dc.contributorCortés Romero, John Alexander
dc.contributorDorado Rojas, Sergio
dc.creatorAguilar Pérez, Santiago
dc.date.accessioned2022-06-29T18:30:04Z
dc.date.available2022-06-29T18:30:04Z
dc.date.created2022-06-29T18:30:04Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81667
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLas metodologías para diseño de controladores basadas en modelo requieren un alto nivel de conocimiento del sistema dinámico para poder diseñar una ley de control, en contraste de las metodologías basadas en error; estos enfoques pueden limitar la aplicación de metodologías de control óptimo, dado que para ciertas situaciones puede ser difícil establecer un modelo que describa al sistema dinámico adecuadamente, así mismo, para modelos muy rigurosos existen dificultadas asociadas a resolver el problema de optimización y para metodologías basadas en error el desempeño no siempre es el deseado. Como alternativa, este trabajo propone una metodología de control óptimo para sistemas diferencialmente planos no lineales, basado en control por rechazo activo de perturbaciones (ADRC - por sus siglas en inglés active disturbance rejection control), el cual es usado para estimar y rechazar las incertidumbres y perturbaciones (internas y externas) a partir de un modelo simplificado que permite plantear un problema de optimización. Luego, se sintetiza el controlador empleando la metodología de control predictivo basado en modelo (MPC - por sus siglas en inglés model predictive control). A través de distintos casos de estudio, se validan y evalúan algunas características de las estructuras asociadas a la metodología de control propuesta. Finalmente se logra establecer una metodología de control que otorga al sistema dinámico un comportamiento estable y robusto, mientras minimiza una función de costo de desempeño. (Texto tomado de la fuente).
dc.description.abstractMethodologies for model-based controller design require a high level of knowledge of the dynamic system in order to design a control law, as opposed to error-based methodologies; these approaches may limit the application of optimal control methodologies, as for certain situations it may be difficult to establish a model that describes the dynamic system properly, also, for very rigorous models there are difficulties associated with solving the optimization problem and for error-based methodologies performance is not always desired. As an alternative, this paper proposes an optimal control methodology for differentially flat non-linear systems, based on active disturbance rejection control (ADRC), which is used to estimate and reject uncertainties and disturbances (internal and external) from a simplified model that allows to pose an optimization problem for design. The controller is then synthesized using model predictive control (MPC). Through different case studies, some characteristics of the structures associated with the proposed control methodology are validated and evaluated. Finally, it is possible to establish a control methodology that gives the dynamic system a stable and robust behavior, while minimizing a performance cost function.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAboelhassan, A., Diab, A. M., Galea, M., y Bozhko, S. (2020, 11). Investigating electrical drive performance employing model predictive control and active disturbance rejection control algorithms. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). doi: 10.23919/ICEMS50442.2020.9291218
dc.relationAhmad, S., Deo, B., y Ali, A. (2019, 12). Modified active disturbance rejection control for improved performance. 2019 Sixth Indian Control Conference (ICC), 496-501. doi: 10.1109/ICC47138.2019.9123202
dc.relationAng, K. H., Chong, G., y Li, Y. (2005, 7). Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13, 559-576. doi: 10.1109/TCST .2005.847331
dc.relationBakarac, P., Klauco, M., y Fikar, M. (2018). Comparison of inverted pendulum stabilization with pid, lq, and mpc control. Proceedings of the 29th International Conference on Cybernetics and Informatics, K and I 2018, 2018-Janua, 1-6. doi: 10.1109/CYBERI .2018.8337540
dc.relationBaquero-Suáarez, M., Cortés-Romero, J., Arcos-Legarda, J., y Coral-Enriquez, H. (2019, 1). A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, 45, 7-35. doi: 10.1007/s11044-018-9614-y
dc.relationBerber, R., y Kravaris, C. (Eds.). (1998). Nonlinear model based process control. Springer Netherlands. doi: 10.1007/978-94-011-5094-1
dc.relationBorase, R. P., Maghade, D. K., Sondkar, S. Y., y Pawar, S. N. (2020). A review of pid control, tuning methods and applications. International Journal of Dynamics and Control. doi: 10.1007/s40435-020-00665-4
dc.relationBorrelli, F., Falcone, P., Keviczky, T., Asgari, J., y Hrovat, D. (2005). Mpc-based approach to active steering for autonomous vehicle systems. International Journal of Vehicle Autonomous Systems, 3, 265. doi: 10.1504/IJVAS.2005.008237
dc.relationChen, C.-T. (1995). Analog and digital control system design: Transfer-function, state-space, and algebraic methods (1.a ed.). Oxford University Press, Inc
dc.relationChen, K. (1964, 5). Quasi-linearization design of nonlinear feedback control systems. IEEE Transactions on Applications and Industry, 83, 189-195. doi: 10.1109/TAI.1964 .5407789
dc.relationCheng, D., Hu, X., y Shen, T. (2010). Linearization of nonlinear systems. En (p. 279-313). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-11550-9 10
dc.relationCoral-Enriquez, H., Cortés-Romero, J., y Ramos, G. A. (2013). Robust active disturbance rejection control approach to maximize energy capture in variable-speed wind turbines. Mathematical Problems in Engineering, 2013, 1-12. doi: 10.1155/2013/396740
dc.relationCortes-Romero, J. A., Luviano-Juarez, A., y Sira-Ramirez, H. (2009). Robust gpi controller for trajectory tracking for induction motors. 2009 IEEE International Conference on Mechatronics, 1-6. doi: 10.1109/ICMECH.2009.4957221
dc.relationCortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H., y Sira-Ram´ırez, H. (2017, 4). Algebraic estimation and active disturbance rejection in the control of flat systems. Control Engineering Practice, 61. doi: 10.1016/j.conengprac.2017.02.009
dc.relationda xue (1993), D., kuang ye da xue., Z., Chapter., I. S. S. I. E., y Society., I. C. S. (2010). 2010 chinese control and decision conference : New century grand hotel, xuzhou, china, 26-28 may 2010. IEEE Industrial Electronics (IE) Chapter.
dc.relationDorado-Rojas, S. A. (2018). Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation (Tesis Doctoral no publicada). Universidad Nacional de Colombia.
dc.relationDorado-Rojas, S. A., Cortes-Romero, J., Rivera, S., y Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan PowerTech. doi: 10.1109/PTC.2019.8810873
dc.relationDu, H. (2006). Application of smartplant pid software in petrochemical projects. Petroleum Refinery Engineering, 36, 50-52.
dc.relationElgazzar, M., y Shamekh, A. (2020). Performance comparison of mpc and pid in cstr process control. ACM International Conference Proceeding Series. doi: 10.1145/ 3410352.3410764
dc.relationFajardo, D. F. (2010). Dynamic systems simulation states space discretization. SIGMA, 1-9.
dc.relationFliess, M., L`evine, J., Martin, P., y Rouchon, P. (1995, 6). Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control, 61, 1327-1361. doi: 10.1080/00207179508921959
dc.relationFriedland, B. (1986). Control system design an introduction to state-space methods. McGrawHill.
dc.relationGaluppini, G., Magni, L., y Raimondo, D. M. (2018, 9). Model predictive control of systems with deadzone and saturation. Control Engineering Practice, 78, 56-64. doi: 10.1016/ j.conengprac.2018.06.010
dc.relationGao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference., 4989-4996. doi: 10.1109/ACC.2003 .1242516
dc.relationGao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control system design. 2006 American Control Conference, 7 pp. doi: 10.1109/ACC.2006 .1656579
dc.relationGao, Z., y Zhao, S. (2010, 9). Active disturbance rejection control for non-minimum phase systems. Proceedings of the 29th Chinese Control Conference
dc.relationGarcía, C. E., Prett, D. M., y Morari, M. (1989, 5). Model predictive control: Theory and practice|a survey. Automatica, 25. doi: 10.1016/0005-1098(89)90002-2
dc.relationGarriga, J. L., y Soroush, M. (2010, 4). Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research, 49, 3505-3515. doi: 10.1021/ie900323c
dc.relationGarzon, C. L., Cortes, J. A., y Tello, E. (2017, 4). Active disturbance rejection control for growth of microalgae in a batch culture. IEEE Latin America Transactions, 15, 588-594. doi: 10.1109/TLA.2017.7896342
dc.relationGasparetto, A., Boscariol, P., Lanzutti, A., y Vidoni, R. (2015). Path planning and trajectory planning algorithms: A general overview. En (p. 3-27). doi: 10.1007/978-3-319-14705 -5 1
dc.relationGhoumari, M. E., Tantau, H.-J., y Serrano, J. (2005, 12). Non-linear constrained mpc: Realtime implementation of greenhouse air temperature control. Computers and Electronics in Agriculture, 49. doi: 10.1016/j.compag.2005.08.005
dc.relationGuo, H., Wang, F., Chen, H., y Guo, D. (2012, 7). Stability control of vehicle with tire blowout using differential flatness based mpc method. Proceedings of the 10th World Congress on Intelligent Control and Automation. doi: 10.1109/WCICA.2012.6358216
dc.relationHan, J. (2009, 3). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56, 900-906. Descargado de http://ieeexplore.ieee.org/ document/4796887/ doi: 10.1109/TIE.2008.2011621
dc.relationHanema, J., Toth, R., y Lazar, M. (2017, 12). Stabilizing non-linear mpc using linear parameter-varying representations. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). doi: 10.1109/CDC.2017.8264185
dc.relationHedengren, J. (2022). Temperature control lab. Descargado de http://apmonitor.com/ pdc/index.php/Main/ArduinoTemperatureControl
dc.relationHuang, Y., y Xue, W. (2014, 7). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53, 963-976. doi: 10.1016/j.isatra.2014.03.003
dc.relationHuang, Z., Liu, Y., Zheng, H., Wang, S., Ma, J., y Liu, Y. (2018, 7). A self-searching optimal adrc for the pitch angle control of an underwater thermal glider in the vertical plane motion. Ocean Engineering, 159, 98-111. doi: 10.1016/j.oceaneng.2018.04.010
dc.relationJiang, J., Zhen, X., Li, Q., Wang, W., Jin, Q., y Pan, L. (2006). The applications of model pid or imc-pid advanced process control to refinery and petrochemical plants. WMSCI 2006 - The 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Jointly with the 12th International Conference on Information Systems Analysis and Synthesis, ISAS 2006 - Proc., 7, 449-461.
dc.relationJiang, L., Kong, X., Yang, Q., y Shao, F. (2010, 5). Application of compound pid controller in the boiler. 2010 Chinese Control and Decision Conference, 2725-2728. Descargado de http://ieeexplore.ieee.org/document/5498718/ doi: 10.1109/ CCDC.2010.5498718
dc.relationJiang, Y., y Jiang, Z.-P. (2012, 10). Computational adaptive optimal control for continuoustime linear systems with completely unknown dynamics. Automatica, 48, 2699-2704. doi: 10.1016/j.automatica.2012.06.096
dc.relationJichkar, C., y Sondkar, S. (2017). Comparative study of real time implementation of labview based mpc controller and pid controller for flow control loop. 2017 2nd International Conference for Convergence in Technology, I2CT 2017, 2017-Janua, 464-470. doi: 10.1109/I2CT.2017.8226172
dc.relationKang, C., Wang, S., Ren, W., Lu, Y., y Wang, B. (2019). Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access, 7 , 59862-59870. doi: 10.1109/ACCESS.2019.2909087
dc.relationKirk, D. E. (1998). Optimal control theory. Dover Publications, Inc.
dc.relationKouvaritakis, B., y Cannon, M. (2016). Mpc with no model uncertainty. En (p. 13-64). doi: 10.1007/978-3-319-24853-0 2
dc.relationKumar, A. S., y Ahmad, Z. (2012, 4). Model predictive control (mpc) and its current issues in chemical engineering. Chemical Engineering Communications, 199 , 472-511. doi: 10.1080/00986445.2011.592446
dc.relationLakshmi, K., Rajesh, T., Anusuya, D., Prowince, P. G., y Pranesh, B. (2019). Design and implementation of multivariable quadruple tank system with different pid tuning control techniques. Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering, ICACCE 2019 . doi: 10.1109/ ICACCE46606.2019.9079983
dc.relationLi, S., Yang, J., Chen, W.-H., y Chen, X. (2012, 12). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59 . doi: 10.1109/TIE.2011.2182011
dc.relationLi, Z., Ma, X., Li, Y., Meng, Q., y Li, J. (2019, 12). Adrc-esmpc active heave compensation control strategy for offshore cranes. Ships and Offshore Structures. doi: 10.1080/ 17445302.2019.1703388
dc.relationLiu, G., Shi, P., Han, J., Rees, D., y Xia, Y. (2007, 1). Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory & Applications, 1 , 75-81. doi: 10.1049/iet-cta:20050138
dc.relationLuenberger, D. (1971, 12). An introduction to observers. IEEE Transactions on Automatic Control, 16 . doi: 10.1109/TAC.1971.1099826
dc.relationLuenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8 . doi: 10.1109/TME.1964.4323124
dc.relationLuenberger, D. G. (1979). Introduction to dynamic systems - theory, models, and applications. John Wiley & Sons, Inc.
dc.relationLv, T., Yang, Y., y Chai, L. (2019, 7). Extended state observer based mpc for a quadrotor helicopter subject to wind disturbances. 2019 Chinese Control Conference (CCC), 8206-8211. doi: 10.23919/ChiCC.2019.8865370
dc.relationL´evine, J. (2011, 1). On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22 , 47-90. doi: 10.1007/ s00200-010-0137-x
dc.relationMagni, L., Raimondo, D. M., y Allg¨ower, F. (Eds.). (2009). Nonlinear model predictive control (Vol. 384). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01094-1
dc.relationMagni, L., y Scattolini, R. (2005, 6). On the solution of the tracking problem for nonlinear systems with mpc. International Journal of Systems Science, 36 . doi: 10.1080/ 00207720500139666
dc.relationMata, S., Zubizarreta, A., Nieva, I., Cabanes, I., y Pinto, C. (2020, 8). Control mpc basado en un modelo ltv para seguimiento de trayectoria con estabilidad garantizada. XXXVIII Jornadas de Autom´atica: Gij´on, 6, 7, y 8 de septiembre de 2017, 122-129. doi: 10 .17979/spudc.9788497497749.0122
dc.relationMayne, D., Rawlings, J., Rao, C., y Scokaert, P. (2000, 6). Constrained model predictive control: Stability and optimality. Automatica, 36. doi: 10.1016/S0005-1098(99)00214 -9
dc.relationMayne, D. Q. (1995). Optimization in model predictive control. En (p. 367-396). Springer Netherlands. doi: 10.1007/978-94-011-0135-6 15
dc.relationMichalek, M. M. (2016, 7). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. 2016 American Control Conference (ACC), 1536-1541. doi: 10.1109/ACC.2016.7525134
dc.relationNieuwstadt, M. V., Rathinam, M., y Murray, R. (1994). Differential flatness and absolute equivalence. Proceedings of 1994 33rd IEEE Conference on Decision and Control, 326-332. doi: 10.1109/CDC.1994.410908
dc.relationOgata, K. (2010). Modern control engineering (5th ed.). Pearson
dc.relationPan, W., Xiao, H., y Wang, C. (2010, 10). Design of ship course controller based on optimal active disturbance rejection technique. 2010 International Conference on Intelligent System Design and Engineering Application, 582-585. doi: 10.1109/ISDEA.2010.294
dc.relationParaskevopoulos, P. (2002). Modern control engineering. CRC Press
dc.relationParastiwi, A., y Ekojono. (2016, 7). Design of spray dryer process control by maintaining outlet air temperature of spray dryer chamber. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 619-622. doi: 10.1109/ ISITIA.2016.7828731
dc.relationPark, J., Martin, R. A., Kelly, J. D., y Hedengren, J. D. (2020, 4). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical Engineering, 135. doi: 10.1016/J.COMPCHEMENG.2020.106736
dc.relationPetersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014a, 10). Application of constrained linear mpc to a spray dryer. 2014 IEEE Conference on Control Applications (CCA), 2120-2126. doi: 10.1109/CCA.2014.6981616
dc.relationPetersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014b, 12). Economic optimization of spray dryer operation using nonlinear model predictive control. 53rd IEEE Conference on Decision and Control, 6794-6800. doi: 10.1109/ CDC.2014.7040456
dc.relationQing, W., Nannan, S., Jaqing, W., y Jing, Y. (2008). On the application of optimal adrc in main steam temperature control system. Proceedings of the 27th Chinese Control Conference, CCC , 763-767. doi: 10.1109/CHICC.2008.4605731
dc.relationRossiter, J. (2005). Model-based predictive control (J. Rossiter, Ed.). CRC Press. doi: 10.1201/9781315272610
dc.relationShengyong, L. (2019). Optimal control of spraying and drying temperature in production line based on active disturbance rejection control technique. International Journal of Performability Engineering, 15 . doi: 10.23940/ijpe.19.10.p20.27352743
dc.relationShi, H.-J., y Nie, X.-C. (2021, 4). Composite control for disturbed direct-driven surfacemounted permanent magnet synchronous generator with model prediction strategy. Measurement and Control. doi: 10.1177/00202940211010829
dc.relationSira-Ramirez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2011, 1). Control lineal robusto de sistemas no lineales. Revista iberoamericana de autom´atica e inform´atica industrial, 8 , 14-28. doi: 10.4995/RIAI.2011.01.04
dc.relationSira-Ram´ırez, H. (2004). Differentially flat systems. CRC Press. doi: 10.1201/ 9781482276640
dc.relationSira-Ram´ırez, H. (2018, 11). From flatness, gpi observers, gpi control and flat filters to observer-based adrc. Control Theory and Technology, 16 . doi: 10.1007/s11768-018 -8134-x
dc.relationSira-Ram´ırez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2012, 5). Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a chua’s circuit. International Journal of Control, 85 , 594-602. doi: 10.1080/00207179.2012.660196
dc.relationSira-ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neira, M., y Zurita-Bustamente, W. (2017). Differential flatness. En (p. 285-297). Elsevier. doi: 10.1016/B978-0-12-849868-2.00015 -0
dc.relationSira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017a). Generalities of adrc. En (p. 13-50). Elsevier. doi: 10.1016/B978-0-12-849868 -2.00002-2
dc.relationSira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017b). Merging flatness, gpi observation, and gpi control with adrc. En (p. 51-107). Elsevier. doi: 10.1016/B978-0-12-849868-2.00003-4
dc.relationSlotine, J.-J. E., y Weiping, L. (1991). Applied nonlinear control. Prentice Hall
dc.relationSuhail, S. A., Bazaz, M. A., y Hussain, S. (2021, 10). Mpc based active disturbance rejection control for automated steering control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 . doi: 10.1177/09544070211004506
dc.relationSun, L., Hua, Q., Shen, J., Xue, Y., Li, D., y Lee, K. (2017, 8). A combined voltage control strategy for fuel cell. Sustainability, 9 . doi: 10.3390/su9091517
dc.relationTian, G., y Gao, Z. (2007, 10). Frequency response analysis of active disturbance rejection based control system. 2007 IEEE International Conference on Control Applications, 1595-1599. doi: 10.1109/CCA.2007.4389465
dc.relationVarghese, E. S., Vincent, A. K., y Bagyaveereswaran, V. (2017, 11). Optimal control of inverted pendulum system using pid controller, lqr and mpc. IOP Conference Series: Materials Science and Engineering, 263 , 052007. doi: 10.1088/1757-899X/263/5/052007
dc.relationVelasco, F. H., Candelo-Becerra, J., y Santamar´ıa, A. R. (2018, 12). Dynamic analysis of a permanent magnet dc motor using a buck converter controlled by zad-fpic. Energies,11, 3388. doi: 10.3390/en11123388
dc.relationWarren, A., y Marlin, T. (2004). Constrained mpc under closed-loop uncertainty. Proceedings of the 2004 American Control Conference, 4607-4612 vol.5. doi: 10.23919/ACC.2004 .1384037
dc.relationWenjie, W., Zhen, H., Rui, C., Feiteng, J., y Huiming, S. (2018, 8). Trajectory tracking control design for uav based on mpc and active disturbance rejection. 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). doi: 10.1109/GNCC42960 .2018.9019022
dc.relationWu, H., Zhang, L., Yang, J., y Li, S. (2017, 7). Model predictive control for dc-dc buck power converter-dc motor system with uncertainties using a gpi observer. 2017 36th Chinese Control Conference (CCC). doi: 10.23919/ChiCC.2017.8028129
dc.relationYamamoto, T., Kawada, K., Kugemoto, H., y Kutsuwa, Y. (2009). Design and industrial applications of a control performance assessment based pid controller. IFAC Proceedings Volumes (IFAC-PapersOnline), 15, 729-734. doi: 10.3182/20090706-3-FR-2004.0162
dc.relationYan, Y., Yang, J., Sun, Z., Li, S., y Yu, H. (2020, 1). Non-linear-disturbance-observerenhanced mpc for motion control systems with multiple disturbances. IET Control Theory & Applications, 14. doi: 10.1049/iet-cta.2018.5821
dc.relationYang, H., Guo, M., Xia, Y., y Sun, Z. (2020, 1). Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control. International Journal of Robust and Nonlinear Control, 30. doi: 10.1002/rnc.4750
dc.relationYang, J., Cui, H., Li, S., y Zolotas, A. (2018a, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386
dc.relationYang, J., Cui, H., Li, S., y Zolotas, A. (2018b, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386
dc.relationYang, J., Wu, H., Hu, L., y Li, S. (2019, 10). Robust predictive speed regulation of converterdriven dc motors via a discrete-time reduced-order gpio. IEEE Transactions on Industrial Electronics, 66, 7893-7903. doi: 10.1109/TIE.2018.2878119
dc.relationYang, Z., Wang, Z., y Yan, M. (2021, 5). An optimization design of adaptive cruise control system based on mpc and adrc. Actuators, 10, 110. doi: 10.3390/act10060110
dc.relationYoo, D., Yau, S. S.-T., y Gao, Z. (2007, 1). Optimal fast tracking observer bandwidth of the linear extended state observer. International Journal of Control, 80, 102-111. doi: 10.1080/00207170600936555
dc.relationYu, G.-R., y Hwang, R.-C. (2004). Optimal pid speed control of brush less dc motors using lqr approach. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1, 473-478. doi: 10.1109/ICSMC.2004.1398343
dc.relationZeilinger, M. N., Jones, C. N., y Morari, M. (2010, 12). Robust stability properties of soft constrained mpc. 49th IEEE Conference on Decision and Control (CDC), 5276-5282. doi: 10.1109/CDC.2010.5717488
dc.relationZhang, Z., Cheng, J., y Guo, Y. (2021, 7). Pd-based optimal adrc with improved linear extended state observer. Entropy, 23 . doi: 10.3390/e23070888
dc.relationZhao, Y., y Huang, Y. (2021, 7). Frequency properties of adrc. 2021 40th Chinese Control Conference (CCC), 6628-6633. doi: 10.23919/CCC52363.2021.9549514
dc.relationZhou, W., Shao, S. S. L., y Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, 3 , 491-508.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMetodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución