H., Melack, J.M., Ogden, L.A., Robertson, G.P., Smith, M.D., Whitmer, A.C., 2011. An integrated conceptual framework for long-term social–ecological research. Front. Ecol. Environ. 9, 351–357. https://doi.org/10.1890/100068
Colomer, M.À., Montori, A., García, E., Fondevilla, C., 2014. Using a bioinspired model to determine the extinction risk of Calotriton asper populations as a result of an increase in extreme rainfall in a scenario of climatic change. Ecol. Modell. 281, 1–14. https://doi.org/10.1016/j.ecolmodel.2014.02.018
Cooper, G.S., Dearing, J.A., 2019. Modelling future safe and just operating spaces in regional social-ecological systems. Sci. Total Environ. 651, 2105–2117. https://doi.org/10.1016/j.scitotenv.2018.10.118
Coyle, R.G., 1996. System dynamics modelling : a practical approach. Chapman & Hall.
David, N., 2013. Validating Simulations. Springer, Berlin, Heidelberg, pp. 135–171. https://doi.org/10.1007/978-3-540-93813-2_8
Davis, J.P., Eisenhardt, K.M., Bingham, C.B., 2007. Developing theory through simulation methods. Acad. Manag. Rev 32, 480–499.
Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J.R., Arico, S., Báldi, A., Bartuska, A., Baste, I.A., Bilgin, A., Brondizio, E., Chan, K.M.A., Figueroa, V.E., Duraiappah, A., Fischer, M., Hill, R., Koetz, T., Leadley, P., Lyver, P., Mace, G.M., Martin-Lopez, B., Okumura, M., Pacheco, D., Pascual, U., Pérez, E.S., Reyers, B., Roth, E., Saito, O., Scholes, R.J., Sharma, N., Tallis, H., Thaman, R., Watson, R., Yahara, T., Hamid, Z.A., Akosim, C., Al-Hafedh, Y., Allahverdiyev, R., Amankwah, E., Asah, T.S., Asfaw, Z., Bartus, G., Brooks, A.L., Caillaux, J., Dalle, G., Darnaedi, D., Driver, A., Erpul, G., Escobar-Eyzaguirre, P., Failler, P., Fouda, A.M.M., Fu, B., Gundimeda, H., Hashimoto, S., Homer, F., Lavorel, S., Lichtenstein, G., Mala, W.A., Mandivenyi, W., Matczak, P., Mbizvo, C., Mehrdadi, M., Metzger, J.P., Mikissa, J.B., Moller, H., Mooney, H.A., Mumby, P., Nagendra, H., Nesshover, C., Oteng-Yeboah, A.A., Pataki, G., Roué, M., Rubis, J., Schultz, M., Smith, P., Sumaila, R., Takeuchi, K., Thomas, S., Verma, M., Yeo-Chang, Y., Zlatanova, D., 2015. The IPBES Conceptual Framework - connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002
Duespohl, M., Frank, S., Doell, P., 2012. A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management. J. Sustain. Dev. 5, 0–18. https://doi.org/10.5539/jsd.v5n12p1
Duncan, C., Thompson, J.R., Pettorelli, N., 2015. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348. https://doi.org/10.1098/rspb.2015.1348
Elmahdi, A.., McFarlane, D.., 2010. DSS and MAF (multi-agencies framework) for sustainable water management, Modelling for Environment’s Sake: Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010. Ottawa.
Elsawah, S., Mclucas, A., Mazanov, J., 2015. Communicating About Water Issues in Australia: A Simulation/Gaming Approach. Simul. Gaming 46, 713–741. https://doi.org/10.1177/1046878115580410
Elsawah, S., Pierce, S.A., Hamilton, S.H., van Delden, H., Haase, D., Elmahdi, A., Jakeman, A.J., 2017.
An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 93, 127–145. https://doi.org/10.1016/j.envsoft.2017.03.001
Filatova, T., Verburg, P.H., Parker, D.C., Stannard, C.A., 2013. Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ. Model. Softw. 45, 1–7. https://doi.org/10.1016/j.envsoft.2013.03.017
Fondevilla, C., Àngels Colomer, M., Fillat, F., Tappeiner, U., 2016. Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps). Ecol. Modell. 322, 101–114. https://doi.org/10.1016/j.ecolmodel.2015.11.016
Forrester, J., 2009. Some basic concepts in system dynamics. Sloan Sch. Manag. … 1–17.
Forrester, J.W., 1971. Counterintuitive behaviour of social systems. Theory Decis. 2, 109–140.
Gaines, S.D., Dee, L.E., Allesina, S., Bonn, A., Eklöf, A., Gaines, S.D., Hines, J., Jacob, U., Mcdonald-madden, E., Possingham, H., 2017. Operationalizing Network Theory for Ecosystem Service Assessments Operationalizing Network Theory for Ecosystem Service Assessments. Trends Ecol. Evol. 32, 118–130. https://doi.org/10.1016/j.tree.2016.10.011
Gotts, N.M., van Voorn, G.A.K., Polhill, J.G., Jong, E. de, Edmonds, B., Hofstede, G.J., Meyer, R., 2018. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecol. Complex. https://doi.org/10.1016/j.ecocom.2018.07.007
Halmy, M.W.A., Gessler, P.E., Hicke, J.A., Salem, B.B., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015
Hamilton, S.H., Elsawah, S., Guillaume, J.H.A., Jakeman, A.J., Pierce, S.A., 2015. Integrated assessment and modelling: Overview and synthesis of salient dimensions. https://doi.org/10.1016/j.envsoft.2014.12.005
Hare, M., Deadman, P., 2004. Further towards a taxonomy of agent-based simulation models in environmental management. Math. Comput. Simul. 64, 25–40. https://doi.org/10.1016/S0378-4754(03)00118-6
Hoshino, E., van Putten, I., Girsang, W., Resosudarmo, B.P., Yamazaki, S., 2016. A Bayesian belief network model for community-based coastal resource management in the Kei Islands, Indonesia. Ecol. Soc. 21, art16. https://doi.org/10.5751/ES-08285-210216
Howick, S., Eden, C., Ackermann, F., Williams, T., 2007. Building confidence in models for multiple audiences: The modelling cascade. https://doi.org/10.1016/j.ejor.2007.02.027
Ilachinski, A., 2001. Cellular Automata. A discrete Universe. WORLD SCIENTIFIC. https://doi.org/10.1142/4702
Jakeman, A.J., Letcher, R.A., Norton, J.P., Au, A.J., Jakeman, ), 2006. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 21, 602–614. https://doi.org/10.1016/j.envsoft.2006.01.004
Kelly, R.A.. B., Jakeman, A.J.., Barreteau, O.., Borsuk, M.E.., ElSawah, S.., Hamilton, S.H.., Henriksen, H.J.., Kuikka, S.., Maier, H.R.., Rizzoli, A.E.., van Delden, H.. I., Voinov, A.A.., 2013. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 47, 159–181. https://doi.org/10.1016/j.envsoft.2013.05.005
Kim, B.S., Kim, T.G., 2019. Cooperation of simulation and data model for performance analysis of complex systems. Int. J. Simul. Model. 18, 608–619. https://doi.org/10.2507/IJSIMM18(4)491
Kok, K., 2009. The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Glob. Environ. Chang. 19, 122–133. https://doi.org/10.1016/j.gloenvcha.2008.08.003
Korb, K.B., Nicholson, A.E., 2011. Bayesian artificial intelligence. CRC Press.
Kramer, D.B., Hartter, J., Boag, A.E., Jain, M., Stevens, K., Nicholas, K.A., McConnell, W.J., Liu, J., 2017. Top 40 questions in coupled human and natural systems (CHANS) research. Ecol. Soc. 22, art44. https://doi.org/10.5751/ES-09429-220244
Lambin, E.F., Meyfroidt, P., 2010. Land use transitions: Socio-ecological feedback versus socio-economic change. Land use policy 27, 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003
Lauf, S., Haase, D., Hostert, P., Lakes, T., Kleinschmit, B., 2012. Uncovering land-use dynamics driven by human decision-making - A combined model approach using cellular automata and system dynamics. Environ. Model. Softw. 27–28, 71–82. https://doi.org/10.1016/j.envsoft.2011.09.005
Levontin, P., Kulmala, S., Haapasaari, P., Kuikka, S., 2011. Integration of biological, economic, and sociological knowledge by Bayesian belief networks: the interdisciplinary evaluation of potential management plans for Baltic salmon. ICES J. Mar. Sci. 68, 632–638. https://doi.org/10.1093/icesjms/fsr004
Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C.L., Schneider, S.H., Taylor, W.W., 2007. Complexity of Coupled Human and Natural Systems. Science (80-. ). 317, 1513–1516. https://doi.org/10.1126/science.1144004
Liu, Y., Gupta, H., Springer, E., Wagener, T., 2008. Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management. https://doi.org/10.1016/j.envsoft.2007.10.007
Liu, Y., Long, H., 2016. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 26, 515–530. https://doi.org/10.1007/s11442-016-1283-2
López-Carr, D., Davis, J., Jankowska, M.M., Grant, L., López-Carr, A.C., Clark, M., 2012. Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Modell. 229, 64–75. https://doi.org/10.1016/j.ecolmodel.2011.08.020
Luna-Reyes, L.F., Andersen, D.L., 2003. Collecting and analyzing qualitative data for system dynamics: Methods and models. Syst. Dyn. Rev. 19, 271–296. https://doi.org/10.1002/sdr.280
Martín-López, B., García-Llorente, M., Palomo, I., Montes, C., García-Nieto, A.P., Quintas-Soriano, C., 2014. Collaborative mapping of ecosystem services: The role of stakeholders׳ profiles. Ecosyst. Serv. 13, 141–152. https://doi.org/10.1016/j.ecoser.2014.11.006
Martín-López, B., Gómez-Baggethun, E., Montes, C., 2009. Un marco conceptual para la gestión de las interacciones naturaleza- sociedad en un mundo cambiante. Cuid. Cuad. Interdisplinar Desarro. Sosten. 3, 229–258.
Martín López, B., González, J.A., Vilardy, S., 2012. Guía Docente Ciencias de la sostenibilidad, Formación avanzada en Ciencias de la Sostenibilidad: fortaleciendo las capacidades locales para gestionar el cambio global. EditPrint Ltda.
Matthews, R.B., Gilbert, N.G., Roach, A., Polhill, J.G., Gotts, N.M., 2007. Agent-based land-use models: A review of applications. Landsc. Ecol. 22, 1447–1459. https://doi.org/10.1007/s10980-007-9135-1
Mazzeo N., Zurbriggen C., Trimble M., Bianchi P., Gadino I., S.M., 2017. Sostenibilidad ambiental del Uruguay: aportes desde el pensamiento resiliente. Rev. R MAYO-SUSTE, 28–31.
Moglia, M., Perez, P., Burn, S., 2010. Modelling an urban water system on the edge of chaos. Environ. Model. Softw. 25, 1528–1538. https://doi.org/10.1016/j.envsoft.2010.05.002
Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J.F., Kolb, J.J., Thonicke, K., Heitzig, J., 2017. Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches. Earth Syst. Dyn. 8, 977–1007. https://doi.org/10.5194/esd-8-977-2017
Murillo, J., Busquets, D., Dalmau, J., López, B., Muñoz, V., Rodríguez-Roda, I., 2011. Improving urban wastewater management through an auction-based management of discharges. Environ. Model. Softw. 26, 689–696. https://doi.org/10.1016/j.envsoft.2011.01.005
Nahuelhual, L., Laterra, P., Villarino, S., Mastrángelo, M., Carmona, A., Jaramillo, A., Barral, P., Burgos, N., 2015. Mapping of ecosystem services: Missing links between purposes and procedures. Ecosyst. Serv. 13, 162–172. https://doi.org/10.1016/j.ecoser.2015.03.005
Nicholson, E., Mace, G.M., Armsworth, P.R., Atkinson, G., Buckle, S., Clements, T., Ewers, R.M., Fa, J.E., Gardner, T.A., Gibbons, J., Grenyer, R., Metcalfe, R., Mourato, S., Muûls, M., Osborn, D., Reuman, D.C., Watson, C., Milner-Gulland, E.J., 2009. Priority research areas for ecosystem services in a changing world. J. Appl. Ecol. 46, 1139–1144. https://doi.org/10.1111/j.1365-2664.2009.01716.x
Norling, E., Edmonds, B., Meyer, R., 2013. Informal Approaches to Developing Simulation Models. Springer, Berlin, Heidelberg, pp. 39–55. https://doi.org/10.1007/978-3-540-93813-2_4
Ostrom, E., 2009. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science (80-. ). 325, 419–422.
Paredis, C., Bishop, C., Bodner, D., Xi, X., Leng Poh, K., 2013. Using system dynamics for sustainable water resources management in Singapore. Procedia Comput. Sci. 16, 157–166. https://doi.org/10.1016/j.procs.2013.01.017
Park, S., Sahleh, V., Jung, S.Y., 2015. A system dynamics computer model to assess the effects of developing an alternate water source on the water supply systems management. Procedia Eng. 119, 753–760. https://doi.org/10.1016/j.proeng.2015.08.929
Phillips, C., Allen, W., Fenemor, A., Bowden, B., Young, R., 2010. Integrated catchment management research: Lessons for interdisciplinary science from the Motueka Catchment, New Zealand. Mar. Freshw. Res. 61, 749–763. https://doi.org/10.1071/MF09099
Pickett, S.T.A., Cadenasso, M.L., Grove, J.M., Groffman, P.M., Band, L.E., Boone, C.G., Burch, W.R., Grimmond, C.S.B., Hom, J., Jenkins, J.C., Law, N.L., Nilon, C.H., Pouyat, R. V., Szlavecz, K., Warren, P.S., Wilson, M.A., 2008. Beyond Urban Legends: An Emerging Framework of Urban Ecology, as Illustrated by the Baltimore Ecosystem Study. Bioscience 58, 139–150. https://doi.org/10.1641/B580208
Pidd, M., 2004. Systems Modelling: Theory and Practice. Wiley & Sons, Inc.
Pidd, M., 1999. Just modeling through: A rough guide to modeling. Interfaces (Providence). 29, 118–132. https://doi.org/10.1287/inte.29.2.118
Pierce, S.A., 2006. Groundwater decision support: linking causal narratives, numerical models, and combinatorial search techniques to determine available yield for an aquifer system.
Pope, A.J., Gimblett, R., 2015. Linking Bayesian and agent-based models to simulate complex social-ecological systems in semi-arid regions. Front. Environ. Sci. 3, 55. https://doi.org/10.3389/fenvs.2015.00055
Ravera, F., Hubacek, K., Reed, M., Tarrasón, D., 2011. Learning from Experiences in Adaptive Action Research: a Critical Comparison of two Case Studies Applying Participatory Scenario Development and Modelling Approaches. Environ. Policy Gov. 21, 433–453. https://doi.org/10.1002/eet.585
Renard, D., Rhemtulla, J.M., Bennett, E.M., 2015. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. 112, 13411–13416. https://doi.org/10.1073/PNAS.1502565112
Reyes, D., 2011. Descripción y Aplicaciones de los Autómatas Celulares, U.N.a.M. https://doi.org/Pii s0040-4020(02)00395-2\r10.1016/s0040-4020(02)00395-2
Reynoso Santos, R., Valdez Lazalde, J.R., Escalona Maurice, M.J., de los Santos Posadas, H.M., Pérez Hernández, M.J., 2016. Cadenas de Markov y autómatas celulares para la modelación de cambio de uso de suelo, Ingeniería hidráulica y ambiental. Centro de Investigaciones Hidráulicas, Instituto Superior Politécnico José Antonio Echeverría. https://doi.org/113195823
Rouan, M., Kerbiriou, C., Levrel, H., Etienne, M., 2010. A co-modelling process of social and natural dynamics on the isle of Ouessant: Sheep, turf and bikes. Environ. Model. Softw. 25, 1399–1412. https://doi.org/10.1016/j.envsoft.2009.10.010
Rounsevell, Mark D A, Pedroli, B., Erb, K.-H., Gramberger, M., Gravsholt Busck, A., Haberl, H., Kristensen, S., Kuemmerle, T., Lavorel, S., Lindner, M., Lotze-Campen, H., Metzger, M.J., Murray-Rust, D., Popp, A., Pérez-Soba, M., Reenberg, A., Vadineanu, A., Verburg, P.H., Wolfslehner, B., 2012. Challenges for land system science. Land use policy 29, 899–910. https://doi.org/10.1016/j.landusepol.2012.01.007
Rounsevell, M. D.A., Robinson, D.T., Murray-Rust, D., 2012. From actors to agents in socio-ecological systems models. Philos. Trans. R. Soc. B Biol. Sci. 367, 259–269. https://doi.org/10.1098/rstb.2011.0187
Ruth, M., Hannon, B., 1997. Modeling dynamic economic systems. Springer Verlag 339.
Salliou, N., Barnaud, C., Vialatte, A., Monteil, C., 2017. A participatory Bayesian Belief Network approach to explore ambiguity among stakeholders about socio-ecological systems. Environ. Model. Softw. 96, 199–209. https://doi.org/10.1016/j.envsoft.2017.06.050
Schmolke, A., Thorbek, P., Deangelis, D.L., Grimm, V., 2010. Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol. Evol. 25, 479–486. https://doi.org/10.1016/j.tree.2010.05.001
Scholz, R.W., Gallati, J., Le, Q.B., Seidl, R., 2011. Integrated systems modeling of complex human-environment systems, in: Environmental Literacy in Science and Society: From Knowledge to Decisions. pp. 341–372. https://doi.org/10.1017/CBO9780511921520.017
Schreinemachers, P., Berger, T., 2011. An agent-based simulation model of human-environment interactions in agricultural systems. Environ. Model. Softw. 26, 845–859. https://doi.org/10.1016/j.envsoft.2011.02.004
Serna-Chavez, H.M., Schulp, C.J.E., van Bodegom, P.M., Bouten, W., Verburg, P.H., Davidson, M.D., 2014. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 39, 24–33. https://doi.org/10.1016/j.ecolind.2013.11.024
Shao, H., 2017. Decomposing aggregate risk into marginal risks under partial information: A top-down method. Stat. Probab. Lett. 124, 97–100. https://doi.org/10.1016/j.spl.2017.01.015
Simon, C., Etienne, M., 2010. A companion modelling approach applied to forest management planning. Environ. Model. Softw. 25, 1371–1384. https://doi.org/10.1016/j.envsoft.2009.09.004
Stave, K., 2010. Participatory system dynamics modeling for sustainable environmental management: Observations from four cases. Sustainability 2, 2762–2784. https://doi.org/10.3390/su2092762
Sterman, J., 2000. Business dynamics : systems thinking and modeling for a complex world. Irwin/McGraw-Hill.
Subedi, P., Subedi, K., Thapa, B., 2013. Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Appl. Ecol. Environ. Sci. 1, 126–132. https://doi.org/10.12691/aees-1-6-5
Swanson, J., 2002. Business Dynamics—Systems Thinking and Modeling for a Complex World, 2nd editio. ed, Journal of the Operational Research Society. McGraw-Hill, Boston, U.S. https://doi.org/10.1057/palgrave.jors.2601336
Sweeney, L.B., Sterman, J., 2000. Bathtub Dynamics : Initial Results of a Systems Thinking Inventory Bathtub Dynamics : Initial Results of a Systems Thinking Inventory 16, 249–286.
Tsai, Y., Zia, A., Koliba, C., Bucini, G., Guilbert, J., Beckage, B., 2015. An interactive land use transition agent-based model (ILUTABM): Endogenizing human-environment interactions in the Western Missisquoi Watershed. Land use policy 49, 161–176. https://doi.org/10.1016/j.landusepol.2015.07.008
Turner, B.L., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Hovelsrud-Broda, G.K., Kasperson, J.X., Kasperson, R.E., Luers, A., others, 2003. Illustrating the coupled human–environment system for vulnerability analysis: three case studies. Proc. Natl. Acad. Sci. 100, 8080–8085.
Urquiza Gómez, A., Cadenas, H., 2015. Sistemas socio-ecológicos: elementos teóricos conceptuales para la discusión en torno a vulnerabilidad hídrica. L’Ordinaire des Amériques 218, online. https://doi.org/10.4000/orda.1774 Haut de page Auteurs
Van Voorn, G.A.K., Verburg, R.W., Kunseler, E.-M., Vader, J., Janssen, P.H.M., 2016. A checklist for model credibility, salience, and legitimacy to improve information transfer in environmental policy assessments. Environ. Model. Softw. 83, 224–236. https://doi.org/10.1016/j.envsoft.2016.06.003
Verburg, P.H., Dearing, J.A., Dyke, J.G., Van Der Leeuw, S., Seitzinger, S., Steffen, W., Syvitski, J., 2016. Methods and approaches to modelling the Anthropocene. Glob. Environ. Chang. 39, 328–340. https://doi.org/10.1016/j.gloenvcha.2015.08.007
Verhoog, R., Ghorbani, A., Dijkema, G.P.J., 2016. Modelling socio-ecological systems with MAIA: A biogas infrastructure simulation. Environ. Model. Softw. 81, 72–85. https://doi.org/10.1016/j.envsoft.2016.03.011
Voinov, A., Seppelt, R., Reis, S., Nabel, J.E.M.S., Shokravi, S., 2014. Values in socio-environmental modelling: Persuasion for action or excuse for inaction q. Environ. Model. Softw. 53, 207–212. https://doi.org/10.1016/j.envsoft.2013.12.005
Von Neumann, J., Burks, A.W., 1966. Theory of self-Reproducing Automata. University of Illinois Press, Champign-USA.
Wächter, P., 2011. Thinking in systems – a primer, Environmental Politics. https://doi.org/10.1080/09644016.2011.589585
Wallentin, G., Neuwirth, C., 2017. Dynamic hybrid modelling: Switching between AB and SD designs of a predator-prey model. Ecol. Modell. 345, 165–175. https://doi.org/10.1016/j.ecolmodel.2016.11.007
Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, R., Babendreier, J., Galvin, M., 2014. Design of a component-based integrated environmental modeling framework. Environ. Model. Softw. 55, 1–24. https://doi.org/10.1016/j.envsoft.2014.01.016
Williamson, O.E., 2000. The new institutional economics: Taking stock, looking ahead. J. Econ. Lit. https://doi.org/10.1257/jel.38.3.595
Wu, M., Ren, X., Che, Y., Yang, K., 2015. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China. Environ. Manage. 402–419. https://doi.org/10.1007/s00267-015-0512-2
Yang, J., Chen, F., Xi, J., Xie, P., Li, C., 2014. A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application. Abstr. Appl. Anal. 2014, 1–11. https://doi.org/10.1155/2014/375389
Zhang, L., Nan, Z., Yu, W., Ge, Y., 2015. Modeling land use and land cover change and hydrological responses under consisent climate change scenarios in the Heihe River Basin, China. Water Resour. Manag. 29, 4701–4717. | |