dc.contributor | Gómez Echavarría, Lina María | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Grupo de Investigación en Procesos Dinámicos-KALMAN | |
dc.creator | López Aguirre, Esteban | |
dc.date.accessioned | 2020-08-20T20:30:21Z | |
dc.date.accessioned | 2022-09-21T18:32:22Z | |
dc.date.available | 2020-08-20T20:30:21Z | |
dc.date.available | 2022-09-21T18:32:22Z | |
dc.date.created | 2020-08-20T20:30:21Z | |
dc.date.issued | 2020-03-19 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78117 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3409227 | |
dc.description.abstract | Esta disertación propone un nuevo enfoque para la observabilidad de sistemas dinámicos basado en herramientas de la teoría de conjuntos. Este enfoque posee las ventajas de tener en cuenta la incertidumbre de las mediciones, conducir a una forma intuitiva de cuantificar la observabilidad, estar formalmente relacionado con la exactitud de la estimación de estado y ser fácilmente aplicado a sistemas no lineales y discretos. Con base en este formalismo se presenta un índice de observabilidad y se propone una versión promedio aproximada de este índice para obtener una cuantificación que sea independiente de las entradas aplicadas. La validez de la propuesta y su relación con la exactitud de la estimación de estado se demuestra mediante argumentos matemáticos rigurosos y se evidencia por medio de un ejemplo abstracto. Finalmente, se describen y se ilustran mediante simulaciones algunas aplicaciones del enfoque desarrollado al diseño y al control automático, mostrando que dicho enfoque es una herramienta útil para tareas que apuntan al incremento de la exactitud de la estimación de estado. | |
dc.description.abstract | This dissertation proposes a new approach to the observability of dynamical systems based on set-theoretic tools. This approach has the advantages of taking measurement uncertainty into account, leading to a straightforward way of quantifying observability, being formally related to state estimation accuracy, and being easily applied to nonlinear and discrete-time systems. Based on this formalism, an observability index is also introduced, and an approximate average version of this index is proposed in order to obtain a quantification that is independent from the applied inputs. The validity of the proposal and its relation to state estimation accuracy is supported through rigorous mathematical arguments and demonstrated by means of an abstract example. Finally, some applications of the devised approach to design and control are described and illustrated via simulation, showing that said approach is a useful tool for tasks aiming at enhancing state estimation accuracy. | |
dc.language | eng | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | |
dc.publisher | Departamento de Procesos y Energía | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Aamir, E., Rielly, C.D., and Nagy, Z.K. (2012). Experimental Evaluation of the
Targeted Direct Design of Temperature Trajectories for Growth-Dominated Crystallization
Processes Using an Analytical Crystal Size Distribution Estimator. Industrial &
Engineering Chemistry Research, 51(51), 16677-16687. doi:10.1021/ie301610z | |
dc.relation | Alaña, J.E. and Theodoropoulos, C. (2011). Optimal location of measurements for parameter
estimation of distributed parameter systems. Computers & Chemical Engineering, 35(1),
106-120. doi:10.1016/j.compchemeng.2010.04.014 | |
dc.relation | Alessandretti, A., Aguiar, A.P., and Jones, C.N. (2015). Optimization Based Control for
Target Estimation and Tracking via Highly Observable Trajectories. In Proceedings of
the 11th Portuguese Conference on Automatic Control, 495-504. Springer International
Publishing, Porto, Portugal. doi:10.1007/978-3-319-10380-8 47 | |
dc.relation | Allgower, E.L. and Georg, K. (1990). Numerical Continuation Methods: An Introduction.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg. | |
dc.relation | Alvarez, H., Lamanna, R., Vega, P., and Revollar, S. (2009). Metodología para la Obtención
de Modelos Semifísicos de Base Fenomenolóogica Aplicada a una Sulfi tadora de Jugo de
Caña de Azúcar. Revista Iberoamericana de Automática e Informática Industrial RIAI,
6(3), 10-20. doi:10.1016/S1697-7912(09)70260-2 | |
dc.relation | Alzate, A. (2013). Metodología para el Diseño Simultáneo de Equipo y su Sistema de Control Robusto. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/11107/ | |
dc.relation | Arpornwichanop, A., Kittisupakorn, P., and Mujtaba, I.M. (2005). On-line dynamic optimization and control strategy for improving the performance of batch reactors. Chemical Engineering and Processing: Process Intensification, 44(1), 101–114. doi: 10.1016/j.cep.2004.04.010 | |
dc.relation | Baum, M. and Hanebeck, U.D. (2009). Extended object tracking based on combined set- theoretic and stochastic fusion. In Proceedings of the 12th International Conference on Information Fusion, 1288–1295. | |
dc.relation | Bequette, B.W. (2002). Behavior of a CSTR with a recirculating jacket heat transfer system. In Proceedings of the 2002 American Control Conference, 3275–3280. doi: 10.1109/ACC.2002.1025296 | |
dc.relation | Besançon, G. (ed.) (2007). Nonlinear Observers and Applications. Lecture notes in control
and information sciences. Springer. | |
dc.relation | Bhoi, S., Lenka, M., and Sarkar, D. (2017). Particle engineering by optimization for the
unseeded batch cooling crystallization of L-asparagine monohydrate. CrystEngComm,
19(42), 6373-6382. doi:10.1039/C7CE01291H | |
dc.relation | Blanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747-1767. doi:
10.1016/S0005-1098(99)00113-2 | |
dc.relation | Blanchini, F. and Miani, S. (2015). Set-Theoretic Methods in Control. Systems & Control:
Foundations & Applications. Birkhäuser, 2nd edition. doi:10.1007/978-3-319-17933-9 | |
dc.relation | Bonvin, D., Srinivasan, B., and Hunkeler, D. (2006). Control and optimization of batch
processes. IEEE Control Systems Magazine, 26(6), 34-45. doi:10.1109/MCS.2006.252831 | |
dc.relation | Bopardikar, S.D., Englot, B., and Speranzon, A. (2015). Multiobjective Path Planning:
Localization Constraints and Collision Probability. IEEE Transactions on Robotics, 31(3),
562-577. doi:10.1109/TRO.2015.2411371 | |
dc.relation | Botero, H.A. (2010). Formalismo para la síntesis de sensores virtuales basados en un modelo
maestro de base fenomenológica. Ph.D. thesis, Universidad Nacional de Colombia - Sede
Medellín. | |
dc.relation | Botero, H.A. and Alvarez, H.D. (2009). Una revisión de los métodos más frecuentes para la
estimación de estado en procesos químicos. Dyna, 135-146. | |
dc.relation | Bravo, J.M., Alamo, T., and Camacho, E.F. (2006). Robust MPC of constrained discretetime
nonlinear systems based on approximated reachable sets. Automatica, 42(10), 1745-1751. doi:10.1016/j.automatica.2006.05.003 | |
dc.relation | Brewer, J., Huang, Z., Singh, A.K., Misra, M., and Hahn, J. (2007). Sensor Network Design via Observability Analysis and Principal Component Analysis. Industrial & Engineering
Chemistry Research, 46, 8026-8032. doi:10.1021/ie070547n | |
dc.relation | Calderón, J.C. (2012). Una aproximación al diseño y control total de planta usando
controlabilidad de estado. Ph.D. thesis, Universidad Nacional de Colombia - Sede Medellín.
URL http://www.bdigital.unal.edu.co/47261/ | |
dc.relation | Chalanga, A., Kamal, S., Fridman, L., Bandyopadhyay, B., and Moreno, J.A. (2014). How
to implement Super-Twisting Controller based on sliding mode observer? In Proceedings
of the 13th International Workshop on Variable Structure Systems (VSS). IEEE, Nantes,
France. doi:10.1109/VSS.2014.6881145 | |
dc.relation | de Assis, A.J. and Maciel-Filho, R. (2000). Soft sensors development for on-line bioreactor
state estimation. Computers & Chemical Engineering, 24, 1099-1103. | |
dc.relation | de Léon Cantón, P. and Lunze, J. (2009). Set-theoretic State Observation of Disturbed Linear
Systems with Parametric Uncertainties. at - Automatisierungstechnik, 57(10), 506-513.
doi:10.1524/auto.2009.0795 | |
dc.relation | Dochain, D., Couenne, F., and Jallut, C. (2009). Enthalpy based modelling and design
of asymptotic observers for chemical reactors. International Journal of Control, 82(8),
1389-1403. doi:10.1080/00207170802236085 | |
dc.relation | Ferreira de Loza, A., Bejarano, F.J., and Fridman, L. (2013). Unmatched uncertainties
compensation based on high-order sliding mode observation. International Journal of
Robust and Nonlinear Control, 23(7), 754-764. doi:10.1002/rnc.2795 | |
dc.relation | Floquet, T., Barbot, J.P., Perruquetti, W., and Djemai, M. (2004). On the robust fault
detection via a sliding mode disturbance observer. International Journal of Control, 77(7),
622-629. doi:10.1080/00207170410001699030 | |
dc.relation | Garber, M., Rathinam, S., and Sharma, R. (2017). A grid-based path planning approach for a
team of two vehicles with localization constraints. In Proceedings of the 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), 516-523. IEEE, Miami, Florida,
USA. doi:10.1109/ICUAS.2017.7991489 | |
dc.relation | García, P. (2012). Efecto de las condiciones iniciales sobre la controlabilidad de estado en
procesos por lotes. Master's thesis, Universidad Nacional de Colombia - Sede Medellín.
URL http://www.bdigital.unal.edu.co/9080/ | |
dc.relation | Gayek, J.E. (1991). A survey of techniques for approximating reachable and controllable sets.
In Proceedings of the 30th Conference on Decision and Contro, 1724-1729. Brighton,
England. doi:10.1109/CDC.1991.261702 | |
dc.relation | Gomes, A., Voiculescu, I., Jorge, J., Wyvill, B., and Galbraith, C. (2009). Implicit Curves
and Surfaces: Mathematics, Data Structures and Algorithms. Springer London. | |
dc.relation | Gómez-Pérez, C.A., Gómez, L.M., and Alvarez, H. (2015). Reference Trajectory Design
Using State Controllability for Batch Processes. Industrial and Engineering Chemistry
Research, 54(15), 3893-3903. doi:10.1021/ie504809x | |
dc.relation | González, A.H. and Odloak, D. (2009). Enlarging the domain of attraction of stable MPC
controllers, maintaining the output performance. Automatica, 45(4), 1080-1085. doi:
10.1016/j.automatica.2008.11.015 | |
dc.relation | Hermann, R. and Krener, A.J. (1977). Nonlinear controllability and observability. IEEE
Transactions on Automatic Control, 22(5), 728-740. | |
dc.relation | Houska, B., Telen, D., Logist, F., and Impe, J.V. (2017). Self-Reflective Model Predictive
Control. SIAM Journal on Control and Optimization, 55(5), 2959-2980. doi:10.1137/
15M1049865 | |
dc.relation | Hovd, M. and Bitmead, R.R. (2005). Interaction between control and state estimation in
nonlinear MPC. Modeling, Identi cation and Control, 26(3), 165-174. doi:10.4173/mic.2005.3.4 | |
dc.relation | Isaksson, A.J., Sjöberg, J., Törnqvist, D., Ljung, L., and Kok, M. (2015). Using horizon
estimation and nonlinear optimization for grey-box identi cation. Journal of Process
Control, 30, 69-79. doi:10.1016/j.jprocont.2014.12.008 | |
dc.relation | Isermann, R. (2011). Fault-Diagnosis Applications: Model-Based Condition Monitoring:
Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer. | |
dc.relation | Kailath, T. (1980). Linear systems. Prentice-Hall. | |
dc.relation | Kalman, R.E. (1960). On the general theory of control systems. In Proceedings of the First
IFAC Congress, 481-492. Moscow. | |
dc.relation | Kerrigan, E.C. and Maciejowski, J.M. (2000). Invariant sets for constrained nonlinear
discrete-time systems with application to feasibility in model predictive control. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5, 4951-4956.
Sydney, Australia. doi:10.1109/CDC.2001.914717 | |
dc.relation | Krener, A.J. and Respondek, W. (1985). Nonlinear observers with linearizable error
dynamics. SIAM J. Control and Optimization, 23(2), 197-216. | |
dc.relation | Lefebvre, G., Lin-Shi, X., Nadri, M., Gauthier, J.Y., and Hijazi, A. (2017). Observability measurement and control strategy for induction machine sensorless drive in traction
applications. IFAC-PapersOnLine, 50(1), 15773-15779. doi:10.1016/j.ifacol.2017.08.2312 | |
dc.relation | Limon, D., Alamo, T., and Camacho, E.F. (2005a). Enlarging the domain of attraction of
MPC controllers. Automatica, 41(4), 629-635. doi:10.1016/j.automatica.2004.10.011 | |
dc.relation | Limon, D., Bravo, J.M., Alamo, T., and Camacho, E.F. (2005b). Robust MPC of constrained
nonlinear systems based on interval arithmetic. IEE Proceedings - Control Theory and
Applications, 152(3), 325-332. doi:10.1049/ip-cta:20040480 | |
dc.relation | Martinez, J.J., Loukkas, N., and Meslem, N. (2018). H-infi nity set-membership observer
design for discrete-time LPV systems. International Journal of Control. doi:10.1080/00207179.2018.1554910 | |
dc.relation | Martínez-Guerra, R., Aguilar, R., and Poznyak, A. (2004). A New Robust Sliding-Mode Observer Design for Monitoring Chemical Reactors. Journal of Dynamic Systems,
Measurement, and Control, 126, 473-478. | |
dc.relation | Menon, P.P. and Edwards, C. (2014). A sliding mode observer for monitoring and fault estimation in a network of dynamical systems. International Journal of Robust and
Nonlinear Control, 24(17), 2669-2685. doi:10.1002/rnc.3017 | |
dc.relation | Michael, N., Fink, J., and Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots, 30(1), 73-86. doi:10.1007/s10514-010-9205-0 | |
dc.relation | Mohd Ali, J., Ha Hoang, N., Hussain, M.A., and Dochain, D. (2015). Review and
classi cation of recent observers applied in chemical process systems. Computers &
Chemical Engineering, 76, 27-41. doi:10.1016/j.compchemeng.2015.01.019 | |
dc.relation | Moser, A. (1988). Bioprocess technology: kinetics and reactors. Springer-Verlag. doi:10.1007/978-1-4613-8748-0 | |
dc.relation | Nagesh, I. and Edwards, C. (2014). A multivariable super-twisting sliding mode approach. Automatica, 50(3), 984-988. doi:10.1016/j.automatica.2013.12.032 | |
dc.relation | Noack, B., Baum, M., and Hanebeck, U.D. (2015). State estimation for ellipsoidally
constrained dynamic systems with set-membership pseudo measurements. In Proceedings
of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems, 297-302. doi:10.1109/MFI.2015.7295824 | |
dc.relation | Oliveira, J., Santos, J.N., and Seleghim, P. (2006). Inverse measurement method for detecting
bubbles in a fluidized bed reactor: toward the development of an intelligent temperature
sensor. Powder Technology, 169(3), 123-135. doi:10.1016/j.powtec.2006.07.021 | |
dc.relation | Patan, M. and Ucinski, D. (2002). Optimal Location of Sensors for Parameter Estimation
of Static Distributed Systems. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and
J. Wasniewski (eds.), Parallel Processing and Applied Mathematics, volume 2328 of
Lecture Notes in Computer Science, 729-737. Springer Berlin Heidelberg. doi:10.1007/3-540-48086-2_81 | |
dc.relation | Planchon, P. and Lunze, J. (2006). Robust diagnosis using state-set observation. In
Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes 2006, volume 2, 1384-1389. doi:10.1016/B978-008044485-7/50233-5 | |
dc.relation | Quenzer, J.D. and Morgansen, K.A. (2014). Observability Based Control in Range-only
Underwater Vehicle Localization. In Proceedings of the 2014 American Control Conference,
4702-4707. Portland, Oregon, USA. doi:10.1109/ACC.2014.6859032 | |
dc.relation | Raïssi, T., Ramdani, N., and Candau, Y. (2005). Bounded error moving horizon state
estimator for non-linear continuous-time systems: Application to a bioprocess system.
Journal of Process Control, 15(5), 537-545. doi:10.1016/j.jprocont.2004.10.002 | |
dc.relation | Rawlings, J.B. and Ji, L. (2012). Optimization-based state estimation: Current status and
some new results. Journal of Process Control, 22(8), 1439-1444. doi:10.1016/j.jprocont.2012.03.001 | |
dc.relation | Ray, P.K. and Mahajan, A. (2002). A genetic algorithm-based approach to calculate the
optimal con guration of ultrasonic sensors in a 3D position estimation system. Robotics
and Autonomous Systems, 41(4), 165-177. doi:10.1016/S0921-8890(02)00292-0 | |
dc.relation | Ríos, H., Davila, J., Fridman, L., and Edwards, C. (2014). Fault detection and isolation for
nonlinear systems via high-order-sliding-mode multiple-observer. International Journal of
Robust and Nonlinear Control, 25(16), 2871-2893. doi:10.1002/rnc.3232 | |
dc.relation | Serpas, M., Hackebeil, G., Laird, C., and Hahn, J. (2013). Sensor location for nonlinear
dynamic systems via observability analysis and MAX-DET optimization. Computers & Chemical Engineering, 48, 105-112. doi:10.1016/j.compchemeng.2012.07.014 | |
dc.relation | Sharma, R. (2014). Observability based Control for Cooperative Localization. In Proceedings
of the 2014 International Conference on Unmanned Aircraft Systems, 134-139. Orlando,
Florida, USA. doi:10.1109/ICUAS.2014.6842248 | |
dc.relation | Sira-Ramirez, H. (1988). Algebraic condition for observability of non-linear analytic systems.
Int. J. Systems. Sci., 19(11), 2147-2155 | |
dc.relation | Srinivasan, B., Palanki, S., and Bonvin, D. (2003). Dynamic optimization of batch processes
I. Characterization of the nominal solution. Computers & Chemical Engineering, 27(1),
1-26. doi:10.1016/S0098-1354(02)00116-3 | |
dc.relation | Stoican, F., Raduinea, C.F., and Olaru, S. (2011). Adaptation of set theoretic methods to
the fault detection of a wind turbine benchmark. In Proceedings of the 18th IFAC World
Congress, 8322-8327. Milano, Italy. doi:10.3182/20110828-6-IT-1002.01842 | |
dc.relation | Tao, T. (2011). An Introduction to Measure Theory. Graduate Studies in Mathematics.
American Mathematical Society. | |
dc.relation | Van Den Berg, F.W.J., Hoefsloot, H.C.J., Boelens, H.F.M., and Smilde, A.K. (2000).
Selection of optimal sensor position in a tubular reactor using robust degree of observability
criteria. Chemical Engineering Science, 55(4), 827-837. doi:10.1016/S0009-2509(99)00360-7 | |
dc.relation | Vande Wouwer, A., Point, N., Porteman, S., and Remy, M. (2000). An approach to the
selection of optimal sensor locations in distributed parameter systems. Journal of Process
Control, 10(4), 291-300. doi:10.1016/S0959-1524(99)00048-7 | |
dc.relation | Vicino, A. and Zappa, G. (1996). Sequential approximation of feasible parameter sets for
identi cation with set membership uncertainty. IEEE Transactions on Automatic Control,
41(6), 774-785. doi:10.1109/9.506230 | |
dc.relation | Waldraff, W., Dochain, D., Bourrel, S., and Magnus, A. (1998). On the use of observability
measures for sensor location in tubular reactor. Journal of Process Control, 8(5-6), 497-505. doi:10.1016/S0959-1524(98)00017-1 | |
dc.relation | Wang, G.B., Peng, S.S., and Huang, H.P. (1997). A sliding observer for nonlinear process control. Chemical Engineering Science, 52(5), 787-805. | |
dc.relation | Webster, J.G. and Eren, H. (eds.) (2014). Measurement, Instrumentation, and Sensors Handbook. CRC Press, 2nd edition. | |
dc.relation | Weickgenannt, M., Neuhaeuser, S., Henke, B., Sobek, W., and Sawodny, O. (2013). Optimal
sensor placement for state estimation of a thin double-curved shell structure. Mechatronics,
23(3), 346-354. doi:10.1016/j.mechatronics.2013.01.009 | |
dc.relation | Welz, C., Srinivasan, B., and Bonvin, D. (2008). Measurement-based optimization of batch
processes: Meeting terminal constraints on-line via trajectory following. Journal of Process
Control, 18(3-4), 375-382. doi:10.1016/j.jprocont.2007.10.005 | |
dc.relation | Yan, X.G. and Edwards, C. (2005). Robust sliding mode observer-based actuator fault
detection and isolation for a class of nonlinear systems. In Proceedings of the 44th IEEE
Conference on Decision and Control, 987-992. Seville, Spain. doi:10.1109/CDC.2005.1582286 | |
dc.relation | Yu, X. and Zhang, Y. (2015). Sense and avoid technologies with applications to unmanned
aircraft systems: Review and prospects. Progress in Aerospace Sciences, 74, 152-166. doi:10.1016/j.paerosci.2015.01.001 | |
dc.relation | Zavala, V.M. (2014). Inference of building occupancy signals using moving horizon
estimation and Fourier regularization. Journal of Process Control, 24(6), 714-722. doi:10.1016/j.jprocont.2013.09.020 | |
dc.relation | Zhang, D., Liu, L., Xu, S., Du, S., Dong, W., and Gong, J. (2018). Optimization of
cooling strategy and seeding by FBRM analysis of batch crystallization. Journal of Crystal
Growth, 486, 1-9. doi:10.1016/j.jcrysgro.2017.12.046 | |
dc.relation | Zuluaga, C.C. (2015). Batch process design: an overview from control. Master's thesis,
Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/51256/ | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | A set-theoretic approach to the observability of dynamical systems with non-ideal sensors | |
dc.type | Otros | |