dc.contributorMurillo Feo, Carol Andrea
dc.contributorBernal Granados, Gabriel Andrés
dc.creatorVanegas Camero, José Miguel
dc.date.accessioned2020-10-01T15:26:48Z
dc.date.available2020-10-01T15:26:48Z
dc.date.created2020-10-01T15:26:48Z
dc.date.issued2020-09-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78516
dc.description.abstractSe realizaron cinco ensayos en mesa vibratoria de un modelo físico compuesto por un suelo blando fabricado en laboratorio con caolín y un oscilador de un grado de libertad, instrumentando el modelo con acelerómetros a lo largo del perfil de suelo y en el oscilador. También se realizaron modelos analíticos, donde se modelaron las mismas condiciones y parámetros del modelo físico, utilizando el método lineal equivalente, método Thomson Haskell y diez diferentes modelos de degradación de suelos para evaluar la respuesta dinámica (movimiento) del modelo frente a las excitaciones generadas durante los ensayos. Al final del trabajo se contrastaron los resultados de la modelación experimental y analítica, se evaluó la variabilidad de la respuesta analítica en función de los modelos de degradación y se definió cual modelo de degradación representó mejor la respuesta experimental.
dc.description.abstractFive tests were carried out on a shaking table of a physical model made up of a soil made in the laboratory with kaolin and an oscillator with one degree of freedom, instrumenting the model with accelerometers along the soil profile and in the oscillator. Analytical models were also carried out, where the same conditions and parameters of the physical model were modeled, using the equivalent linear method, the Thomson Haskell method, and ten different soil degradation models to evaluate the dynamic response (movement) of the model generated by the same excitations than the experimental model. At the end of this work, the results of the experimental and analytical modeling were compared, the variability of the analytical response was evaluated based on the degradation models and it was defined which degradation model represented better the experimental response.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAl-Qaisi, Z. (2016). Optimal design of concrete gravity dams of random soil. PhD Thesis, University of Technology, Baghdad.
dc.relationAl, M., Emeriault, F., & Nghiem, H. (2020). On the use of 1 g physical models for ground movements and soil-structure interaction problems. Journal of Rock Mechanics and Geotechnical Engineering, 12(1), 197–211.
dc.relationAlcaldía Mayor de Bogotá. (1997). Microzonificación Sísmica de Bogotá. Bogotá D.C., Colombia.
dc.relationAlcaldía Mayor de Bogotá. (2006). Zonificación de la respuesta sísmica de bogotá para el diseño sismo resistente de edificaciones. Bogotá D.C., Colombia.
dc.relationAlcaldía Mayor de Bogotá. (2010). Decreto 523 de 2010 Microzonificación Bogotá. Bogotá D.C., Colombia.
dc.relationAlfredo, M., & Rodríguez, O. (2017). Cambios en las propiedades dinámicas del suelo observados en registros de aceleración de pozo. Tesis pregrado. Universidad Nacional Autónoma de México.
dc.relationAlvarez-Rozo, D. C., Sánchez-Molina, J., Corpas-Iglesias, F. A., & Gelves, J. F. (2018). Characteristics of the raw materials used by the companies of the ceramic sector of the metropolitan area of Cúcuta (Colombia). Boletin de La Sociedad Espanola de Ceramica y Vidrio, 57(6), 247–256.
dc.relationAlvarez, E. (1989). Respuesta dinámica de suelos. Revista Física de La Tierra, 1, pp 309-355.
dc.relationAnderson, D. G., & Richart, F. F. (1976). Effect of straining on shear modulus of clays. Journal of Geotechnical Engineering Division, 102(9):, pp 975-987.
dc.relationAsad, H. H., Shamkhi, M., & Al-hachami, K. (2018). Design, Manufacturing and Testing of Small Shaking Tabl. International Journal of Engineering & Technology, 7, pp 426-430.
dc.relationAsociación Colombiana de Ingeniería Sísmica. (2010). Normas Colombianas de Diseño y Construcción Sismo-Resistente. Bogotá D.C., Colombia.
dc.relationASTM E8 / E8M-16ae1. (2016). , Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, Www.Astm.Org.
dc.relationBairrao, R., & Vaz, C. (2000). Shaking table testing of civil engineering structures–the LNEC 3D simulator experience. 12th World Conference on Earthquake Engineering. Auckland, New Zeland.
dc.relationBalachandran, B., & Magrab, E. (2009). Vibrations (2nd ed.). Cengage learning.
dc.relationBao, Z., Yong, Y., & Haitao, Y. (2016). Multi-point shaking table test design for long tunnels under non-uniform seismic loading. Tunelling and Underground Space Technology, 59, 114–126.
dc.relationBernal, G. (2014). Strong Motion Analyst. Computer program for seismological data processing. Next-generation CAPRA Software, Ingeniar CAD/CAE Ltda. Bogotá, Colombia.
dc.relationChau et al. (2009). Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses. Soil Dynamics and Earthquake Engineering, 29(2), 300–310.
dc.relationChávez, F. J., & Montalva, G. A. (2014). Efectos de sitio para Ingenieros Geotécnicos , estudio del valle Parkway Introducción. Obras y Proyectos, 6, pp 6-30.
dc.relationChopra, A. K. (1995). Dynamics of Structures-Theory and Applications to Earthquake Engineering. Universidad de California, Berkeley. USA: Prentice Hall.
dc.relationChowdhury, I., & Dasgupta, S. (2009). Dynamics of Structures and Foundations. London: CRC Press.
dc.relationClemente, O. J. G., Díaz, M. B., Del Valle Millán Boadas, Z., & Carrera, J. M. (2014). Caracterización de las arenas y arcillas minerales de los depósitos de canal y planicie de inundación del río Portuguesa, Venezuela. Investigaciones Geograficas, 85, 18–32.
dc.relationDarendeli, M. (2001). Development of a new family of normalized modulus reduction and material damping curves. PhD Thesis. University of Austin Texas.
dc.relationDouglas, J. (2018). Ground motion prediction equations 1964-2018. Universidad de Strathelyde.
dc.relationElia, G., & Rouainia, M. (2016). Investigating the cyclic behaviour of clays using a kinematic hardening soil model. Soil Dynamics and Earthquake Engineering, 88, pp 399-411.
dc.relationEspinosa, M. (2017). Análisis De La Demanda Sísmica De Diferentes Tipos De Sismos En Base A La Atenuación De Alta Frecuencia. Tesis pregrado. Universidad de Chile.
dc.relationFOPAE. (2010). Zonificación De La Respuesta Sísmica De Bogotá Para El Diseño Sismo Resistente De Edificaciones. Alcaldía Mayor de Bogotá.
dc.relationGalván García, E., & Auvinet Guichard, G. (2011). Modelo geoestadístico y geotécnico de la generación de emanaciones de hidrocarburos en el fondo marino de la Sonda de Campeche. Ingeniería Investigación y Tecnología, XII Núm. 2, pp 223-234.
dc.relationGarcía Florez, M. (2006). Propuesta de clasificación geotécnica del “ Efecto Sitio ” ( Amplificación Sísmica ) de las formaciones geológicas de la Región de Murcia. pp 39-42.
dc.relationGarcía Reyes, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. Bogotá D.C., Colombia: Universidad de los Andes.
dc.relationGasparre, A. (2005). Advanced laboratory characterisation of London Clay. PhD Thesis. Imperial College London.
dc.relationGazetas, G., & Mylonakis, G. (1998). Seismic soil-structure interaction: new evidence and emerging issues. Geotechnical Earthquake Engineering and Soil Dynamics III, 1119–1174. Reston, Virginia.
dc.relationGeorgiannou et. al. (1991). Static and dynamic measurements of undrained stiffness on natural overconsolidated clays. Proceedings 10th European Conference on Soil Mechanics & Foundation Engineering, 91–95. Rotterdam, Netherlands.
dc.relationGhezelbash, A., Beyer, K., Dolatshahi, K., & Yekrangnia, M. (2020). Shake table test of a masonry building retrofitted with shotcrete. Engineering Structures, 219(110912).
dc.relationGodoy, C. A. (2013). Estudio de la respuesta de sitio en Santiago utilizando el método lineal equivalente. Tesis de Maestría. Universidad de Chile.
dc.relationGoktepe, F., Sahin, M., & Celebi, E. (2020). Small shaking table testing and numerical analysis of free-field site response and soil-structure oscillation under seismic loading. Bulletin of Engineering Geology and the Environment, 79, 2949–2969.
dc.relationGroholski, D. R., Hashash, Y. M. A., & Matasovic, N. (2014). Learning of pore pressure response and dynamic soil behavior from downhole array measurements. Soil Dynamics and Earthquake Engineering, 61–62, 40–56.
dc.relationGuobo, W., Mingzhi, Y., Yu, M., Jun, W., & Yaxi, W. (2018). Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. 76(September 2017), 145–159. https://doi.org/10.1016/j.tust.2018.03.015
dc.relationHaskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1):1–18.
dc.relationHurtado Gomez, J. E. (2000). Introducción a la dinámica de estructuras (1st ed.). Universidad Nacional de Colombia.
dc.relationI. Ishibashi, & Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay. Soils and Foundations, 33, 182–191.
dc.relationInman, D. (2001). Engineering Vibration (2nd ed.). New Jersey, USA: Pearson Education.
dc.relationINVIAS. (2013). Normas y especificaciones 2013.
dc.relationIshihara, K. (1996). Soil Behaviour in Earthquake Geotechnics. Oxford science publications.
dc.relationJing, J., Clifton, C., Roy, K., & Lim, J. (2020). Three-storey modular steel building with a novel slider device: Shake table tests on a scaled down model and numerical investigation. Thin-Walled Structures, 155, 106932.
dc.relationKontoe, S. (2012). Comparative study of stiffness reduction and damping curves. 15th World Conference on Earthquake Engineering. Lisbon, Portugal.
dc.relationKravhenko, N., Silacheva, N., & Kulbayeva, U. (2014). Seismic ground motion variations resulting from site conditions. Geodesy and Geodynamics, 5(2), 9–15.
dc.relationMalizia, J. P., & Shakoor, A. (2018). Effect of water content and density on strength and deformation behavior of clay soils. Engineering Geology, 244, pp 125-131.
dc.relationMansour, M. F., & Clay, P. (2018). Constitutive behaviour of Port-Said Clay under seismic and small strain static conditions. Ain Shams Engineering Journal, 9(4), pp 2983-2991.
dc.relationMeehan, T. (2018). Evolution of the propagator matrix method and its implementation in seismology. 83, c13–c26.
dc.relationMeymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. PhD Thesis. University of California, Berkeley.
dc.relationMiura, K., Kobayashi, S., & Yoshida, N. (1972). Equivalent linear analysis considering large strains. 12th World Conference on Earthquake Engineering, pp 1-8. Auckland, New Zeland.
dc.relationNing, M., Wu, H., Ma, H., Xijong, W., & Wang, G. (2019). Examining dynamic soil pressures and the effectiveness of different pile structures inside reinforced slopes using shaking table tests. Soil Dynamics and Earthquake Engineering, 116, pp 293-303.
dc.relationOlivares, L., & Quintanta, M. (2014). Análisis lineal equivalente de la respuesta sísmica de sitio en los recintos: Rubén Darío-Managua, FAREM-Chontales y FAREM-Carazo, de la UNANManagua. Universidad Autónoma de Nicaragua.
dc.relationOtsubo, M., Towhata, I., Hayashida, T., Liu, B., & Goto, S. (2016). Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials. Soils and Foundations, 56(3), 365–378.
dc.relationPhillips, E. (1869). De l’équilibre des solides élastiques. Comptes Rendus à l’Académie Des Sciences, 68.
dc.relationPrasad, S., Towhata, I., Chandradhara, G., & Nanjundaswamy, G. (2004). Shaking table tests in earthquake geotechnical engineering. Current Science, 87, pp 1398-1404.
dc.relationProulx, J., & Paultre, P. (1997). Experimental and numerical investigation of dam-reservior-foundation interaction for a large gravity dam. Canadian Journal of Civil Engineering, 24(01), pp 90-105.
dc.relationRamberg, W., & Osgood, W. (1943). Description of stress-strain curves by three parameters.pdf. National Advisory Committee for Aeronautics, Technical note No. 902.
dc.relationRamírez, G., & Ángel, T. (2017). Correlaciones entre algunas variables geotécnicas y velocidades de onda compresiva (Vp) y de corte (Vs). Tesis Pregrado. Universidad Eafit.
dc.relationRampello, S., & Silvestri, F. (1993). The stress-strain behaviour of natural and reconstituted samples of two overconsolidated clays. Geotechnical Engineering of Hard Soils-Soft Rocks, A. Anagostopoulos et Al. (Eds.), 769–778. Rotterdam, Netherlands.
dc.relationRuiz Wilches, B. (1945). Determinaciones magnéticas y gravimétricas. Universidad Nacional de Colombia, Carta Del Observatorio de Geofísica, 465–468.
dc.relationScience Learning Hub. (2015). Earth waves. Retrieved from https://www.sciencelearn.org.nz/images/353-earth-waves
dc.relationShiomi, T., Chan, A., Nukui, Y., Hijikata, K., & Koyama, K. (2000). Comparison of equivalent linear analysis and nonlinear analysis for a liquefacton problem. 12th World Conference on Earthquake Engineering. Auckland, New Zeland.
dc.relationSu, L., Tang, L., Ling, X., Liu, C., & Zhang, X. (2016). Pile response to liquefaction-induced lateral spreading: A shake-table investigation. Soil Dynamics and Earthquake Engineering, 82, 196–204.
dc.relationSuarez Alfaro, M. (2004). Modelos de comportamiento dinámico para las arcillas de Bogotá. Tesis Maestría. Universidad de los Andes.
dc.relationSubramaniam, P., & Banerjee, S. (2013). Shear modulus degradation model for cohesive soils. Soil Dynamics and Earthquake Engineering, 53, 210–216.
dc.relationTaylor, C., Dar, A., & Crewe, A. (1995). Shaking table modelling of seismic geotechnical problems. 10th European Conference on Earthquake Engineers, 441–446. Vienna, Austria.
dc.relationThomson, W. T. (1950). Transmission of Elastic Waves through a Stratified Solid Medium. Journal of Applied Physics, 21(2):89–9.
dc.relationThorby, D. (2008). Structural Dynamics and Vibration Practice. Butterworth-Heinemann: Elsevier.
dc.relationTinawi, R., Leger, P., & Lecler, M. (2000). Seismic response of gravity dams-correlations between shaking table tests and numerical analysis. 12th World Confernce on Earthquake Engineering, 1–8.
dc.relationUNAM. (2005). Capítulo iii Determinación de Efectos de Sitio. 36–68.
dc.relationVardanega, P. J., & Bolton, M. D. (2014). Stiffness of Clays and Silts : Modeling Considerations. Journal of Geotechnical & Geoenvironmental Engineering, 139, pp 1575-1589.
dc.relationVerdugo, R. (2000). Dinámica de Suelos: Amplificación sísmica. CI-79F DINAMICA DE SUELOS, 1–37.
dc.relationVerdugo, R., Ochoa-Cornejo, F., Gonzalez, J., & Vallardes, G. (2018). Site effect and site classification in areas with large earthquakes. Soil Dynamics and Earthquake Engineering.
dc.relationVerruijt, A. (2010). An Introduction to Soil Dynamics (Springer). Delft University of Technology.
dc.relationVucetic, M., & Dobry, R. (1991). Effect on soil plasticity in cyclyc response. Journal of Geotechnical Engineering, 117(1), 89–107.
dc.relationZampieri, A. (2016). Seismic Behavior Analysis of Concrete Highway Bridges Based on Field Monitoring and Shaking Table Test Data. Phd Thesis. Columbia University.
dc.relationZhang, J., Andrus, R., & Juang, H. (2005). Normalized Shear Modulus and Material Damping Ratio Relationships. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol 131, 453–464.
dc.relationZhang, X., Chen, H., Li, X., Yan, W., & Chen, S. (2017). Shaking table test of immersed tunnel considering the geological condition. Engineering Geology, 227, 93–107.
dc.relationZhang, Z., & Qin, X. (2017). Experimental study on damping characteristics of soil-structure interaction system based on shaking table test. Soil Dynamics and Earthquake Engineering, 98(September 2016), 183–190.
dc.relationZhi, Z., Xiajoun, L., Riqing, L., & Chenning, S. (2019). Shaking table tests and numerical simulations of a small radius curved bridge considering SSI effect. Soil Dynamics and Earthquake Engineering, 118, pp 1-18.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleModelación experimental y analítica del comportamiento dinámico de un suelo blando
dc.typeOtro


Este ítem pertenece a la siguiente institución