dc.contributor | Cortés Romero, John Alexander | |
dc.contributor | Dorado Rojas, Sergio | |
dc.creator | Aguilar Pérez, Santiago | |
dc.date.accessioned | 2022-06-29T18:30:04Z | |
dc.date.available | 2022-06-29T18:30:04Z | |
dc.date.created | 2022-06-29T18:30:04Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81667 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Las metodologías para diseño de controladores basadas en modelo requieren un alto nivel de conocimiento del sistema dinámico para poder diseñar una ley de control, en contraste de las metodologías basadas en error; estos enfoques pueden limitar la aplicación de metodologías de control óptimo, dado que para ciertas situaciones puede ser difícil establecer un modelo que describa al sistema dinámico adecuadamente, así mismo, para modelos muy rigurosos existen dificultadas asociadas a resolver el problema de optimización y para metodologías basadas en error el desempeño no siempre es el deseado. Como alternativa, este trabajo propone una metodología de control óptimo para sistemas diferencialmente planos no lineales, basado en control por rechazo activo de perturbaciones (ADRC - por sus siglas en inglés active disturbance rejection control), el cual es usado para estimar y rechazar las incertidumbres y perturbaciones (internas y externas) a partir de un modelo simplificado que permite plantear un problema de optimización. Luego, se sintetiza el controlador empleando la metodología de control predictivo basado en modelo (MPC - por sus siglas en inglés model predictive control). A través de distintos casos de estudio, se validan y evalúan algunas características de las estructuras asociadas a la metodología de control propuesta. Finalmente se logra establecer una metodología de control que otorga al sistema dinámico un comportamiento estable y robusto, mientras minimiza una función de costo de desempeño. (Texto tomado de la fuente). | |
dc.description.abstract | Methodologies for model-based controller design require a high level of knowledge of the dynamic system in order to design a control law, as opposed to error-based methodologies; these approaches may limit the application of optimal control methodologies, as for certain situations it may be difficult to establish a model that describes the dynamic system properly, also, for very rigorous models there are difficulties associated with solving the optimization problem and for error-based methodologies performance is not always desired. As an alternative, this paper proposes an optimal control methodology for differentially flat non-linear systems, based on active disturbance rejection control (ADRC), which is used to estimate and reject uncertainties and disturbances (internal and external) from a simplified model that allows to pose an optimization problem for design. The controller is then synthesized using model predictive control (MPC). Through different case studies, some characteristics of the structures associated with the proposed control methodology are validated and evaluated. Finally, it is possible to establish a control methodology that gives the dynamic system a stable and robust behavior, while minimizing a performance cost function. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Aboelhassan, A., Diab, A. M., Galea, M., y Bozhko, S. (2020, 11). Investigating electrical
drive performance employing model predictive control and active disturbance rejection
control algorithms. 2020 23rd International Conference on Electrical Machines and
Systems (ICEMS). doi: 10.23919/ICEMS50442.2020.9291218 | |
dc.relation | Ahmad, S., Deo, B., y Ali, A. (2019, 12). Modified active disturbance rejection control for
improved performance. 2019 Sixth Indian Control Conference (ICC), 496-501. doi:
10.1109/ICC47138.2019.9123202 | |
dc.relation | Ang, K. H., Chong, G., y Li, Y. (2005, 7). Pid control system analysis, design, and technology.
IEEE Transactions on Control Systems Technology, 13, 559-576. doi: 10.1109/TCST
.2005.847331 | |
dc.relation | Bakarac, P., Klauco, M., y Fikar, M. (2018). Comparison of inverted pendulum stabilization
with pid, lq, and mpc control. Proceedings of the 29th International Conference on
Cybernetics and Informatics, K and I 2018, 2018-Janua, 1-6. doi: 10.1109/CYBERI
.2018.8337540 | |
dc.relation | Baquero-Suáarez, M., Cortés-Romero, J., Arcos-Legarda, J., y Coral-Enriquez, H. (2019, 1). A
robust two-stage active disturbance rejection control for the stabilization of a riderless
bicycle. Multibody System Dynamics, 45, 7-35. doi: 10.1007/s11044-018-9614-y | |
dc.relation | Berber, R., y Kravaris, C. (Eds.). (1998). Nonlinear model based process control. Springer
Netherlands. doi: 10.1007/978-94-011-5094-1 | |
dc.relation | Borase, R. P., Maghade, D. K., Sondkar, S. Y., y Pawar, S. N. (2020). A review of pid control,
tuning methods and applications. International Journal of Dynamics and Control. doi:
10.1007/s40435-020-00665-4 | |
dc.relation | Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., y Hrovat, D. (2005). Mpc-based approach
to active steering for autonomous vehicle systems. International Journal of Vehicle
Autonomous Systems, 3, 265. doi: 10.1504/IJVAS.2005.008237 | |
dc.relation | Chen, C.-T. (1995). Analog and digital control system design: Transfer-function, state-space,
and algebraic methods (1.a ed.). Oxford University Press, Inc | |
dc.relation | Chen, K. (1964, 5). Quasi-linearization design of nonlinear feedback control systems.
IEEE Transactions on Applications and Industry, 83, 189-195. doi: 10.1109/TAI.1964
.5407789 | |
dc.relation | Cheng, D., Hu, X., y Shen, T. (2010). Linearization of nonlinear systems. En (p. 279-313).
Springer Berlin Heidelberg. doi: 10.1007/978-3-642-11550-9 10 | |
dc.relation | Coral-Enriquez, H., Cortés-Romero, J., y Ramos, G. A. (2013). Robust active disturbance
rejection control approach to maximize energy capture in variable-speed wind turbines.
Mathematical Problems in Engineering, 2013, 1-12. doi: 10.1155/2013/396740 | |
dc.relation | Cortes-Romero, J. A., Luviano-Juarez, A., y Sira-Ramirez, H. (2009). Robust gpi controller
for trajectory tracking for induction motors. 2009 IEEE International Conference on
Mechatronics, 1-6. doi: 10.1109/ICMECH.2009.4957221 | |
dc.relation | Cortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H., y Sira-Ram´ırez, H. (2017, 4).
Algebraic estimation and active disturbance rejection in the control of flat systems.
Control Engineering Practice, 61. doi: 10.1016/j.conengprac.2017.02.009 | |
dc.relation | da xue (1993), D., kuang ye da xue., Z., Chapter., I. S. S. I. E., y Society., I. C. S. (2010).
2010 chinese control and decision conference : New century grand hotel, xuzhou, china,
26-28 may 2010. IEEE Industrial Electronics (IE) Chapter. | |
dc.relation | Dorado-Rojas, S. A. (2018). Decentralized Load Frequency Control for a Power System
with High Penetration of Wind and Solar Photovoltaic Generation (Tesis Doctoral no
publicada). Universidad Nacional de Colombia. | |
dc.relation | Dorado-Rojas, S. A., Cortes-Romero, J., Rivera, S., y Mojica-Nava, E. (2019). ADRC for
Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE
Milan PowerTech. doi: 10.1109/PTC.2019.8810873 | |
dc.relation | Du, H. (2006). Application of smartplant pid software in petrochemical projects. Petroleum
Refinery Engineering, 36, 50-52. | |
dc.relation | Elgazzar, M., y Shamekh, A. (2020). Performance comparison of mpc and pid in cstr
process control. ACM International Conference Proceeding Series. doi: 10.1145/
3410352.3410764 | |
dc.relation | Fajardo, D. F. (2010). Dynamic systems simulation states space discretization. SIGMA,
1-9. | |
dc.relation | Fliess, M., L`evine, J., Martin, P., y Rouchon, P. (1995, 6). Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control,
61, 1327-1361. doi: 10.1080/00207179508921959 | |
dc.relation | Friedland, B. (1986). Control system design an introduction to state-space methods. McGrawHill. | |
dc.relation | Galuppini, G., Magni, L., y Raimondo, D. M. (2018, 9). Model predictive control of systems
with deadzone and saturation. Control Engineering Practice, 78, 56-64. doi: 10.1016/
j.conengprac.2018.06.010 | |
dc.relation | Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference., 4989-4996. doi: 10.1109/ACC.2003
.1242516 | |
dc.relation | Gao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control
system design. 2006 American Control Conference, 7 pp. doi: 10.1109/ACC.2006
.1656579 | |
dc.relation | Gao, Z., y Zhao, S. (2010, 9). Active disturbance rejection control for non-minimum phase
systems. Proceedings of the 29th Chinese Control Conference | |
dc.relation | García, C. E., Prett, D. M., y Morari, M. (1989, 5). Model predictive control: Theory and
practice|a survey. Automatica, 25. doi: 10.1016/0005-1098(89)90002-2 | |
dc.relation | Garriga, J. L., y Soroush, M. (2010, 4). Model predictive control tuning methods: A review.
Industrial & Engineering Chemistry Research, 49, 3505-3515. doi: 10.1021/ie900323c | |
dc.relation | Garzon, C. L., Cortes, J. A., y Tello, E. (2017, 4). Active disturbance rejection control for growth of microalgae in a batch culture. IEEE Latin America Transactions, 15,
588-594. doi: 10.1109/TLA.2017.7896342 | |
dc.relation | Gasparetto, A., Boscariol, P., Lanzutti, A., y Vidoni, R. (2015). Path planning and trajectory
planning algorithms: A general overview. En (p. 3-27). doi: 10.1007/978-3-319-14705
-5 1 | |
dc.relation | Ghoumari, M. E., Tantau, H.-J., y Serrano, J. (2005, 12). Non-linear constrained mpc: Realtime implementation of greenhouse air temperature control. Computers and Electronics
in Agriculture, 49. doi: 10.1016/j.compag.2005.08.005 | |
dc.relation | Guo, H., Wang, F., Chen, H., y Guo, D. (2012, 7). Stability control of vehicle with tire
blowout using differential flatness based mpc method. Proceedings of the 10th World
Congress on Intelligent Control and Automation. doi: 10.1109/WCICA.2012.6358216 | |
dc.relation | Han, J. (2009, 3). From pid to active disturbance rejection control. IEEE Transactions on
Industrial Electronics, 56, 900-906. Descargado de http://ieeexplore.ieee.org/
document/4796887/ doi: 10.1109/TIE.2008.2011621 | |
dc.relation | Hanema, J., Toth, R., y Lazar, M. (2017, 12). Stabilizing non-linear mpc using linear
parameter-varying representations. 2017 IEEE 56th Annual Conference on Decision
and Control (CDC). doi: 10.1109/CDC.2017.8264185 | |
dc.relation | Hedengren, J. (2022). Temperature control lab. Descargado de http://apmonitor.com/
pdc/index.php/Main/ArduinoTemperatureControl | |
dc.relation | Huang, Y., y Xue, W. (2014, 7). Active disturbance rejection control: Methodology and
theoretical analysis. ISA Transactions, 53, 963-976. doi: 10.1016/j.isatra.2014.03.003 | |
dc.relation | Huang, Z., Liu, Y., Zheng, H., Wang, S., Ma, J., y Liu, Y. (2018, 7). A self-searching optimal
adrc for the pitch angle control of an underwater thermal glider in the vertical plane
motion. Ocean Engineering, 159, 98-111. doi: 10.1016/j.oceaneng.2018.04.010 | |
dc.relation | Jiang, J., Zhen, X., Li, Q., Wang, W., Jin, Q., y Pan, L. (2006). The applications of model
pid or imc-pid advanced process control to refinery and petrochemical plants. WMSCI
2006 - The 10th World Multi-Conference on Systemics, Cybernetics and Informatics,
Jointly with the 12th International Conference on Information Systems Analysis and
Synthesis, ISAS 2006 - Proc., 7, 449-461. | |
dc.relation | Jiang, L., Kong, X., Yang, Q., y Shao, F. (2010, 5). Application of compound pid controller in the boiler. 2010 Chinese Control and Decision Conference, 2725-2728.
Descargado de http://ieeexplore.ieee.org/document/5498718/ doi: 10.1109/
CCDC.2010.5498718 | |
dc.relation | Jiang, Y., y Jiang, Z.-P. (2012, 10). Computational adaptive optimal control for continuoustime linear systems with completely unknown dynamics. Automatica, 48, 2699-2704.
doi: 10.1016/j.automatica.2012.06.096 | |
dc.relation | Jichkar, C., y Sondkar, S. (2017). Comparative study of real time implementation of labview
based mpc controller and pid controller for flow control loop. 2017 2nd International
Conference for Convergence in Technology, I2CT 2017, 2017-Janua, 464-470. doi:
10.1109/I2CT.2017.8226172 | |
dc.relation | Kang, C., Wang, S., Ren, W., Lu, Y., y Wang, B. (2019). Optimization design and application
of active disturbance rejection controller based on intelligent algorithm. IEEE Access,
7 , 59862-59870. doi: 10.1109/ACCESS.2019.2909087 | |
dc.relation | Kirk, D. E. (1998). Optimal control theory. Dover Publications, Inc. | |
dc.relation | Kouvaritakis, B., y Cannon, M. (2016). Mpc with no model uncertainty. En (p. 13-64). doi:
10.1007/978-3-319-24853-0 2 | |
dc.relation | Kumar, A. S., y Ahmad, Z. (2012, 4). Model predictive control (mpc) and its current issues
in chemical engineering. Chemical Engineering Communications, 199 , 472-511. doi:
10.1080/00986445.2011.592446 | |
dc.relation | Lakshmi, K., Rajesh, T., Anusuya, D., Prowince, P. G., y Pranesh, B. (2019). Design
and implementation of multivariable quadruple tank system with different pid tuning control techniques. Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering, ICACCE 2019 . doi: 10.1109/
ICACCE46606.2019.9079983 | |
dc.relation | Li, S., Yang, J., Chen, W.-H., y Chen, X. (2012, 12). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on
Industrial Electronics, 59 . doi: 10.1109/TIE.2011.2182011 | |
dc.relation | Li, Z., Ma, X., Li, Y., Meng, Q., y Li, J. (2019, 12). Adrc-esmpc active heave compensation
control strategy for offshore cranes. Ships and Offshore Structures. doi: 10.1080/
17445302.2019.1703388 | |
dc.relation | Liu, G., Shi, P., Han, J., Rees, D., y Xia, Y. (2007, 1). Active disturbance rejection control for
uncertain multivariable systems with time-delay. IET Control Theory & Applications,
1 , 75-81. doi: 10.1049/iet-cta:20050138 | |
dc.relation | Luenberger, D. (1971, 12). An introduction to observers. IEEE Transactions on Automatic
Control, 16 . doi: 10.1109/TAC.1971.1099826 | |
dc.relation | Luenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on
Military Electronics, 8 . doi: 10.1109/TME.1964.4323124 | |
dc.relation | Luenberger, D. G. (1979). Introduction to dynamic systems - theory, models, and applications. John Wiley & Sons, Inc. | |
dc.relation | Lv, T., Yang, Y., y Chai, L. (2019, 7). Extended state observer based mpc for a quadrotor
helicopter subject to wind disturbances. 2019 Chinese Control Conference (CCC),
8206-8211. doi: 10.23919/ChiCC.2019.8865370 | |
dc.relation | L´evine, J. (2011, 1). On necessary and sufficient conditions for differential flatness. Applicable
Algebra in Engineering, Communication and Computing, 22 , 47-90. doi: 10.1007/
s00200-010-0137-x | |
dc.relation | Magni, L., Raimondo, D. M., y Allg¨ower, F. (Eds.). (2009). Nonlinear model predictive
control (Vol. 384). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01094-1 | |
dc.relation | Magni, L., y Scattolini, R. (2005, 6). On the solution of the tracking problem for nonlinear systems with mpc. International Journal of Systems Science, 36 . doi: 10.1080/
00207720500139666 | |
dc.relation | Mata, S., Zubizarreta, A., Nieva, I., Cabanes, I., y Pinto, C. (2020, 8). Control mpc basado en
un modelo ltv para seguimiento de trayectoria con estabilidad garantizada. XXXVIII
Jornadas de Autom´atica: Gij´on, 6, 7, y 8 de septiembre de 2017, 122-129. doi: 10
.17979/spudc.9788497497749.0122 | |
dc.relation | Mayne, D., Rawlings, J., Rao, C., y Scokaert, P. (2000, 6). Constrained model predictive
control: Stability and optimality. Automatica, 36. doi: 10.1016/S0005-1098(99)00214
-9 | |
dc.relation | Mayne, D. Q. (1995). Optimization in model predictive control. En (p. 367-396). Springer
Netherlands. doi: 10.1007/978-94-011-0135-6 15 | |
dc.relation | Michalek, M. M. (2016, 7). Robust trajectory following without availability of the reference
time-derivatives in the control scheme with active disturbance rejection. 2016 American
Control Conference (ACC), 1536-1541. doi: 10.1109/ACC.2016.7525134 | |
dc.relation | Nieuwstadt, M. V., Rathinam, M., y Murray, R. (1994). Differential flatness and absolute
equivalence. Proceedings of 1994 33rd IEEE Conference on Decision and Control,
326-332. doi: 10.1109/CDC.1994.410908 | |
dc.relation | Ogata, K. (2010). Modern control engineering (5th ed.). Pearson | |
dc.relation | Pan, W., Xiao, H., y Wang, C. (2010, 10). Design of ship course controller based on optimal
active disturbance rejection technique. 2010 International Conference on Intelligent
System Design and Engineering Application, 582-585. doi: 10.1109/ISDEA.2010.294 | |
dc.relation | Paraskevopoulos, P. (2002). Modern control engineering. CRC Press | |
dc.relation | Parastiwi, A., y Ekojono. (2016, 7). Design of spray dryer process control by maintaining outlet air temperature of spray dryer chamber. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 619-622. doi: 10.1109/
ISITIA.2016.7828731 | |
dc.relation | Park, J., Martin, R. A., Kelly, J. D., y Hedengren, J. D. (2020, 4). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical
Engineering, 135. doi: 10.1016/J.COMPCHEMENG.2020.106736 | |
dc.relation | Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014a, 10).
Application of constrained linear mpc to a spray dryer. 2014 IEEE Conference on
Control Applications (CCA), 2120-2126. doi: 10.1109/CCA.2014.6981616 | |
dc.relation | Petersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014b,
12). Economic optimization of spray dryer operation using nonlinear model predictive
control. 53rd IEEE Conference on Decision and Control, 6794-6800. doi: 10.1109/
CDC.2014.7040456 | |
dc.relation | Qing, W., Nannan, S., Jaqing, W., y Jing, Y. (2008). On the application of optimal adrc
in main steam temperature control system. Proceedings of the 27th Chinese Control
Conference, CCC , 763-767. doi: 10.1109/CHICC.2008.4605731 | |
dc.relation | Rossiter, J. (2005). Model-based predictive control (J. Rossiter, Ed.). CRC Press. doi:
10.1201/9781315272610 | |
dc.relation | Shengyong, L. (2019). Optimal control of spraying and drying temperature in production line based on active disturbance rejection control technique. International Journal of
Performability Engineering, 15 . doi: 10.23940/ijpe.19.10.p20.27352743 | |
dc.relation | Shi, H.-J., y Nie, X.-C. (2021, 4). Composite control for disturbed direct-driven surfacemounted permanent magnet synchronous generator with model prediction strategy.
Measurement and Control. doi: 10.1177/00202940211010829 | |
dc.relation | Sira-Ramirez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2011, 1). Control lineal robusto
de sistemas no lineales. Revista iberoamericana de autom´atica e inform´atica industrial,
8 , 14-28. doi: 10.4995/RIAI.2011.01.04 | |
dc.relation | Sira-Ram´ırez, H. (2004). Differentially flat systems. CRC Press. doi: 10.1201/
9781482276640 | |
dc.relation | Sira-Ram´ırez, H. (2018, 11). From flatness, gpi observers, gpi control and flat filters to
observer-based adrc. Control Theory and Technology, 16 . doi: 10.1007/s11768-018
-8134-x | |
dc.relation | Sira-Ram´ırez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2012, 5). Flatness-based linear
output feedback control for disturbance rejection and tracking tasks on a chua’s circuit.
International Journal of Control, 85 , 594-602. doi: 10.1080/00207179.2012.660196 | |
dc.relation | Sira-ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neira, M., y Zurita-Bustamente, W. (2017).
Differential flatness. En (p. 285-297). Elsevier. doi: 10.1016/B978-0-12-849868-2.00015
-0 | |
dc.relation | Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W.
(2017a). Generalities of adrc. En (p. 13-50). Elsevier. doi: 10.1016/B978-0-12-849868
-2.00002-2 | |
dc.relation | Sira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W.
(2017b). Merging flatness, gpi observation, and gpi control with adrc. En (p. 51-107).
Elsevier. doi: 10.1016/B978-0-12-849868-2.00003-4 | |
dc.relation | Slotine, J.-J. E., y Weiping, L. (1991). Applied nonlinear control. Prentice Hall | |
dc.relation | Suhail, S. A., Bazaz, M. A., y Hussain, S. (2021, 10). Mpc based active disturbance rejection control for automated steering control. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 . doi:
10.1177/09544070211004506 | |
dc.relation | Sun, L., Hua, Q., Shen, J., Xue, Y., Li, D., y Lee, K. (2017, 8). A combined voltage control
strategy for fuel cell. Sustainability, 9 . doi: 10.3390/su9091517 | |
dc.relation | Tian, G., y Gao, Z. (2007, 10). Frequency response analysis of active disturbance rejection
based control system. 2007 IEEE International Conference on Control Applications,
1595-1599. doi: 10.1109/CCA.2007.4389465 | |
dc.relation | Varghese, E. S., Vincent, A. K., y Bagyaveereswaran, V. (2017, 11). Optimal control of inverted pendulum system using pid controller, lqr and mpc. IOP Conference Series: Materials Science and Engineering, 263 , 052007. doi: 10.1088/1757-899X/263/5/052007 | |
dc.relation | Velasco, F. H., Candelo-Becerra, J., y Santamar´ıa, A. R. (2018, 12). Dynamic analysis of a
permanent magnet dc motor using a buck converter controlled by zad-fpic. Energies,11, 3388. doi: 10.3390/en11123388 | |
dc.relation | Warren, A., y Marlin, T. (2004). Constrained mpc under closed-loop uncertainty. Proceedings
of the 2004 American Control Conference, 4607-4612 vol.5. doi: 10.23919/ACC.2004
.1384037 | |
dc.relation | Wenjie, W., Zhen, H., Rui, C., Feiteng, J., y Huiming, S. (2018, 8). Trajectory tracking
control design for uav based on mpc and active disturbance rejection. 2018 IEEE CSAA
Guidance, Navigation and Control Conference (CGNCC). doi: 10.1109/GNCC42960
.2018.9019022 | |
dc.relation | Wu, H., Zhang, L., Yang, J., y Li, S. (2017, 7). Model predictive control for dc-dc buck
power converter-dc motor system with uncertainties using a gpi observer. 2017 36th
Chinese Control Conference (CCC). doi: 10.23919/ChiCC.2017.8028129 | |
dc.relation | Yamamoto, T., Kawada, K., Kugemoto, H., y Kutsuwa, Y. (2009). Design and industrial applications of a control performance assessment based pid controller. IFAC Proceedings
Volumes (IFAC-PapersOnline), 15, 729-734. doi: 10.3182/20090706-3-FR-2004.0162 | |
dc.relation | Yan, Y., Yang, J., Sun, Z., Li, S., y Yu, H. (2020, 1). Non-linear-disturbance-observerenhanced mpc for motion control systems with multiple disturbances. IET Control
Theory & Applications, 14. doi: 10.1049/iet-cta.2018.5821 | |
dc.relation | Yang, H., Guo, M., Xia, Y., y Sun, Z. (2020, 1). Dual closed-loop tracking control for wheeled
mobile robots via active disturbance rejection control and model predictive control.
International Journal of Robust and Nonlinear Control, 30. doi: 10.1002/rnc.4750 | |
dc.relation | Yang, J., Cui, H., Li, S., y Zolotas, A. (2018a, 2). Optimized active disturbance rejection
control for dc-dc buck converters with uncertainties using a reduced-order gpi observer.
IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi:
10.1109/TCSI.2017.2725386 | |
dc.relation | Yang, J., Cui, H., Li, S., y Zolotas, A. (2018b, 2). Optimized active disturbance rejection
control for dc-dc buck converters with uncertainties using a reduced-order gpi observer.
IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi:
10.1109/TCSI.2017.2725386 | |
dc.relation | Yang, J., Wu, H., Hu, L., y Li, S. (2019, 10). Robust predictive speed regulation of converterdriven dc motors via a discrete-time reduced-order gpio. IEEE Transactions on Industrial Electronics, 66, 7893-7903. doi: 10.1109/TIE.2018.2878119 | |
dc.relation | Yang, Z., Wang, Z., y Yan, M. (2021, 5). An optimization design of adaptive cruise control
system based on mpc and adrc. Actuators, 10, 110. doi: 10.3390/act10060110 | |
dc.relation | Yoo, D., Yau, S. S.-T., y Gao, Z. (2007, 1). Optimal fast tracking observer bandwidth of
the linear extended state observer. International Journal of Control, 80, 102-111. doi:
10.1080/00207170600936555 | |
dc.relation | Yu, G.-R., y Hwang, R.-C. (2004). Optimal pid speed control of brush less dc motors using
lqr approach. Conference Proceedings - IEEE International Conference on Systems,
Man and Cybernetics, 1, 473-478. doi: 10.1109/ICSMC.2004.1398343 | |
dc.relation | Zeilinger, M. N., Jones, C. N., y Morari, M. (2010, 12). Robust stability properties of soft constrained mpc. 49th IEEE Conference on Decision and Control (CDC), 5276-5282.
doi: 10.1109/CDC.2010.5717488 | |
dc.relation | Zhang, Z., Cheng, J., y Guo, Y. (2021, 7). Pd-based optimal adrc with improved linear
extended state observer. Entropy, 23 . doi: 10.3390/e23070888 | |
dc.relation | Zhao, Y., y Huang, Y. (2021, 7). Frequency properties of adrc. 2021 40th Chinese Control
Conference (CCC), 6628-6633. doi: 10.23919/CCC52363.2021.9549514 | |
dc.relation | Zhou, W., Shao, S. S. L., y Gao, Z. (2009). A stability study of the active disturbance
rejection control problem by a singular perturbation approach. Applied Mathematical
Sciences, 3 , 491-508. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC) | |
dc.type | Trabajo de grado - Maestría | |