dc.contributor | Enríquez Sierra, Hernán Darío | |
dc.contributor | Bayona Rodríguez, Hernando | |
dc.creator | Espinosa Borda, Briyid Camila | |
dc.date.accessioned | 2020-07-15T17:07:51Z | |
dc.date.available | 2020-07-15T17:07:51Z | |
dc.date.created | 2020-07-15T17:07:51Z | |
dc.date.issued | 2019-12-16 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77774 | |
dc.description.abstract | The aim of this research is to evaluate the effect of interactions between female students and STEM teachers, over career choice expectations in Colombia. A role model approach is used to explain how motivational factors affect the STEM career choice of women pursuing high school. Data of PISA 2015 for Colombia is used to estimate the likelihood of choosing a STEM career, through a Hierarchical Logit model, controlling by covariates like self-efficacy, teacher bias, school fixed effects and parent’s education. Results show that women’s STEM career choice is not influenced by interaction with a STEM woman teacher throughout the high school. On the other hand, student’s self-efficacy has a positive impact in her career choice expectation. Also, a woman pursuing high school at a private school with vocational program has less likelihood to choose a STEM career than her counterpart at a public school with vocational program. | |
dc.description.abstract | El objetivo de esta investigación es evaluar la incidencia de las interacciones entre estudiantes y docentes femeninas de áreas CTIM (Ciencia, Tecnología, Ingeniería y Matemáticas, STEM por sus siglas en inglés) en las expectativas de elección de carrera universitaria en Colombia. Se utiliza una aproximación de modelos de rol para explicar como factores motivacionales afectan la elección de carreras CTIM de las mujeres que están cursando secundaria. Se emplean los datos PISA de 2015 a nivel nacional para estimar la probabilidad de elegir una carrera CTIM a través de un modelo Logit multinivel, controlando por covariadas como autoeficacia, sesgo docente, efectos fijos de colegio y educación de los padres. Los resultados muestran que contar con una docente femenina de áreas CTIM en el colegio no tiene un efecto estadísticamente significativo sobre la expectativa de elección de una carrera CTIM de las mujeres. En contraste, la autoeficacia de las estudiantes tiene efectos positivos sobre la expectativa de elección de carrera en estas mujeres. Adicional, una mujer que cursa el bachillerato en un colegio privado con programa vocacional tiene menor probabilidad de elegir una carrera CTIM que su contraparte en un colegio público con programa vocacional. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias Económicas - Maestría en Ciencias Económicas | |
dc.publisher | Escuela de Economía | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abadía, L. K., & Bernal, G. (2016). Brechas de género en el rendimiento escolar a lo largo de la distribución de puntajes: evidencia pruebas saber 11°. Vniversitas Económica. | |
dc.relation | Abadía, L. K., & Bernal, G. (2017). A widening gap? a gender-based analysis of performance on the colombian high school exit examination. Revista de economía del Rosario, 5-31. | |
dc.relation | Acevedo, S., Zuluaga, F., & Jaramillo, A. (2008). Determinantes de la demanda de educación superior en Colombia. Revista de economía del Rosario, 121-148. | |
dc.relation | Amaya, J., M.A., D., & Sánchez, M. (2017). Metodología para impulsar el interés en las STEM en niñas de secundaria en el sur de Cali. En E. Serna, Investigación formativa en ingeniería (págs. 100-106). Medellín: Instituto Antioqueño de Investigación. | |
dc.relation | American Psychological Association. (2015). APA dictionary of psychology. Washington: American Psychological Association. | |
dc.relation | Amundson, H. (2017). A Mother's influence: how a mother with an advanced degree impacts various STEM outcomes. University of Colorado. | |
dc.relation | Bachman, B., Hebl, M. L., & Rittmayer, a. (2009). Literature overview: girl's experience in the classroom. | |
dc.relation | Bahar, A., & Adiguzel, T. (2016). Analysis of Factors Influencing Interest in STEM Career: Comparison between American and Turkish High School Students with High Ability. Istanbul. | |
dc.relation | Banco Mundial. (2012). Knowledge Economy Index (World Banck): Kapsarc. Obtenido de Kapsarc data portal: https://datasource.kapsarc.org/explore/dataset/knowledge-economy-index-world-bank-2012/export/?refine.indicator=Knowledge+Index&refine.measure=Weighted+by+Population | |
dc.relation | Beaman, L., Duflo, E., Pande, R., & Topalova, P. (2012). Female Leadership Raises Aspirations and Educational Attainment for Girls: A Policy Experiment in India. Science, 582-586. | |
dc.relation | Beede, D., Julian, T., Langdon, D., McKittrick, G., Khan, B., & Doms, M. E. (2011). Women in STEM: A Gender Gap to Innovation. Economics and Statistics Administration , 4-11. | |
dc.relation | Beezar, B. (1974). Role theory and teacher education. Journal of education, 56(1), 5-21. | |
dc.relation | Benoöõt Rapoport, C. T. (2017). Why Do Boys and Girls Make Different Educational Choices? The Inßuence of Expected Earnings and Test Scores. Economics of Education Review. | |
dc.relation | Blackwell, L. S., Tresnewski, K. H., & Dweck., C. S. (2007). Implicit Theories of Intelligence Predict Achievement Across an Adolescent. Child development, 246-263. | |
dc.relation | Bonilla, L., Bottan, N., & Ham, A. (2016). Information policies and higher education choices experimental evidence from Colombia. Bogotá: Banco de la República. | |
dc.relation | Castillo, R., Grazzi, M., & Tacsir, E. (2014). Women in science and technology what does the literature say? Inter American Development Bank. | |
dc.relation | Cerinseka, G., Hribara, T., Glodez, N., & Dolinsek, S. (2013). Which are my Future Career Priorities and What Influenced my Choice of Studying Science, Technology, Engineering or Mathematics? Some Insights on Educational Choice—Case of Slovenia. International Journal of Science Education, 2999-3025. | |
dc.relation | Cheryan, S., Siy, J., Vichayapai, M., Drury, B., & Kim, S. (2011). Do Female and Male Role Models Who Embody STEM Stereotypes Hinder Women’s Anticipated Success in STEM? Social psycological and personality science, 656-664. | |
dc.relation | Cheryan, S., Tabak, J., & Meltzoff, A. (2011). What matters in recruiting? Effects ofprofessor gender and classroom environ- ment on women’s interest in STEM. Manuscript in preparation. | |
dc.relation | Cho, I. (2012). The effect of teacher–student gender matching: Evidence from OECD countries. Economics of Education Review, 54-67. | |
dc.relation | Creamer, E. G., & Laughlin, A. (2005). Self-Authorship and Women's Career Decision Making. Journal of College Student Development, 13-27. | |
dc.relation | Dasgupta, N. (2011). Ingroup Experts and Peers as Social Vaccines Who Inoculate the Self-Concept: The Stereotype Inoculation Model. Psychological Inquiry, 231-246. | |
dc.relation | Dasgupta, N., & Stout, J. (2014). Girls and Women in Science, Technology, Engineering, and Mathematics: STEMing the Tide and Broadening Participation in STEM Careers. Policy Insights from the Behavioral and Brain Sciences, 21-29. | |
dc.relation | de Cohen, C., & Deterding, N. (2009). Widening the net: national estimates of gender disparities in engineering. Journal of engineering education, 211-226. | |
dc.relation | Dee, T. (2007). Teachers and the gender gaps in student achievement. Journal of Human Resources, 525-554. | |
dc.relation | Drury, B., Siy, J., & Cheryan, S. (2011). When do female role models benefit women? the importance of differentiating recruitment from retention in STEM. Psychological Inquiry, 265-269. | |
dc.relation | Dulce Salcedo, O., Maldonado, D., & Sánchez, F. (2019). ¿Influencian mujeres a otras mujeres? el caso de las docentes en áreas STEM en Bogotá. Documentos de trabajo Escuela de Gobierno Alberto Lleras Camargo. | |
dc.relation | Fairfield, H. M. (2013). Girls Lead in Science Exam, but Not in the United States - Interactive Graphic. New York Times. Recuperado el 25 de Octubre de 2017, de http://www.nytimes.com/interactive/2013/02/04/science/girls-lead-in-science-exam-but-not-in-the-united-states.html?emc=eta1 | |
dc.relation | Fernandez, Schaaper, & Bello. (2016). What drives the gender gap in STEM? The SAGA Science, Technology and Innovation Gender Objectives List (STI GOL) as a new approach to linking indicators to STI policies. En 21st International Conference on Science and Technology Indicators-STI 2016. Book of Proceedings. | |
dc.relation | Flanagan, D. P., & Dixon, S. G. (2014). The Cattell‐Horn‐Carroll Theory of Cognitive Abilities. Encyclopedia of Special Education. | |
dc.relation | Fouad, N., & Santana, M. (2017). SCCT and underrepresented populations in STEM fields: moving the needle. Journal of Career Assessment, 24-39. | |
dc.relation | Gibson, D. (2004). Role models in career development: New directions for theory and research. Journal of Vocational Behavior, 65(1), 134-156. | |
dc.relation | Gottfredson, L. (1997). Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography. Intelligence, 13-23. | |
dc.relation | Greene, W. H. (2012). Dicrete choice. En W. H. Greene, Econometric analysis (págs. 681-759). New York: Pearson Education. | |
dc.relation | Hagit, M., Niva, W., Dov, D., & Yehudit Judy, D. (2016). Career Choice of Undergraduate Engineering Students. Procedia- Social and Behavioral Sciences, 222-228. | |
dc.relation | Hedeker, D. (2008). Multilevel models for ordinal and nominal variables. En J. De Leeuw, & E. Meijer, Handbook of multilevel analysis (págs. 237-275). New York: Springer. | |
dc.relation | Henriksen, E., Dillon, J., & Ryder, J. (2015). Understanding student participation and choice in science and technology education. Springer. | |
dc.relation | Herbert, J., & Stipek, D. (2005). The emergence of gender difference in children’s perceptions of their academic competence. Journal of Applied Developmental Psychology, 276-295. | |
dc.relation | Hernández Zapata, L. B. (2016). DETERMINANTES DE ELECCIÓN DE CARRERAS STEM DE LOS ESTUDIANTES DE EDUCACIÓN PÚBLICA DEL MUNICIPIO DE DOSQUEBRADAS. Pereira: EAFIT. | |
dc.relation | Heyder, A., Steinmayr, R., & Kessels, U. (2019). Do teachers' beliefs about math aptitude and brillance explain gender differences in children's math ability self-concept? Front. Educ, 4. doi:10.3389/feduc.2019.00034 | |
dc.relation | Ispas, D., & Borman, W. (2015). Personnel Selection, Psychology of. International Encyclopedia of Social and Behavioral Sciences. | |
dc.relation | Ispas, D., Iliescu, D., Ilie, A., & Johnson, R. (2010). Examining the criterion related validity of the general mental ability measure for adults: a two sample investigation. International Journal of Selection and Assessment, 224-227. | |
dc.relation | Jacobs, J., Ahmad, S., & Sax, L. (2016). Planning a career in engineering: parental effects on sons and daughters. Social sciences. | |
dc.relation | Judge, G., Carter, R., Griffiths, W., Lütkepohl, H., & Lee, T.-C. (1988). Introduction to the theory and practice of econometrics. Wiley. | |
dc.relation | Kahn, S., & Ginther, D. (2017). Women and STEM. NBER Working Paper No. w23525. | |
dc.relation | Kell, H., Lubinski, D., Benbow, C., & Steiger, J. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 1831-1836. | |
dc.relation | Legewie, J., & DiPetre, T. (2014). The high school environment and the gender gap in science and engineering. Sociology of Education, 259-280. | |
dc.relation | Lent, R., Brown, S., & Hackett, G. (2002). Social cognitive career theory. En D. B. Associates, Career choice and development (Fourth ed., pág. 556). San Francisco: Wiley Company. | |
dc.relation | Londoño, E. (2015). Interacciones de género estudiante-profesor, deserción y rendimiento académico en Colombia. Bogotá: Universidad del Rosario. | |
dc.relation | MacKenzie, D., Nichols, J., Royle, A., Pollock, K., Bailey, L., & Hines, J. (2018). Fundamental principals of statistical inference. En D. MacKenzie, J. Nichols, A. Royle, K. Pollock, L. Bailey, & J. Hines, Ocuppancy estimation and modelling (págs. 71-111). Academic Press. | |
dc.relation | Martin, V., Hurn, S., & Harris, D. (2012). Properties of maximum likelihood estimators. En V. Martin, S. Hurn, & D. Harris, Econometric modelling with time series specification, estimation and testing (págs. 33-86). Cambridge University Press. | |
dc.relation | Martin, W., Moakler, J., & Mikyong, M. K. (2014). College Major Choice in STEM: Revisiting Confidence and Demographic Factors. The Career Development Quarterly, 128-143. | |
dc.relation | Ministerio de Educación Nacional. (2014). Sistema Nacional de Indicadores Educativos Para Los Niveles de Preescolar, Básica y Media en Colombia. Bogotá: Ministerio de Educación Nacional. | |
dc.relation | Ministerio de Educación Nacional. (Junio de 2019). Tasa de transito inmediato. Información nacional de educación superior 2010-2018 . Bogotá. | |
dc.relation | Ministerio de Educación Nacional. (s.f.). Observatorio laboral para la educación: Graduados por núcleo básico de conocimiento. Obtenido de Observatorio laboral para la educación: http://bi.mineducacion.gov.co:8080/o3web/viewdesktop.jsp?cmnd=open&source=Perfil+Graduados%2FGraduados+por+N%FAcleo+B%E1sico+de+Conocimiento | |
dc.relation | Ministerio de Educación Nacional; ICFES. (2017). Informe Nacional de Resultados Colombia en PISA 2015. Bogotá D.C.: ICFES. | |
dc.relation | Moakler, M. W., & Kim, M. M. (2014). College Major Choice in STEM: Revisiting Confidence and Demographic Factors. The Career Development Quarterly, 128-142. | |
dc.relation | Morgenroth, T., & Ryan, M. (2015). The motivational theory of role modeling: how role models influence role aspirant's goals. Review of General Psychology, 465-483. | |
dc.relation | Nix, S., Perez-Felkner, L., & Kirby, T. (2015). Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields. Frontiers in Psychology. | |
dc.relation | Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C., & Nelson, C. (2015). A Model of Factors Contributing to STEM Learning and Career Orientation. International Journal of Science Education , 1067-1088 . | |
dc.relation | OECD. (2009). Replicate weights. En OECD, PISA Datan analysis manual:SAS. OECD. | |
dc.relation | OECD. (2016). PISA 2015 Results excellence and equity in education . | |
dc.relation | OECD. (2017). Education indicators in focus. OECD. | |
dc.relation | OECD. (2017). Scaling procedures and construct validation of context questionnaire data. | |
dc.relation | OECD; World Bank. (2012). Reviews of National Policies for Education: Tertiary Eduation in Colombia 2012. OECD Publishing. | |
dc.relation | Ones, D., Dilchert, S., & Viswesvaran, C. (2012). Oxford Handbook of Personnel Assessment and Selection. New York: Oxford University | |
dc.relation | Pacheco, V. (2016). La ingenieria del futuro es un juego de niñas. | |
dc.relation | Paredes, V. (2014). A teacher like me or a student like me? role model versus teacher bias effect. Economics of education, 38-49. | |
dc.relation | Park, G., Lubinski, D., & Benbow, C. (2007). Contrasting intellectual patterns predict creativity in the arts and sciences: Tracking intellectually precocious youth over 25 years. Psychological Science, 948-952. | |
dc.relation | Romero, J. (2010). El éxito económico de los costeños en Bogotá: migración interna y capital humano. Documentos de trabajo sobre economía regional. | |
dc.relation | Rothwell, J. (2014). Still searching: job vacancies and STEM skills. Nueva York: Metropolitan policy program Brookings. | |
dc.relation | Sahin, A., Ekmekci, A., & Waxman, H. (2017). The relationships among high school STEM learning experiences, expectations, and mathematics and science efficacy and the likelihood of majoring in STEM in college. International Journal of Science Education, 1549-1572. | |
dc.relation | Sansone, D. (2017). Why Does Teacher Gender Matter? Economics of Education Review. | |
dc.relation | Snijders, T., & Berkhof, J. (2008). Diagnostic checks for multilevel models. En J. Leeuw, E. Meijer, & H. Goldstein, Handbook of multilevel analysis (págs. 77-141). New York: Springer. | |
dc.relation | Sonnert, G. (2009). Parents Who Influence Their Children to Become Scientists: Effects of Gender and Parental Education. Social Studies of Science, 927-941. | |
dc.relation | Stout, J., Dasgupta, N., Hunsinger, M., & McManus, M. (2011). STEMing the tide: using ingroup experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 255-270. | |
dc.relation | Tacsir, E., Grazzi, M., & Castillo, R. (2014). Women in Science and Technology: What Does the Literature Say? Washington D.C.: BID. | |
dc.relation | Thomson, S., De Bortoli, L., & Underwood, C. (2017). PISA 2015: Reporting Australia's results. Australian Council for Educational Research. | |
dc.relation | UNESCO. (2013). ISCED Fields of Education and Training 2013 (ISCED-F 2013). Paris: UNESCO. | |
dc.relation | UNESCO Institute for Statistics. (2019). Researchers by field of R&D and sex (FTE and HC): UNESCO Institute for Statistics Sustainable Development Goals. Obtenido de UNESCO: Institute for Statistics Sustainable Development Goals: http://data.uis.unesco.org/index.aspx?queryid=118&export# | |
dc.relation | Valla, J., & Ceci, S. (2014). Breadth-based models of women’s underrepresentation in STEM fields: An integrative commentary on Schmidt (2011) and Nye et al. (2012). Perspectives on Psychological Science, 219-224. | |
dc.relation | Vázquez-Alonso, Á., & Manassero-Mas, M.-A. (2016). La voz de los estudiantes de primer año en seis países: evaluación de sus experiencias en estudios superiores científico-técnicos. Ciênc. Educ, 391-411. | |
dc.relation | Wang, M., & Degol, J. (2014). Motivational pathways to STEM career choices: using expectancy - value perspective to understand individual and gender differences in STEM fields. Developmental Review, 304-340. | |
dc.relation | Wang, M., & Degol, J. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): current knowledge, implications for practice, policy, and future directions. Educational psycology review, 119-140. | |
dc.relation | Wang, M., Eccles, J., & Kenny, S. (2013). Not lack of ability but more choice: individual and gender differences in STEM career choice . Psychological Science, 770-775. | |
dc.relation | Wang, M.-T., Ye, F., & Degol, J. L. (2016). Who Chooses STEM Careers? Using A Relative Cognitive Strength and Interest Model to Predict Careers in Science, Technology, Engineering, and Mathematics. Journal Youth Adolescence. | |
dc.relation | Zubieta, J. (2006). Women in Latin American Science and Technology: A Window Of Opportunity. En OECD, Women in Scientific Careers: Unleashing the Potential. Paris: OECD. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Elección de carrera: efecto de la interacción entre alumnas y maestras de las áreas Ciencia, Tecnología, Ingeniería Y Matemáticas (CTIM) en Colombia 2015 | |
dc.type | Otro | |