dc.contributorCangrejo Aljure, Libia Denise
dc.contributorDelgado Fernández, Tatiana
dc.contributorANGeoSc
dc.creatorCantor Albarracín, Andrés Felipe
dc.date.accessioned2020-05-19T15:42:30Z
dc.date.available2020-05-19T15:42:30Z
dc.date.created2020-05-19T15:42:30Z
dc.date.issued2020-04-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77533
dc.description.abstractEn la era de transformación digital, nuestra cotidianidad se encuentra crecientemente invadida por dispositivos inteligentes con la capacidad de percibir distintos tipos de variables de contexto para adaptarse a nuestras necesidades y preferencias. Esta situación ha dado paso a un nuevo paradigma de computación conocido como Internet de las Cosas (IoT, por sus siglas en inglés), el cual tiene numerosos retos que pueden ser categorizados en: relacionados con los dispositivos de captura y actuación, relacionados con la comunicación entre dispositivos y relacionados con las aplicaciones. El presente trabajo se enmarca en este último grupo de desafíos y en particular en la capacidad de las aplicaciones de ser sensibles al contexto, mediante el tratamiento semántico de los flujos de datos masivos y dinámicos producidos por los dispositivos IoT. El modelo semántico de contexto extendido con datos abiertos enlazados XSCM_4_IoT propuesto por la profesora Libia Denise Cangrejo en su tesis doctoral, es una propuesta de solución que permite capturar contexto de bajo nivel y procesarlo hasta producir contexto de alto nivel que se publica como datos semánticos abiertos. Sin embargo, el mencionado modelo tiene limitaciones respecto al tratamiento de fujos de datos semánticos generados en tiempo real, esta limitación es heredada del uso de tecnologías semánticas clásicas, las cuales no se han adaptado al contexto de datos dinámicos y masivos actual. Esta situación, ha dado paso a una nueva área de investigación conocida como procesamiento de flujo de datos RDF (RSP, por sus siglas en inglés) la cual estudia el razonamiento semántico de flujos en tiempo real. En ese sentido, el presente trabajo propone, por un lado las modificaciones necesarias a nivel de arquitectura de referencia y de solución del modelo XSCM_4_IoT para habilitar el tratamiento de flujos de datos en tiempo real, avanzando así en la concepción de un modelo semántico que permita el manejo de contexto dinámico en todos sus ciclos y niveles. Por otro lado, propone un razonador semántico en tiempo real viable en el contexto de IoT - RTR_4_IoT, el cual cuenta con las característica de ser interoperable, jerárquico, escalable, configurable, extensible, adaptable y abierto al ser diseñado usando exclusivamente tecnologías de código abierto pertenecientes al ecosistema para el tratamiento de datos masivos de Hadoop.
dc.description.abstractIn the era of digital transformation, our everyday life is increasingly invaded with intelligent devices capable of perceiving different kinds of context variables in order to adapt themselves to our needs and preferences. This situation has created a new computation paradigm known as the Internet of Things (IoT) which has numerous challenges to be addressed and that can be further categorized in those related to the devices, those related to the networking and those related to the applications. This work is mainly focused on the last kind of challenges and in particular the context-aware feature of applications through the semantic treatment of the massive and dynamic data streams produced by IoT devices. The semantic context model extended with linked open data XSCM_4_IoT is a model proposed by professor Libia Denisse Cangrejo in her doctoral thesis that enables the capture and processing of low-level context to produce a high-level context that is published to the linked open data cloud. Nevertheless, the mentioned model has limitations in treating real-time semantic streams, this limitation comes from the use of classical semantic technologies which have not been adapted to the current challenges of dynamic and massive data produced by IoT devices. This situtation gives birth to a new research area called RDF Stream Processing (RSP) which studies reasoning over real-time semantic streams. In this sense, the contribution of the present work is twofold, on the one hand, it proposes modifications to both the reference and solution architectures of XSCM_4_IoT in order to enable the treatment of real-time data streams and thus advancing in the conception of a unified semantic model that handles the context in all his lifecycle and levels. On the other hand, it proposes a Real-Time Reasoner for IoT - RTR_4_IoT with the features of being interoperable, hierarchical, scalable, con gurable, extensible, adaptable and open since it is designed using exclusively open sources technologies belonging to the big data Hadoop ecosystem.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] Affetti, Lorenzo ; Tommasini, Riccardo ; Margara, Alessandro ; Cugola, Gian- paolo ; Della Valle, Emanuele: Defining the execution semantics of stream proces- sing engines. En: Journal of Big Data 4 (2017), Nr. 1. – ISBN 2196–1115 [2] Albeladi, Rehab: Distributed reasoning on semantic data streams. 2012. – 433–436 p.. – ISBN 9783642351723 [3] Ali, Muhammad I. ; Gao, Feng ; Mileo, Alessandra: CityBench: A configurable benchmark to evaluate RSP engines using smart city datasets. Vol. 9367. 2015. – 374– 389 p.. – ISBN 9783319250090 [4] Aliti, A. ; Sevrani, K.: A security model for Wireless Sensor Networks. En: 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019 - Proceedings, 2019. – ISBN 9789532330984, p. 1165–1168 [5] Amini, Sasan ; Gerostathopoulos, Ilias ; Prehofer, Christian: Big data analytics architecture for real-time traffic control. En: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (2017), Nr. Tum Llcm, p. 710–715. ISBN 978–1–5090–6484–7 [6] Anicic, Darko ; Fodor, Paul ; Rudolph, Sebastian ; Stojanovic, Nenad: EP- SPARQL: A unified language for event processing and stream reasoning. En: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, 2011. – ISBN 9781450306324, p. 635–644 [7] Anicic, Darko ; Rudolph, Sebastian ; Fodor, Paul ; Stojanovic, Nenad: Stream reasoning and complex event processing in ETALIS. En: Semantic Web 3 (2012), Nr. 4, p. 397–407. – ISSN 15700844 [8] Babcock, Brian ; Widom, Jennifer: Babcock, Widom. 2002 - Models and Issues in Data Stream Systems. En: Proceedings of the twenty-first ACM SIGMOD- SIGACT-SIGART symposium on Principles of database systems - PODS ’02 (2002), Nr. June 2002, p. 1–16. ISBN 1–58113–507–6 [9] Balduini, Marco ; Bocconi, Stefano ; Bozzon, Alessandro ; Della Valle, Emanuele ; Huang, Yi ; Oosterman, Jasper ; Palpanas, Themis ; Tsytsarau, Mikalai: A case study of active, continuous and predictive social media analytics for smart city. En: CEUR Workshop Proceedings Vol. 1280, 2014. – ISSN 16130073, p. 31–46 [10] Balduini, Marco ; Della Valle, Emanuele ; Dell’Aglio, Daniele ; Tsytsarau, Mikalai ; Palpanas, Themis ; Confalonieri, Cristian: Social listening of city scale events using the streaming linked data framework. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8219 LNCS (2013), Nr. PART 2, p. 1–16. – ISBN 9783642413377 [11] Banerjee, Snehasis ; Mukherjee, Debnath: Towards a universal notification system. En: Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web In- telligence and Intelligent Agent Technology - Workshops, WI-IATW 2013 Vol. 3, 2013.– ISBN 9781479929023, p. 286–287 [12] Barbieri, Davide F. ; Della Valle, Emanuele: A proposal for publishing Data Streams as Linked Data. En: CEUR Workshop Proceedings 628 (2010). – ISSN 16130073 [13] Barbieri, Davide F. ; Braga, Daniele ; Ceri, Stefano ; Della Valle, Emanue- le ; Grossniklaus, Michael: C-SPARQL: SPARQL for continuous querying. En: WWW’09 - Proceedings of the 18th International World Wide Web Conference (2009), Nr. January, p. 1061–1062. ISBN 9781605584874 [14] Barbieri, Davide F. ; Braga, Daniele ; Ceri, Stefano ; Della Valle, Emanuele; Grossniklaus, Michael: Incremental reasoning on streams and rich background knowledge. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6088 LNCS (2010), Nr. PART 1, p. 1–15. – ISBN 3642134858 [15] Bazoobandi, Hamid R. ; Beck, Harald ; Urbani, Jacopo: Expressive stream reaso- ning with laser. Vol. 10587 LNCS. 2017. – 87–103 p.. – ISBN 9783319682877 [16] Beck, Harald ; Dao-Tran, Minh ; Eiter, Thomas: LARS: A logic-based framework for analytic reasoning over streams. Vol. 10706 LNCS. 2018. – 87–93 p.. – ISBN 9783319731162 [17] Beckett, T. Prud’hommeaux E. Carothers G.: RDF 1.1 Turtle: Terse RDF Triple Language. February 2014. – [Online; posted 25-February-2014] [18] Bock, Jürgen ; Haase, Peter ; Ji, Qiu ; Volz, Raphael: Benchmarking OWL reasoners. En: CEUR Workshop Proceedings 350 (2008). – ISBN 9781595936493 [19] Bonte, Pieter ; Tommasini, Riccardo ; De Turck, Filip ; Ongenae, Femke ; Valle, Emanuele D.: C-Sprite: Efficient hierarchical reasoning for rapid RDF stream processing. En: DEBS 2019 - Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, 2019. – ISBN 9781450367943, p. 103–114 [20] Cabrera, Oscar ; Franch, Xavier ; Marco, Jordi: 3LConOnt: a three-level ontology for context modelling in context-aware computing. En: Software and Systems Modeling (2017), p. 1–34. – ISSN 16191374 [21] Calbimonte, Jean P. ; Aberer, Karl: Reactive processing of RDF streams of events. Vol. 9341. 2015. – 457–468 p.. – ISBN 9783319256382 [22] Calbimonte, Jean P. ; Mora, Jose ; Corcho, Oscar: Query rewriting in RDF stream processing. Vol. 9678. 2016. – 486–502 p.. – ISBN 9783319341286 [23] Cangrejo Aljure, Libia D.: MODELO SEMÁNTICO DE CONTEXTO EXTENDIDO CON LINKED OPEN DATA PARA IoT. https://repositorio.unal.edu.co/handle/unal/75520, Universidad Nacional de Colombia, Tesis de Grado, dec 2019 [24] Carcillo, Fabrizio ; Dal Pozzolo, Andrea ; Le Borgne, Yann A. ; Caelen, Olivier ; Mazzer, Yannis ; Bontempi, Gianluca: SCARFF: A scalable framework for streaming credit card fraud detection with spark. En: Information Fusion 41 (2018), p. 182–194. – ISSN 15662535 [25] Chang, Fay ; Dean, Jeffrey ; Ghemawat, Sanjay ; Hsieh, Wilson C. ; Wallach, Deborah A. ; Burrows, Mike ; Chandra, Tushar ; Fikes, Andrew ; Gruber, Robert E.: [seminal] Bigtable: A distributed storage system for structured data. En: Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA (2006), p. 205–218 [26] Chun, Sejin ; Jung, Jooik ; Seo, Seungmin ; Ro, Wonwoo ; Lee, Kyong H.: An adaptive plan-based approach to integrating semantic streams with remote RDF data. En: Journal of Information Science 43 (2017), Nr. 6, p. 852–865. – ISSN 17416485 [27] Compton, Michael ; Barnaghi, Payam ; Bermudez, Luis ; García-Castro, Raúl; Corcho, Oscar ; Cox, Simon ; Graybeal, John ; Hauswirth, Manfred ; Henson, Cory ; Herzog, Arthur ; Huang, Vincent ; Janowicz, Krzysztof ; Kelsey, W. D.; Le Phuoc, Danh ; Lefort, Laurent ; Leggieri, Myriam ; Neuhaus, Holger ; Nikolov, Andriy ; Page, Kevin ; Passant, Alexandre ; Sheth, Amit ; Taylor, Kerry: The SSN ontology of the W3C semantic sensor network incubator group. En: Journal of Web Semantics 17 (2012), p. 25–32. – ISSN 15708268 [28] Creswell, J. W.: Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 3. Sage Publications Ltd., 2008 [29] Cugola, Gianpaolo ; Margara, Alessandro: Complex event processing with T-REX. En: Journal of Systems and Software 85 (2012), Nr. 8, p. 1709–1728. – ISSN 01641212 [30] Cui, Meng ; Tai, Wei ; O’Sullivan, Declan: Temporal reasoning on Twitter streams using semantic web technologies. En: 2015 IEEE International Conference on Per- vasive Computing and Communication Workshops, PerCom Workshops 2015, 2015. – ISBN 9781479984251, p. 129–134. [31] D’Aniello, Giuseppe ; Gaeta, Matteo ; Orciuoli, Francesco: An approach based on semantic stream reasoning to support decision processes in smart cities. En: Telematics and Informatics 35 (2018), Nr. 1, p. 68–81. – ISSN 07365853 [32] De Brouwer, Mathias ; Ongenae, Femke ; Bonte, Pieter ; De Turck, Filip: Towards a cascading reasoning framework to support responsive ambient-intelligent healthcare interventions. En: Sensors (Switzerland) 18 (2018), Nr. 10. – ISSN 14248220 [33] De Leng, Daniel ; Heintz, Fredrik: DyKnow: A dynamically reconfigurable stream reasoning framework as an extension to the robot operating system. En: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2016, 2017. – ISBN 9781509046164, p. 55–60 [34] Dejonghe, Alexander: Towards scalable federated context-aware stream reasoning. Vol. 9678. 2016. – 803–812 p.. – ISBN 9783319341286 [35] Della Valle, E ; Celino, I ; Dell’Aglio, D ; Kim, K ; Huang, Z ; Tresp, V; Hauptmann, W ; Huang, Y ; Grothmann, R: Urban Computing: a challenging problem for Semantic Technologies. En: Workshop on New forms of Reasoning for the Semantic Web: scalable, tolerant and dynamic (NEFORS 2008), colocated with the 3rd Asian Semantic Web Conference (ASWC 2008) (2008), Nr. January [36] Della Valle, Emanuele ; Ceri, Stefano ; Van Harmelen, Frank ; Fensel, Dieter: It’s a streaming world! Reasoning upon rapidly changing information. En: IEEE Intelligent Systems 24 (2009), Nr. 6, p. 83–89. – ISSN 15411672 [37] Dell’Aglio, Daniele ; Eiter, Thomas ; Heintz, Fredrik ; Le-Phuoc, Danh: Special issue on stream reasoning. En: Semantic Web 10 (2019), Nr. 3, p. 453–455. – ISSN 22104968 [38] Dey, Anind ; Abowd, Gregory ; Salber, Daniel: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. En: Human-Computer Interaction 16 (2001), Nr. 2, p. 97–166. – ISSN 0737–0024 [39] Dia, Amadou F. ; Kazi-Aoul, Zakia ; Boly, Aliou ; Me´tais, Elisabeth: DRSS: Distributed RDF SPARQL streaming. Vol. 722. 2018. – 125–145 p. ISSN 1860949X [40] Do, Thang M. ; Loke, Seng W. ; Liu, Fei: Answer set programming for stream reasoning. Vol. 6657 LNAI. 2011. – 104–109 p.. – ISBN 9783642210426 [41] Do, Thang M. ; Loke, Seng W. ; Liu, Fei: Healthylife: An activity recognition system with smartphone using logic-based stream reasoning. Vol. 120 LNICST. 2013. – 188–199 p.. – ISBN 9783642402371 [42] Endler, Markus ; Briot, Jean P. ; Silva, Francisco Silva E. ; Almeida, Vitor P.; Haeusler, Edward H.: An Approach for Real-Time Stream Reasoning for the Internet of Things. En: Proceedings - IEEE 11th International Conference on Semantic Computing, ICSC 2017, 2017. – ISBN 9781509048960, p. 348–353. [43] Gao, Feng ; Ali, Muhammad I. ; Curry, Edward ; Mileo, Alessandra: Automated discovery and integration of semantic urban data streams: The ACEIS middleware. En: Future Generation Computer Systems 76 (2017), p. 561–581. – ISSN 0167739X [44] Gao, Shen ; Scharrenbach, Thomas ; Kietz, Jo¨rg Uwe ; Bernstein, Abraham: Running out of bindings? Integrating facts and events in linked data stream processing. En: CEUR Workshop Proceedings Vol. 1488, 2015. – ISSN 16130073, p. 63–74 [45] Gasparic, Marko ; Murphy, Gail C. ; Ricci, Francesco: A context model for IDE- based recommendation systems. En: Journal of Systems and Software 128 (2017), p. 200–219. – ISSN 01641212 [46] Giustozzi, Franco ; Saunier, Julien ; Zanni-Merk, Cecilia: Abnormal Situations Interpretation in Industry 4.0 using Stream Reasoning. En: Procedia Computer Science Vol. 159, 2019. – ISSN 18770509, p. 620–629 [47] Groza, Adrian ; Letia, Ioan A.: Plausible description logic programs for stream reasoning. En: Future Internet Vol. 4, 2012. – ISBN 9789898425959, p. 865–881 [48] Heintz, Fredrik: Semantically grounded stream reasoning integrated with ROS. En: IEEE International Conference on Intelligent Robots and Systems, 2013. – ISBN 9781467363587, p. 5935–5942 [49] Herrmann, Helmut ; Bucksch, Herbert: Drizzle. En: Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik (2014), p. 431–431. ISBN 9781450350853 [50] Jajaga, Edmond ; Ahmedi, Lule: C-SWRL: SWRL for Reasoning over Stream Data. En: Proceedings - IEEE 11th International Conference on Semantic Computing, ICSC 2017, 2017. – ISBN 9781509048960, p. 395–400 [51] Jajaga, Edmond ; Ahmedi, Lule ; Ahmedi, Figene: StreamJess: Enabling jess for stream data reasoning and the water domain case. Vol. 10180 LNAI. 2017. – 127–130 p.. – ISBN 9783319586939 [52] Karim, Farah ; Vidal, Maria-Esther ; Auer, S¨oren: Efficient Processing of Semantically Represented Sensor Data. En: Proceedings of the 13th International Conference on Web Information Systems and Technologies (2017), Nr. Webist, p. 252–259. ISBN 978–989–758–246–2 [53] Kassaie, Besat: SPARQL over GraphX. (2017), Nr. April [54] Keeney, John ; Fallon, Liam ; Tai, Wei ; O’Sullivan, Declan: Towards composite semantic reasoning for realtime network management data enrichment. En: Proceedings of the 11th International Conference on Network and Service Management, CNSM 2015, 2015. – ISBN 9783901882777, p. 246–250 [55] Khrouf, Houda ; Belabbess, Badre ; Bihanic, Laurent ; Kepeklian, Gabriel ; Curé, Olivier: WAVES: Big data platform for real-time RDF stream processing. En: CEUR Workshop Proceedings 1783 (2016), p. 37–48. – ISSN 16130073. [56] Kim, Je M. ; Park, Young T.: Scalable OWL-Horst ontology reasoning using SPARK. En: 2015 International Conference on Big Data and Smart Computing, BIGCOMP 2015 Part F1318 (2015), p. 79–86. ISBN 9781479973033 [57] Kitchenham, Barbara: Procedures for Performing Systematic Literature Reviews. En: Joint Technical Report, Keele University TR/SE-0401 and NICTA TR-0400011T.1 (2004), p. 33 [58] Kolajo, Taiwo ; Daramola, Olawande ; Adebiyi, Ayodele: Big data stream analysis: a systematic literature review. En: Journal of Big Data 6 (2019), Nr. 1. – ISBN 4053701902 [59] Le-phuoc, Danh: 3. RSP engine - CQELS- implement aurora operators? En: Iswc 1380 (2011), Nr. February, p. 370–388. ISBN 978–3–642–25072–9 [60] Le-Phuoc, Danh: Operator-aware approach for boosting performance in RDF stream processing. En: Journal of Web Semantics 42 (2017), p. 38–54. – ISSN 15708268 [61] Le-Phuoc, Danh ; Nguyen Mau Quoc, Hoan ; Le Van, Chan ; Hauswirth, Manfred: Elastic and scalable processing of linked stream data in the cloud. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8218 LNCS (2013), Nr. PART 1, p. 280–297. – ISBN 9783642413346 [62] Le Van, Chan ; Gao, Feng ; Ali, Muhammad I.: Optimizing the performance of concurrent RDF stream processing queries. Vol. 10249 LNCS. 2017. – 238–253 p.. – ISBN 9783319580678 [63] Lécué, Freddy ; Kotoulas, Spyros ; Aonghusa, Pól Mac: Capturing the pulse of cities: Opportunity and research challenges for robust stream data reasoning. En: AAAI Workshop - Technical Report WS-12-13 (2012), p. 9–14. ISBN 9781577355786 [64] Li, Qiong ; Zhang, Xiaowang ; Feng, Zhiyong: An adaptive framework for RDF stream processing. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10366 LNCS, 2017. – ISBN 9783319635781, p. 427–443 [65] Liu, Yu ; Mcbrien, Peter: SPOWL: Spark-based OWL 2 Reasoning Materialisation. ISBN 9781450350198 [66] Liu, Zhihui ; Feng, Zhiyong ; Zhang, Xiaowang ; Wang, Xin ; Rao, Guozheng: RORS: Enhanced rule-based OWL reasoning on spark. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9932 LNCS (2016), Nr. May, p. 444–448. – ISBN 9783319458168 [67] Llaves, Alejandro ; Corcho, Oscar ; Taylor, Peter ; Taylor, Kerry: Enabling RDF stream processing for sensor data management in the environmental domain. En: International Journal on Semantic Web and Information Systems 12 (2016), Nr. 4, p. 1–21. – ISSN 1552629. [68] Llaves, Alejandro ; Fernandez, Javier D. ; Corcho, Oscar: Towards Efficient Processing of RDF Data Streams. En: Proceedings of the 3rd International Workshop on Ordering and Reasoning. Co-located with the 13th International Semantic Web Conference (ISWC 2014) Vol. 1303, 2014. – ISSN 16130073, p. 55–60 [69] Maarala, Altti I. ; Su, Xiang ; Riekki, Jukka: Semantic Reasoning for Context- Aware Internet of Things Applications. En: IEEE Internet of Things Journal 4 (2017), Nr. 2, p. 461–473. – ISBN 2327–4662 VO – 4 [70] Margara, Alessandro ; Cugola, Gianpaolo: Processing flows of information: From data stream to complex event processing. En: DEBS’11 - Proceedings of the 5th ACM International Conference on Distributed Event-Based Systems V (2011), Nr. i, p. 359– 360. – ISBN 9781450309059 [71] Margara, Alessandro ; Cugola, Gianpaolo ; Collavini, Dario ; Dell’Aglio, Da- niele: Efficient Temporal Reasoning on Streams of Events with DOTR. Vol. 10843 LNCS. 2018. – 384–399 p.. – ISBN 9783319934167 [72] Margara, Alessandro ; Urbani, Jacopo ; Van Harmelen, Frank ; Bal, Henri: Streaming the Web: Reasoning over dynamic data. En: Journal of Web Semantics 25 (2014), p. 24–44. – ISSN 15708268 [73] Mathieu, Christian ; Klusch, Matthias ; Glimm, Birte: QSMat: Query-based mate- rialization for efficient RDF stream processing. Vol. 786. 2017. – 159–174 p.. – ISBN 9783319695471 [74] Mileo, Alessandra: Web stream reasoning: From data streams to actionable knowledge. Vol. 9203. 2015. – 75–87 p.. – ISBN 9783319217673 [75] Mileo, Alessandra ; Abdelrahman, Ahmed ; Policarpio, Sean ; Hauswirth, Manfred: StreamRule: A nonmonotonic stream reasoning system for the semantic web. Vol. 7994 LNCS. 2013. – 247–252 p.. – ISBN 9783642396656 [76] Mukherjee, Debnath ; Banerjee, Snehasis ; Misra, Prateep: Towards efficient stream reasoning. Vol. 8186 LNCS. 2013. – 735–738 p.. – ISBN 9783642410321 [77] Nieves, Juan C. ; Espinoza, Angelina ; Penya, Yoseba K. ; De Mues, Mariano O.; Peña, Aitor: Intelligence distribution for data processing in smart grids: A semantic approach. En: Engineering Applications of Artificial Intelligence 26 (2013), Nr. 8, p. 1841–1853. – ISSN 09521976 [78] Oren, Eyal ; Kotoulas, Spyros ; Anadiotis, George ; Siebes, Ronny ; ten Teije, Annette ; van Harmelen, Frank: Marvin: Distributed reasoning over large-scale Semantic Web data. En: Journal of Web Semantics 7 (2009), Nr. 4, p. 305–316. – ISBN 1570–8268. [79] Palmonari, Matteo ; Bogni, Davide: Commonsense spatial reasoning about heterogeneous events in urban computing. En: CEUR Workshop Proceedings Vol. 466, 2009. – ISSN 16130073, p. 16 [80] Perera, Charith ; Zaslavsky, Arkady ; Christen, Peter ; Georgakopoulos, Dimitrios ; Member, Student ; Zaslavsky, Arkady ; Christen, Peter: Context Aware Computing for The Internet of Things : A Survey. En: IEEE Communications Surveys & Tutorial X (2015), Nr. X, p. 1–41. – ISBN 1553–877X VO – PP [81] Petticrew, Mark and Roberts, Helen: Beelmann, Petticrew, Roberts - 2006 - Systematic reviews in the social sciences. A practical guide. 2006. – 354 p.. – ISBN 9781405121101 [82] Pham, Thu L.: A scalable adaptive method for complex reasoning over semantic data streams. Vol. 9088. 2015. – 751–759 p.. – ISBN 9783319188171 [83] Pham, Thu L. ; Ali, Muhammad I. ; Mileo, Alessandra: Enhancing the scalability of expressive stream reasoning via input-driven parallelization. En: Semantic Web 10 (2019), Nr. 3, p. 457–474. – ISSN 22104968 [84] Quoc, Hoan Nguyen M. ; Serrano, Martin ; Nguyen, Han M. ; Breslin, John G.; Le-Phuoc, Danh: EAGLE—A scalable query processing engine for linked sensor data. En: Sensors (Switzerland) 19 (2019), Nr. 20. – ISSN 14248220 [85] Reis, Ruhan D. ; Endler, Markus ; De Almeida, Vitor P. ; Haeusler, Edward H.: A Soft Real-Time Stream Reasoning Service for the Internet of Things. En: Proceedings - 13th IEEE International Conference on Semantic Computing, ICSC 2019, 2019. – ISBN 9781538667835, p. 166–169 [86] Ren, Tenglong ; Rao, Guozheng ; Zhang, Xiaowang ; Feng, Zhiyong: SRSPG: A Plugin-based Spark Framework for Large-scale RDF Streams Processing on GPU. En: CEUR Workshop Proceedings 2456 (2019), p. 89–92. – ISSN 16130073 [87] Ren, Xiangnan: Towards a distributed, scalable and real-time rdf stream processing engine. En: CEUR Workshop Proceedings Vol. 1733, 2016. – ISSN 16130073, p. 82–89 [88] Ren, Xiangnan ; Curé, Olivier: Strider: A hybrid adaptive distributed RDF stream processing engine. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10587 LNCS (2017), p. 559–576. – ISBN 9783319682877 [89] Ren, Xiangnan ; Curé, Olivier ; Naacke, Hubert ; Xiao, Guohui: RDF stream reasoning via answer set programming on modern big data platform. En: CEUR Workshop Proceedings Vol. 2180, 2018. – ISSN 16130073 [90] Ren, Yuan ; Pan, Jeff Z.: Optimising ontology stream reasoning with truth maintenan- ce system. En: International Conference on Information and Knowledge Management, Proceedings (2011), p. 831–836. ISBN 9781450307178 [91] Ren, Yuan ; Pan, Jeff Z. ; Lee, Kevin: Optimising parallel ABox reasoning of el ontologies. En: CEUR Workshop Proceedings 846 (2012), p. 508–518. – ISSN 16130073 [92] Ren, Yuan ; Pan, Jeff Z. ; Zhao, Yuting: Ontological stream reasoning via syntactic approximation. En: CEUR Workshop Proceedings Vol. 651, 2010. – ISSN 16130073 [93] Scharrenbach, Thomas ; Urbani, Jacopo ; Margara, Alessandro ; Della Valle, Emanuele ; Bernstein, Abraham: Seven commandments for benchmarking semantic flow processing systems. Vol. 7882 LNCS. 2013. – 305–319 p.. – ISBN 9783642382871 [94] Sha, Ruchita ; Pandat, Ami ; Bhise, Minal: Query Processing for Streaming RDF Data. En: 2018 IEEE International WIE Conference on Electrical and Computer Engineering, WIECON-ECE 2018, 2018. – ISBN 9781728119786, p. 75–78 [95] Shadroo, Shabnam ; Rahmani, Amir M.: Systematic survey of big data and data mining in internet of things. En: Computer Networks 139 (2018), p. 19–47. – ISBN 0130661023 [96] Shamszaman, Zia U. ; Ali, Muhammad I.: On the need for applications aware adap- tive middleware in real-time RDF data analysis (short paper). Vol. 10574 LNCS. 2017. – 189–197 p.. – ISBN 9783319694580 [97] Signore, Oreste: The Semantic Web and Cultural Heritage: Ontologies and Techno- logies Help in Accessing Museum Information. (2018), 05 [98] Sirin, Evren ; Parsia, Bijan ; Grau, Bernardo C. ; Kalyanpur, Aditya ; Katz, Yarden: Pellet: A practical OWL-DL reasoner. En: Web Semantics 5 (2007), Nr. 2, p. 51–53. – ISBN 978–0–88986–641–6 [99] Su, Xiang ; Gilman, Ekaterina ; Wetz, Peter ; Riekki, Jukka ; Zuo, Yifei ; Leppa¨nen, Teemu: Stream reasoning for the internet of things: Challenges and gap analysis. En: ACM International Conference Proceeding Series Vol. 13-15-June-2016, 2016. – ISBN 9781450340564 [100] Sun, Jingyu ; Kamiya, Masato ; Takeuchi, Susumu: Introducing Hierarchical Clus- tering with Real Time Stream Reasoning into Semantic-Enabled IoT. En: Proceedings - International Computer Software and Applications Conference Vol. 2, 2018. – ISBN 9781538626665, p. 540–545 [101] Tommasini, R. ; Della Valle, E.: Yasper 1.0: Towards an RSP-QL engine. En: CEUR Workshop Proceedings Vol. 1963, 2017 [102] Tommasini, Riccardo: Efficient and expressive Stream Reasoning with Object- Oriented Complex Event Processing. En: CEUR Workshop Proceedings Vol. 1491, 2015. – ISSN 16130073 [103] Tommasini, Riccardo ; Bonte, Pieter ; Della Valle, Emanuele ; Mannens, Erik; De Turck, Filip ; Ongenae, Femke: Towards ontology-based event processing. Vol. 10161 LNCS. 2017. – 115–127 p.. – ISBN 9783319546261 [104] Tommasini, Riccardo ; Della Valle, Emanuele ; Mauri, Andrea ; Brambilla, Marco: RSPLab: RDF stream processing benchmarking made easy. Vol. 10588 LNCS. 2017. – 202–209 p.. – ISBN 9783319682037 [105] Tommasini, Riccardo ; Valle, Emanuele D. ; Balduini, Marco: The Semantic Web. Latest Advances and New Domains. 9678 (2016), p. 250–265. ISBN 978–3–319–34128– 6 [106] Tsarkov, Dmitry ; Palmisano, Ignazio: Chainsaw: A metareasoner for large onto- logies. En: CEUR Workshop Proceedings 858 (2012). – ISSN 16130073 [107] Urbani, Jacopo ; Kotoulas, Spyros ; Maassen, Jason ; Van Harmelen, Frank Bal, Henri: OWL reasoning with WebPIE: Calculating the closure of 100 billion triples. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6088 LNCS (2010), Nr. PART 1, p. 213–227. – ISBN 3642134858 [108] Valle, Emanuele D. ; Schlobach, Stefan ; Kro¨tzsch, Markus ; Bozzon, Alessan- dro ; Ceri, Stefano ; Horrocks, Ian: Order matters! Harnessing a world of orderings for reasoning over massive data. En: Semantic Web 4 (2013), Nr. 2, p. 219–231. – ISSN 15700844 [109] Wang, Xiaohang ; Zhang, Daqing ; Gu, Tao ; Pung, Hung K.: Ontology Based Context Modeling and Reasoning using OWL. En: PerCom Workshops (2004), p. 18–22. – ISBN 0–7695–2106–1 [110] Yan, Rui ; Praggastis, Brenda ; Smith, William P. ; McGuinness, Deborah L.: Towards smart cache management for ontology based, history-aware stream reasoning. En: CEUR Workshop Proceedings Vol. 1572, 2016. – ISSN 16130073, p. 38–41
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleExtensión del modelo semántico de contexto XSCM_4_IoT para la gestión y el razonamiento de flujos de datos en tiempo real
dc.typeOtro


Este ítem pertenece a la siguiente institución