dc.contributorGómez Echavarría, Lina María
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorGrupo de Investigación en Procesos Dinámicos-KALMAN
dc.creatorLópez Aguirre, Esteban
dc.date.accessioned2020-08-20T20:30:21Z
dc.date.accessioned2022-09-21T18:32:22Z
dc.date.available2020-08-20T20:30:21Z
dc.date.available2022-09-21T18:32:22Z
dc.date.created2020-08-20T20:30:21Z
dc.date.issued2020-03-19
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78117
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3409227
dc.description.abstractEsta disertación propone un nuevo enfoque para la observabilidad de sistemas dinámicos basado en herramientas de la teoría de conjuntos. Este enfoque posee las ventajas de tener en cuenta la incertidumbre de las mediciones, conducir a una forma intuitiva de cuantificar la observabilidad, estar formalmente relacionado con la exactitud de la estimación de estado y ser fácilmente aplicado a sistemas no lineales y discretos. Con base en este formalismo se presenta un índice de observabilidad y se propone una versión promedio aproximada de este índice para obtener una cuantificación que sea independiente de las entradas aplicadas. La validez de la propuesta y su relación con la exactitud de la estimación de estado se demuestra mediante argumentos matemáticos rigurosos y se evidencia por medio de un ejemplo abstracto. Finalmente, se describen y se ilustran mediante simulaciones algunas aplicaciones del enfoque desarrollado al diseño y al control automático, mostrando que dicho enfoque es una herramienta útil para tareas que apuntan al incremento de la exactitud de la estimación de estado.
dc.description.abstractThis dissertation proposes a new approach to the observability of dynamical systems based on set-theoretic tools. This approach has the advantages of taking measurement uncertainty into account, leading to a straightforward way of quantifying observability, being formally related to state estimation accuracy, and being easily applied to nonlinear and discrete-time systems. Based on this formalism, an observability index is also introduced, and an approximate average version of this index is proposed in order to obtain a quantification that is independent from the applied inputs. The validity of the proposal and its relation to state estimation accuracy is supported through rigorous mathematical arguments and demonstrated by means of an abstract example. Finally, some applications of the devised approach to design and control are described and illustrated via simulation, showing that said approach is a useful tool for tasks aiming at enhancing state estimation accuracy.
dc.languageeng
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisherDepartamento de Procesos y Energía
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAamir, E., Rielly, C.D., and Nagy, Z.K. (2012). Experimental Evaluation of the Targeted Direct Design of Temperature Trajectories for Growth-Dominated Crystallization Processes Using an Analytical Crystal Size Distribution Estimator. Industrial & Engineering Chemistry Research, 51(51), 16677-16687. doi:10.1021/ie301610z
dc.relationAlaña, J.E. and Theodoropoulos, C. (2011). Optimal location of measurements for parameter estimation of distributed parameter systems. Computers & Chemical Engineering, 35(1), 106-120. doi:10.1016/j.compchemeng.2010.04.014
dc.relationAlessandretti, A., Aguiar, A.P., and Jones, C.N. (2015). Optimization Based Control for Target Estimation and Tracking via Highly Observable Trajectories. In Proceedings of the 11th Portuguese Conference on Automatic Control, 495-504. Springer International Publishing, Porto, Portugal. doi:10.1007/978-3-319-10380-8 47
dc.relationAllgower, E.L. and Georg, K. (1990). Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics. Springer Berlin Heidelberg.
dc.relationAlvarez, H., Lamanna, R., Vega, P., and Revollar, S. (2009). Metodología para la Obtención de Modelos Semifísicos de Base Fenomenolóogica Aplicada a una Sulfi tadora de Jugo de Caña de Azúcar. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 10-20. doi:10.1016/S1697-7912(09)70260-2
dc.relationAlzate, A. (2013). Metodología para el Diseño Simultáneo de Equipo y su Sistema de Control Robusto. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/11107/
dc.relationArpornwichanop, A., Kittisupakorn, P., and Mujtaba, I.M. (2005). On-line dynamic optimization and control strategy for improving the performance of batch reactors. Chemical Engineering and Processing: Process Intensification, 44(1), 101–114. doi: 10.1016/j.cep.2004.04.010
dc.relationBaum, M. and Hanebeck, U.D. (2009). Extended object tracking based on combined set- theoretic and stochastic fusion. In Proceedings of the 12th International Conference on Information Fusion, 1288–1295.
dc.relationBequette, B.W. (2002). Behavior of a CSTR with a recirculating jacket heat transfer system. In Proceedings of the 2002 American Control Conference, 3275–3280. doi: 10.1109/ACC.2002.1025296
dc.relationBesançon, G. (ed.) (2007). Nonlinear Observers and Applications. Lecture notes in control and information sciences. Springer.
dc.relationBhoi, S., Lenka, M., and Sarkar, D. (2017). Particle engineering by optimization for the unseeded batch cooling crystallization of L-asparagine monohydrate. CrystEngComm, 19(42), 6373-6382. doi:10.1039/C7CE01291H
dc.relationBlanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747-1767. doi: 10.1016/S0005-1098(99)00113-2
dc.relationBlanchini, F. and Miani, S. (2015). Set-Theoretic Methods in Control. Systems & Control: Foundations & Applications. Birkhäuser, 2nd edition. doi:10.1007/978-3-319-17933-9
dc.relationBonvin, D., Srinivasan, B., and Hunkeler, D. (2006). Control and optimization of batch processes. IEEE Control Systems Magazine, 26(6), 34-45. doi:10.1109/MCS.2006.252831
dc.relationBopardikar, S.D., Englot, B., and Speranzon, A. (2015). Multiobjective Path Planning: Localization Constraints and Collision Probability. IEEE Transactions on Robotics, 31(3), 562-577. doi:10.1109/TRO.2015.2411371
dc.relationBotero, H.A. (2010). Formalismo para la síntesis de sensores virtuales basados en un modelo maestro de base fenomenológica. Ph.D. thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.relationBotero, H.A. and Alvarez, H.D. (2009). Una revisión de los métodos más frecuentes para la estimación de estado en procesos químicos. Dyna, 135-146.
dc.relationBravo, J.M., Alamo, T., and Camacho, E.F. (2006). Robust MPC of constrained discretetime nonlinear systems based on approximated reachable sets. Automatica, 42(10), 1745-1751. doi:10.1016/j.automatica.2006.05.003
dc.relationBrewer, J., Huang, Z., Singh, A.K., Misra, M., and Hahn, J. (2007). Sensor Network Design via Observability Analysis and Principal Component Analysis. Industrial & Engineering Chemistry Research, 46, 8026-8032. doi:10.1021/ie070547n
dc.relationCalderón, J.C. (2012). Una aproximación al diseño y control total de planta usando controlabilidad de estado. Ph.D. thesis, Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/47261/
dc.relationChalanga, A., Kamal, S., Fridman, L., Bandyopadhyay, B., and Moreno, J.A. (2014). How to implement Super-Twisting Controller based on sliding mode observer? In Proceedings of the 13th International Workshop on Variable Structure Systems (VSS). IEEE, Nantes, France. doi:10.1109/VSS.2014.6881145
dc.relationde Assis, A.J. and Maciel-Filho, R. (2000). Soft sensors development for on-line bioreactor state estimation. Computers & Chemical Engineering, 24, 1099-1103.
dc.relationde Léon Cantón, P. and Lunze, J. (2009). Set-theoretic State Observation of Disturbed Linear Systems with Parametric Uncertainties. at - Automatisierungstechnik, 57(10), 506-513. doi:10.1524/auto.2009.0795
dc.relationDochain, D., Couenne, F., and Jallut, C. (2009). Enthalpy based modelling and design of asymptotic observers for chemical reactors. International Journal of Control, 82(8), 1389-1403. doi:10.1080/00207170802236085
dc.relationFerreira de Loza, A., Bejarano, F.J., and Fridman, L. (2013). Unmatched uncertainties compensation based on high-order sliding mode observation. International Journal of Robust and Nonlinear Control, 23(7), 754-764. doi:10.1002/rnc.2795
dc.relationFloquet, T., Barbot, J.P., Perruquetti, W., and Djemai, M. (2004). On the robust fault detection via a sliding mode disturbance observer. International Journal of Control, 77(7), 622-629. doi:10.1080/00207170410001699030
dc.relationGarber, M., Rathinam, S., and Sharma, R. (2017). A grid-based path planning approach for a team of two vehicles with localization constraints. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 516-523. IEEE, Miami, Florida, USA. doi:10.1109/ICUAS.2017.7991489
dc.relationGarcía, P. (2012). Efecto de las condiciones iniciales sobre la controlabilidad de estado en procesos por lotes. Master's thesis, Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/9080/
dc.relationGayek, J.E. (1991). A survey of techniques for approximating reachable and controllable sets. In Proceedings of the 30th Conference on Decision and Contro, 1724-1729. Brighton, England. doi:10.1109/CDC.1991.261702
dc.relationGomes, A., Voiculescu, I., Jorge, J., Wyvill, B., and Galbraith, C. (2009). Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer London.
dc.relationGómez-Pérez, C.A., Gómez, L.M., and Alvarez, H. (2015). Reference Trajectory Design Using State Controllability for Batch Processes. Industrial and Engineering Chemistry Research, 54(15), 3893-3903. doi:10.1021/ie504809x
dc.relationGonzález, A.H. and Odloak, D. (2009). Enlarging the domain of attraction of stable MPC controllers, maintaining the output performance. Automatica, 45(4), 1080-1085. doi: 10.1016/j.automatica.2008.11.015
dc.relationHermann, R. and Krener, A.J. (1977). Nonlinear controllability and observability. IEEE Transactions on Automatic Control, 22(5), 728-740.
dc.relationHouska, B., Telen, D., Logist, F., and Impe, J.V. (2017). Self-Reflective Model Predictive Control. SIAM Journal on Control and Optimization, 55(5), 2959-2980. doi:10.1137/ 15M1049865
dc.relationHovd, M. and Bitmead, R.R. (2005). Interaction between control and state estimation in nonlinear MPC. Modeling, Identi cation and Control, 26(3), 165-174. doi:10.4173/mic.2005.3.4
dc.relationIsaksson, A.J., Sjöberg, J., Törnqvist, D., Ljung, L., and Kok, M. (2015). Using horizon estimation and nonlinear optimization for grey-box identi cation. Journal of Process Control, 30, 69-79. doi:10.1016/j.jprocont.2014.12.008
dc.relationIsermann, R. (2011). Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer.
dc.relationKailath, T. (1980). Linear systems. Prentice-Hall.
dc.relationKalman, R.E. (1960). On the general theory of control systems. In Proceedings of the First IFAC Congress, 481-492. Moscow.
dc.relationKerrigan, E.C. and Maciejowski, J.M. (2000). Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5, 4951-4956. Sydney, Australia. doi:10.1109/CDC.2001.914717
dc.relationKrener, A.J. and Respondek, W. (1985). Nonlinear observers with linearizable error dynamics. SIAM J. Control and Optimization, 23(2), 197-216.
dc.relationLefebvre, G., Lin-Shi, X., Nadri, M., Gauthier, J.Y., and Hijazi, A. (2017). Observability measurement and control strategy for induction machine sensorless drive in traction applications. IFAC-PapersOnLine, 50(1), 15773-15779. doi:10.1016/j.ifacol.2017.08.2312
dc.relationLimon, D., Alamo, T., and Camacho, E.F. (2005a). Enlarging the domain of attraction of MPC controllers. Automatica, 41(4), 629-635. doi:10.1016/j.automatica.2004.10.011
dc.relationLimon, D., Bravo, J.M., Alamo, T., and Camacho, E.F. (2005b). Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proceedings - Control Theory and Applications, 152(3), 325-332. doi:10.1049/ip-cta:20040480
dc.relationMartinez, J.J., Loukkas, N., and Meslem, N. (2018). H-infi nity set-membership observer design for discrete-time LPV systems. International Journal of Control. doi:10.1080/00207179.2018.1554910
dc.relationMartínez-Guerra, R., Aguilar, R., and Poznyak, A. (2004). A New Robust Sliding-Mode Observer Design for Monitoring Chemical Reactors. Journal of Dynamic Systems, Measurement, and Control, 126, 473-478.
dc.relationMenon, P.P. and Edwards, C. (2014). A sliding mode observer for monitoring and fault estimation in a network of dynamical systems. International Journal of Robust and Nonlinear Control, 24(17), 2669-2685. doi:10.1002/rnc.3017
dc.relationMichael, N., Fink, J., and Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots, 30(1), 73-86. doi:10.1007/s10514-010-9205-0
dc.relationMohd Ali, J., Ha Hoang, N., Hussain, M.A., and Dochain, D. (2015). Review and classi cation of recent observers applied in chemical process systems. Computers & Chemical Engineering, 76, 27-41. doi:10.1016/j.compchemeng.2015.01.019
dc.relationMoser, A. (1988). Bioprocess technology: kinetics and reactors. Springer-Verlag. doi:10.1007/978-1-4613-8748-0
dc.relationNagesh, I. and Edwards, C. (2014). A multivariable super-twisting sliding mode approach. Automatica, 50(3), 984-988. doi:10.1016/j.automatica.2013.12.032
dc.relationNoack, B., Baum, M., and Hanebeck, U.D. (2015). State estimation for ellipsoidally constrained dynamic systems with set-membership pseudo measurements. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 297-302. doi:10.1109/MFI.2015.7295824
dc.relationOliveira, J., Santos, J.N., and Seleghim, P. (2006). Inverse measurement method for detecting bubbles in a fluidized bed reactor: toward the development of an intelligent temperature sensor. Powder Technology, 169(3), 123-135. doi:10.1016/j.powtec.2006.07.021
dc.relationPatan, M. and Ucinski, D. (2002). Optimal Location of Sensors for Parameter Estimation of Static Distributed Systems. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski (eds.), Parallel Processing and Applied Mathematics, volume 2328 of Lecture Notes in Computer Science, 729-737. Springer Berlin Heidelberg. doi:10.1007/3-540-48086-2_81
dc.relationPlanchon, P. and Lunze, J. (2006). Robust diagnosis using state-set observation. In Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes 2006, volume 2, 1384-1389. doi:10.1016/B978-008044485-7/50233-5
dc.relationQuenzer, J.D. and Morgansen, K.A. (2014). Observability Based Control in Range-only Underwater Vehicle Localization. In Proceedings of the 2014 American Control Conference, 4702-4707. Portland, Oregon, USA. doi:10.1109/ACC.2014.6859032
dc.relationRaïssi, T., Ramdani, N., and Candau, Y. (2005). Bounded error moving horizon state estimator for non-linear continuous-time systems: Application to a bioprocess system. Journal of Process Control, 15(5), 537-545. doi:10.1016/j.jprocont.2004.10.002
dc.relationRawlings, J.B. and Ji, L. (2012). Optimization-based state estimation: Current status and some new results. Journal of Process Control, 22(8), 1439-1444. doi:10.1016/j.jprocont.2012.03.001
dc.relationRay, P.K. and Mahajan, A. (2002). A genetic algorithm-based approach to calculate the optimal con guration of ultrasonic sensors in a 3D position estimation system. Robotics and Autonomous Systems, 41(4), 165-177. doi:10.1016/S0921-8890(02)00292-0
dc.relationRíos, H., Davila, J., Fridman, L., and Edwards, C. (2014). Fault detection and isolation for nonlinear systems via high-order-sliding-mode multiple-observer. International Journal of Robust and Nonlinear Control, 25(16), 2871-2893. doi:10.1002/rnc.3232
dc.relationSerpas, M., Hackebeil, G., Laird, C., and Hahn, J. (2013). Sensor location for nonlinear dynamic systems via observability analysis and MAX-DET optimization. Computers & Chemical Engineering, 48, 105-112. doi:10.1016/j.compchemeng.2012.07.014
dc.relationSharma, R. (2014). Observability based Control for Cooperative Localization. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems, 134-139. Orlando, Florida, USA. doi:10.1109/ICUAS.2014.6842248
dc.relationSira-Ramirez, H. (1988). Algebraic condition for observability of non-linear analytic systems. Int. J. Systems. Sci., 19(11), 2147-2155
dc.relationSrinivasan, B., Palanki, S., and Bonvin, D. (2003). Dynamic optimization of batch processes I. Characterization of the nominal solution. Computers & Chemical Engineering, 27(1), 1-26. doi:10.1016/S0098-1354(02)00116-3
dc.relationStoican, F., Raduinea, C.F., and Olaru, S. (2011). Adaptation of set theoretic methods to the fault detection of a wind turbine benchmark. In Proceedings of the 18th IFAC World Congress, 8322-8327. Milano, Italy. doi:10.3182/20110828-6-IT-1002.01842
dc.relationTao, T. (2011). An Introduction to Measure Theory. Graduate Studies in Mathematics. American Mathematical Society.
dc.relationVan Den Berg, F.W.J., Hoefsloot, H.C.J., Boelens, H.F.M., and Smilde, A.K. (2000). Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria. Chemical Engineering Science, 55(4), 827-837. doi:10.1016/S0009-2509(99)00360-7
dc.relationVande Wouwer, A., Point, N., Porteman, S., and Remy, M. (2000). An approach to the selection of optimal sensor locations in distributed parameter systems. Journal of Process Control, 10(4), 291-300. doi:10.1016/S0959-1524(99)00048-7
dc.relationVicino, A. and Zappa, G. (1996). Sequential approximation of feasible parameter sets for identi cation with set membership uncertainty. IEEE Transactions on Automatic Control, 41(6), 774-785. doi:10.1109/9.506230
dc.relationWaldraff, W., Dochain, D., Bourrel, S., and Magnus, A. (1998). On the use of observability measures for sensor location in tubular reactor. Journal of Process Control, 8(5-6), 497-505. doi:10.1016/S0959-1524(98)00017-1
dc.relationWang, G.B., Peng, S.S., and Huang, H.P. (1997). A sliding observer for nonlinear process control. Chemical Engineering Science, 52(5), 787-805.
dc.relationWebster, J.G. and Eren, H. (eds.) (2014). Measurement, Instrumentation, and Sensors Handbook. CRC Press, 2nd edition.
dc.relationWeickgenannt, M., Neuhaeuser, S., Henke, B., Sobek, W., and Sawodny, O. (2013). Optimal sensor placement for state estimation of a thin double-curved shell structure. Mechatronics, 23(3), 346-354. doi:10.1016/j.mechatronics.2013.01.009
dc.relationWelz, C., Srinivasan, B., and Bonvin, D. (2008). Measurement-based optimization of batch processes: Meeting terminal constraints on-line via trajectory following. Journal of Process Control, 18(3-4), 375-382. doi:10.1016/j.jprocont.2007.10.005
dc.relationYan, X.G. and Edwards, C. (2005). Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems. In Proceedings of the 44th IEEE Conference on Decision and Control, 987-992. Seville, Spain. doi:10.1109/CDC.2005.1582286
dc.relationYu, X. and Zhang, Y. (2015). Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Progress in Aerospace Sciences, 74, 152-166. doi:10.1016/j.paerosci.2015.01.001
dc.relationZavala, V.M. (2014). Inference of building occupancy signals using moving horizon estimation and Fourier regularization. Journal of Process Control, 24(6), 714-722. doi:10.1016/j.jprocont.2013.09.020
dc.relationZhang, D., Liu, L., Xu, S., Du, S., Dong, W., and Gong, J. (2018). Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization. Journal of Crystal Growth, 486, 1-9. doi:10.1016/j.jcrysgro.2017.12.046
dc.relationZuluaga, C.C. (2015). Batch process design: an overview from control. Master's thesis, Universidad Nacional de Colombia - Sede Medellín. URL http://www.bdigital.unal.edu.co/51256/
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleA set-theoretic approach to the observability of dynamical systems with non-ideal sensors
dc.typeOtros


Este ítem pertenece a la siguiente institución