dc.relation | Alamar, M. C., Tosetti, R., Landahl, S., Bermejo, A., & Terry, L. A. (2017). Assuring potato tuber quality during storage: A future perspective. Frontiers in Plant Science, 8(2034), 1–6. https://doi.org/10.3389/fpls.2017.02034
Alva, A. K., Marcos, J., Stockle, C., Reddy, V. R., & Timlin, D. (2010). A crop simulation model for predicting yield and fate of nitrogen in irrigated potato rotation cropping system. Journal of Crop Improvement, 24(2), 142–152. https://doi.org/10.1080/15427520903581239
Amthor, J. S. (1984). The role of maintenance respiration in plant growth. Plant, Cell and Environment, 7(8), 561–569. https://doi.org/10.1111/j.1365-3040.1984.tb01856.x
Amthor, J. S. (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 Years later. Annals of Botany, 86(1), 1–20. https://doi.org/10.1006/anbo.2000.1175
Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? In Food Security (Vol. 4, Issue 4). https://doi.org/10.1007/s12571-012-0220-1
Boogaard, H. L., & Kroes, J. G. (1998). Leaching of nitrogen and phosphorus from rural areas to surface waters in the Netherlands. Nutrient Cycling in Agroecosystems, 50(1–3), 321–324. https://doi.org/10.1007/978-94-017-3021-1_35
Bréda, N. (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–2417. https://doi.org/10.1093/jxb/erg263
Brown, H. E., Huth, N., & Holzworth, D. (2011). A potato model built using the APSIM Plant.net Framework. MODSIM 2011 - 19th International Congress on Modelling and Simulation - Sustaining Our Future: Understanding and Living with Uncertainty, 961–967. https://doi.org/10.36334/modsim.2011.b3.brown
Bukasov, S. M. (1933). The potatoes of South America and their breeding possibilities. (According to data gathered by expeditions of the Institute of Plant Industry to Central and South America.). Bull. Appl. Bot, 58–192.
Burgos, G., Salas, E., Amoros, W., Auqui, M., Muñoa, L., Kimura, M., & Bonierbale, M. (2009). Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis, 22(6), 503–508. https://doi.org/10.1016/j.jfca.2008.08.008
Cadena, M., Naranjo, A., & Ñústez, C. (2005). Evaluating the response of 60 Solanum phureja (Juz. et Buk.) genotypes to attacks by the Guatemalan moth (Tecia solanivora Povolny). Agronomía Colombiana, 23(1), 112–116.
Campbell, G. S. (1986). Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4), 317–321. https://doi.org/10.1016/0168-1923(86)90010-9
Campbell, G. S. (1990). Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agricultural and Forest Meteorology, 49, 173–176.
Campbell, G. S., & van Evert, F. K. (1995). Light interception by plant canopies: Efficiency and architecture. In Resource Capture by Crops (pp. 35–52). University Press.
Campillo, C., García, M. I., Daza, C., & Prieto, M. H. (2010). Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. HortScience, 45(10), 1459–1463.
Correll, D. (1962). Potato Its Wild Relatives (First Edit). Texas Research Foundation.
De la Casa, A., Ovando, G., Bressanini, L., Martínez, J., & Ibarra, E. (2008). Leaf Area Index in Potato Estimate From Canopy Cover. Agronomía Trop., 58(1), 61–64.
De la Casa, A., Ovando, G., Bressanini, L., Rodríguez, Á., & Martínez, J. (2007). Use of leaf area index and ground cover to estimate intercepted radiation in potato. Agricultura Técnica, 67(1), 78–85.
Dobson, G., Griffiths, D. W., Davies, H. V., & McNicol, J. W. (2004). Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. Journal of Agricultural and Food Chemistry, 52(20), 6306–6314. https://doi.org/10.1021/jf049692r
Dodds, K. S., & Paxman, G. J. (1962). The Genetic System of Cultivated Diploid Potatoes. Evolution, 16(2), 154. https://doi.org/10.2307/2406194
El-Sharkawy, M. A. (2011). Overview: Early history of crop growth and photosynthesis modeling. BioSystems, 103(2), 205–211. https://doi.org/10.1016/j.biosystems.2010.08.004
Escallón, R., Ramirez, M., & Ñústez, C. E. (2005). Evaluating potential yield and resistance to Phytophthora infestans (Mont. de Bary) in the Solanum phureja (Juz. et Buk.) yellow potato collection. Agronomia Colombiana, 23(1), 35–41.
Gayler, S., Wang, E., Priesack, E., Schaaf, T., & Maidl, F.-X. (2002). Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma, 105, 367–383. https://doi.org/10.1016/S0016-7061(01)00113-6
Gifford, R. M., Thorne, J. H., Hitz, W. D., & Giaquinta, R. T. (1984). Crop productivity and photoassimilate partitioning. Science, 225, 801–808. https://doi.org/10.1126/science.225.4664.801
Griffin, T. S., Johnson, B. S., & Ritchie, J. T. (1993). A simulation model for potato growth and development: SUBSTOR-Potato version 2.0. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawai, Honolulu. Soil Science, 32.
Gutaker, R. M., Weiß, C. L., Ellis, D., Anglin, N. L., Knapp, S., Luis Fernández-Alonso, J., Prat, S., & Burbano, H. A. (2019). The origins and adaptation of European potatoes reconstructed from historical genomes. Nature Ecology and Evolution, 3(July). https://doi.org/10.1038/s41559-019-0921-3
Guzmán, M., & Rodríguez, P. (2010). Susceptibility of Solanum phureja (Juz. et Buk.) to potato yellow vein virus. Agronomía Colombiana, 28(2), 219–224.
Hansen, S., Abrahamsen, P., Petersen, C. T., & Styczen, M. (2012). DAISY: Model, use, calibration and validation. Transactions of the ASABE, 55(4), 1315–1333.
Hariharan, I. K., Wake, D. B., & Wake, M. H. (2016). Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harbor Perspectives in Biology, 8(2), 1–17. https://doi.org/10.1101/cshperspect.a019174
Hatfield, J. (2014). Radiation use efficiency: Evaluation of cropping and management systems. Agronomy Journal, 106(5), 1820–1827. https://doi.org/10.2134/agronj2013.0310
Haverkort, A. J., Franke, A. C., Steyn, J. M., Pronk, A. A., Caldiz, D. O., & Kooman, P. L. (2015). A Robust Potato Model: LINTUL-Potato-DSS. Potato Research, 58(4), 313–327. https://doi.org/10.1007/s11540-015-9303-7
Haverkort, A. J., & Top, J. L. (2011). The potato ontology: Delimitation of the domain, modelling concepts, and prospects of performance. Potato Research, 54(2), 119–136. https://doi.org/10.1007/s11540-010-9184-8
Hawkes, J. G. (1956). Taxonomic studies on the tuber ‐ bearing Solanums. 1: Solanum tuberosum and the tetraploid species complex. Proceedings of the Linnean Society of London, 166(1–2), 97–144. https://doi.org/10.1111/j.1095-8312.1956.tb00754.x
Hawkes, J. G. (1990). The Potato: Evolution, biodiversity and genetic resources. Smithsonian Institution Press.
Hodges, T., Johnson, S. L., & Johnson, B. S. (1992). A Modular Structure for crop simulation models: Implemented in the SIMPOTATO model. Agronomy Journal, 84(5), 911–915. https://doi.org/10.2134/agronj1992.00021962008400050027x
Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. (2019). The DSSAT crop modeling ecosystem. In K. J. Boote (Ed.), Advances in Crop Modeling for a Sustainable Agriculture (pp. 173–216). Burleigh Dodds Science Publishing.
Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J. W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., & Jones, J. W. (2018). Decision Support System for Agrotechnology Transfer (DSSAT). Version 4.7.2 (4.7.2). www.DSSAT.net
Ingram, K. T., & McCloud, D. E. (1984). Simulation of Potato Crop Growth and Development 1. Crop Science, 24(1), 21–27. https://doi.org/10.2135/cropsci1984.0011183x002400010006x
Jamieson, P. D., Zyskowski, R. F., Sinton, S. M., Brown, H. E., & Butler, R. C. (2006). Potato calculator: A tool for scheduling nitrogen fertiliser applications. Agronomy New Zealand, 36(July 2015), 49–53.
Jennings, S. A., Koehler, A. K., Nicklin, K. J., Deva, C., Sait, S. M., & Challinor, A. J. (2020). Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Frontiers in Sustainable Food Systems, 4(December). https://doi.org/10.3389/fsufs.2020.519324
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7
Kadaja, J., & Tooming, H. (2004). Potato production model based on principle of maximum plant productivity. Agricultural and Forest Meteorology, 127(1–2), 17–33. https://doi.org/10.1016/j.agrformet.2004.08.003
Lenz-Wiedemann, V. I. S., Klar, C. W., & Schneider, K. (2010). Development and test of a crop growth model for application within a Global Change decision support system. Ecological Modelling, 221(2), 314–329. https://doi.org/10.1016/j.ecolmodel.2009.10.014
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., Gaydon, D., Marcaida, M., Nakagawa, H., Oriol, P., Ruane, A. C., Ruget, F., Singh, B., Singh, U., Tang, L., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. https://doi.org/10.1111/gcb.12758
Ligarreto, G., & Suárez, M. (2003). Evaluation of the potential of genetics resources of creole potato (Solanum phureja) for industrial quality. Agronomía Colombiana, 21(1–3), 83–94.
Luo, S., He, Y., Li, Q., Jiao, W., Zhu, Y., & Zhao, X. (2020). Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods, 16(1), 1–14. https://doi.org/10.1186/s13007-020-00693-3
Lutaladio, N., & Castaldi, L. (2009). Potato: The hidden treasure. Journal of Food Composition and Analysis, 22(6), 491–493. https://doi.org/10.1016/j.jfca.2009.05.002
Mann, J. E., Curry, G. L., DeMichele, D. W., & Baker, D. N. (1980). Light Penetration in a Row-Crop with Random Plant Spacing1. Agronomy Journal, 72(1), 131. https://doi.org/10.2134/agronj1980.00021962007200010026x
Monsi, M., & Saeki, T. (1953). Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. Journ. Bot., 14, 22–52.
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281, 277–294. https://doi.org/10.1098/rstb.1977.0140
Moslemkhani, K., Mozafari, J., Shams-Bakhsh, M., & Mohamadi, E. (2012). Expressions of some defense genes against Ralstonia Solanacearum in susceptible and resistant potato genotypes under in vitro conditions. Iran. J. Plant Path., 48(2), 57–60.
Murchie, E. H., Townsend, A., & Reynolds, M. (2019). Crop Radiation Capture and Use Efficiency. In R. Savin & G. Slafer (Eds.), Crop Science (pp. 73–106). Springer. https://doi.org/10.1007/978-1-4939-8621-7
NIKON®. (2019). Capture NX-D Reference Manual (pp. 1–58).
Ovchinnikova, A., Krylova, E., Gavrilenko, T., Smekalova, T., Zhuk, M., Knapp, S., & Spooner, D. M. (2011). Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society, 165(2), 107–155. https://doi.org/10.1111/j.1095-8339.2010.01107.x
Patrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy Journal, 107(6), 2312–2320. https://doi.org/10.2134/agronj15.0150
Pregno, L. M., & Armour, J. D. (1992). Boron deficiency and toxicity in potato cv. Sebago on an Oxisol of the Atherton Tablelands, North Queensland. Australian Journal of Experimental Agriculture, 32(2), 251–253. https://doi.org/10.1071/EA9920251
R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
Raymundo, R., Kleinwechter, U., & Asseng, S. (2014). Virtual potato crop modeling: A comparison of genetic coefficients of the DSSAT-SUBSTOR potato model with breeding goals for developing countries. January, 1–15. https://doi.org/10.5281/zenodo.7687
Reddy, B., Mandal, R., Chakroborty, M., Hijam, L., & Dutta, P. (2018). A review on potato (Solanum tuberosum L.) and its genetic diversity. International Journal of Genetics, 10(2), 360–364. https://doi.org/10.9735/0975-2862.10.2.360-364
Ritchie, J. T., Griffin, T. S., & Johnson, B. S. (1995). SUBSTOR: Functional model of potato growth, development and yield. In P. Kabat, B. Marshall, B. J. van der Broek, J. Vos, & H. van Keulen (Eds.), Modelling and Parameterization of the Soil-Plant-Atmosphere System: A Comparison of Potato Growth Models (pp. 401–435). Wageningen Pers.
Russell, G., Marshall, B., & Jarvis, P. . (1989). Plant canopies: their growth, form and function (G. Russell, B. Marshall, & P. G. Jarvis (eds.)). Cambridge University Press.
Saqib, M., & Anjum, M. A. (2021). Applications of decision support system: A case study of solanaceous vegetables. Phyton - International Journal of Experimental Botany, 90(2), 331–352. https://doi.org/10.32604/phyton.2021.011685
Sinclair, T., & Muchow, R. (1999). Radiation Use Efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/s0065-2113(08)60914-1
Singh, J., Govindakrishnan, P., Lal, S., & Aggarwal, P. (2005). Increasing the efficiency of agronomy experiments in potato using INFOCROP-POTATO model. Potato Research, 48(3–4), 131–152. https://doi.org/10.1007/BF02742372
Sinoquet, H., & Andrieu, B. (1993). The geometrical structure of plant canopies : characterization and direct measurement methods. In Crop structure and light microclimate (Issue June, pp. 131–158).
Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-y
Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139s
Steven, M. D., Biscoe, P. V., Jaggard, K. W., & Paruntu, J. (1986). Foliage cover and radiation interception. Field Crops Research, 13(C), 75–87. https://doi.org/10.1016/0378-4290(86)90012-2
Stöckle, C. O., & Kemanian, A. R. (2009). Crop Radiation Capture and Use Efficiency. Crop Physiology, 145–170. https://doi.org/10.1016/b978-0-12-374431-9.00007-4
Sukhotu, T., & Hosaka, K. (2006). Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome, 49(6), 636–647. https://doi.org/10.1139/G06-014
Thornley, J. H. M. (2011). Plant growth and respiration re-visited: Maintenance respiration defined it is an emergent property of, not a separate process within, the system and why the respiration: Photosynthesis ratio is conservative. Annals of Botany, 108(7), 1365–1380. https://doi.org/10.1093/aob/mcr238
Urbanek, S. (2014). Package jpeg: Read and write JPEG images. 1–5. https://cran.r-project.org/package=jpeg
Vose, J. M., Clinton, B. D., Sullivan, N. H., & Bolstad, P. V. (2008). Vertical leaf area distribution, light transmittance, and application of the Beer–Lambert Law in four mature hardwood stands in the southern Appalachians. Canadian Journal of Forest Research, 25(6), 1036–1043. https://doi.org/10.1139/x95-113
Wallach, D., Makowski, D., Jones, J. W., & Brun, F. (2019). Working with dynamic crop models. Methods, tools and examples for agroculture and environment (Third edit). Academic Press. https://doi.org/10.1016/c2011-0-06987-9
Watson, D. J. (1947). Comparative Physiological Studies on the Growth of Field Crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Applied Biology, 11(41), 41–76. https://doi.org/10.1111/j.1744-7348.1953.tb02364.x
Webb, N., Wood, J., & Nicholl, C. (2008). User Manual for the SunScan Canopy Analysis System Delta-T Devices Ltd.
White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368. https://doi.org/10.1016/j.fcr.2011.07.001
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90(5), 8995–9005.
Wolf, J. (2002). Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses. Climate Research, 21, 173–186.
Yamaguchi, J. (1978). Respiration and the growth efficiency in relation to crop productivity. J. Fac. Agric. Hokkaido Univ., 59, 59129.
Yang, J., Greenwood, D. J., Rowell, D. L., Wadsworth, G. A., & Burns, I. G. (2000). Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agricultural Systems, 64(1), 37–53. https://doi.org/10.1016/S0308-521X(00)00010-X
Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernandez-Ochoa, I. M., Wallach, D., Porter, C. H., Stockle, C. O., Zhu, Y., & Asseng, S. (2019). A SIMPLE crop model. European Journal of Agronomy, 104(January), 97–106. https://doi.org/10.1016/j.eja.2019.01.009 | |