dc.contributorVélez Upegui, Jaime Ignacio
dc.contributorBotero Fernández, Verónica Catalina
dc.contributorParra Jiménez, Juan David
dc.creatorCoy Pertuz, Manuel Mario
dc.date.accessioned2021-02-17T16:21:53Z
dc.date.accessioned2022-09-21T18:28:31Z
dc.date.available2021-02-17T16:21:53Z
dc.date.available2022-09-21T18:28:31Z
dc.date.created2021-02-17T16:21:53Z
dc.date.issued2020-04-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79265
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3408722
dc.description.abstractAll coastal regions are exposed to climate change effects in the long term. Analysis of historical sea level data suggest a dramatic increasing tendency, and there are not enough studies about the impact of this change upstream of river mouths. This work aims to address the change in the area of land susceptible to floodings associated with the estimated geomorphological changes in the river due to the sea level rise, the surface deformations, and the spatio-temporal evolution of the delta. The study case is the Sinu river basin, located in northeastern Colombia, and strongly a effected by the floodings related to the 2010-2011 La-Niña event, accounting for approximately -4.49% of the affected people in Colombia. Results suggest an average tectonic tilting rate of -4.36 mm/year, and in conjunction with the expected sea-level rise estimated by the IPCC, an increase of the sea level in the river delta above the global average at the end of 21st century. Under these scenarios, hydraulic simulations of the river suggest an increase of 156.86 km2 of land susceptible to flooding. The results of this work increase the future risk perception and should be included as elements for spatial planning and risk management.
dc.description.abstractEn el largo plazo todas las regiones costeras están expuestas a los efectos del cambio climático. El análisis de los datos históricos sobre el nivel del mar sugiere que las tendencias futuras a nivel global son alarmantes y el efecto de la propagación aguas arriba de las desembocaduras de los ríos es un tema poco estudiado. En esta investigación se aborda cómo cambiarán las áreas inundables producto de los cambios morfológicos esperados en el cauce como consecuencia del aumento del nivel del mar, la deformación de la superficie y la evolución espacio-temporal del delta. Se eligió como caso de estudio la cuenca del río Sinú, situada en la parte noroeste de la región Caribe de Colombia, principalmente porque la población afectada por las inundaciones en La Niña 2010 - 2011 equivale al 4.49% de las personas afectadas en el país. Los resultados indican que hay un basculamiento tectónico con tasa promedio de -4.36 mm/año y que en conjunto con el aumento esperado del nivel del mar para finales del siglo XXI estimado por el IPCC determinan que habría aumento relativo del nivel del mar más alto respecto a la media global. Las simulaciones hidráulicas de escenarios de cambio evidencian que habría aproximadamente 156.86 km2 de áreas nuevas susceptibles de inundarse. Estos resultados aumentan la percepción del riesgo futuro y señala la importancia de convertirse en un insumo para el ordenamiento territorial y la gestión del riesgo.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationA. Church, J., Roemmich, D., Domingues, C., Willis, J., J. White, N., Gilson, J., … Traon, P.-Y. (2010). Understanding Sea-Level Rise and Variability. 143–176. https://doi.org/10.1002/9781444323276.ch6
dc.relationAlesheikh, A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. In International Journal of Environment Science and Technology (ISSN: 1735-1472) Vol 4 Num 1 (Vol. 4). https://doi.org/10.1007/BF03325962
dc.relationÁngel Martínez, M. C. (1994). Aplicación de la teledetección en la localización de superficie de agua. Retrieved from https://books.google.com.co/books/about/Aplicación_de_la_teledetección_en_la_l.html?id=fA9_OgAACAAJ&redir_esc=y
dc.relationAntoine, P., Lautridou, J. P., & Laurent, M. (2000). Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology, 33(3), 183–207. https://doi.org/https://doi.org/10.1016/S0169-555X(99)00122-1
dc.relationArche, A. (2010). Sedimentología. Del proceso físico a la cuenca sedimentaria. In A. Arche (Ed.), Sedimentología. Del proceso físico a la cuenca sedimentaria. Consejo Superior de Investigaciones Científicas Madrid.
dc.relationArroyo, J. (2017). Monitorización de la deformación del terreno de la Metrópolis de Warri (Nigeria), por medio de la técnica multi-temporal de Interferometría de Radar de Apertura Sintética (MT_InSAR) (Universidad de Jaén). Retrieved from http://tauja.ujaen.es/bitstream/10953.1/6077/1/TFM_ArroyoParras.pdf
dc.relationBanco Mundial. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Sistema Nacional de Información Para La Gestión Del Riesgo de Desastres, p. 438. https://doi.org/333.3109861/A56
dc.relationBeckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T., & Ray, R. D. (2017). On the “Cal‐Mode” Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11), 8371–8384. https://doi.org/10.1002/2017JC013090
dc.relationBladé, E., Cea, L., & Corestein, G. (2014). Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, Vol. 18, N. https://doi.org/10.4995/ia.2014.3144
dc.relationBlum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47(s1), 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
dc.relationBrain, M. J. (2016). Past, Present and Future Perspectives of Sediment Compaction as a Driver of Relative Sea Level and Coastal Change. Current Climate Change Reports, 2(3), 75–85. https://doi.org/10.1007/s40641-016-0038-6
dc.relationCaldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568) Version 5.5. https://doi.org/10.7289/V5V40S7W
dc.relationCasas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31(4), 444–456. https://doi.org/10.1002/esp.1278
dc.relationChu, Z. X., Sun, X. G., Zhai, S. K., & Xu, K. H. (2006). Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology, 227(1), 13–30. https://doi.org/https://doi.org/10.1016/j.margeo.2005.11.013
dc.relationConesa, C. (1999). Cambio ambiental y equilibrio dinámico de los cauces. Papeles de Geografía, (30), 31–46. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=105605&info=resumen&idioma=SPA
dc.relationCorrea, Iván, & Restrepo, J. (2002). Geología y oceanografía del delta del río San Juan. Medellín: Fondo Editorial Universidad EAFIT.
dc.relationCorrea, Ivan, Rios, A., González, D., I. Toro, M., Ojeda, G., & Restrepo-Correa, I. (2007). Erosión litoral entre Arboletes y Punta San Bernardo, Costa Caribe colombiana. Boletin de Geologia, 28, 115.
dc.relationCrosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.10.011
dc.relationCVS (2004). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río Sinú. Montería. Technical report, Corporación Autónoma Regional de los Valles del Sinú y del San Jorge (CVS), Montería.
dc.relationDada, O. A., Li, G., Qiao, L., Asiwaju-Bello, Y. A., & Anifowose, A. Y. B. (2018). Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans. Journal of African Earth Sciences, 139, 222–231. https://doi.org/https://doi.org/10.1016/j.jafrearsci.2017.12.023
dc.relationDay, J. W., Pont, D., Hensel, P. F., & Ibañez, C. (1995). Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: The importance of pulsing events to sustainability. Estuaries, 18(4), 636–647. https://doi.org/10.2307/1352382
dc.relationDay, J. W., & Rybczyk, J. M. (2019). Chapter 36 - Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population. In E. Wolanski, J. W. Day, M. Elliott, & R. Ramachandran (Eds.), Coasts and Estuaries (pp. 621–639). https://doi.org/https://doi.org/10.1016/B978-0-12-814003-1.00036-8
dc.relationDel Río, L., Gracia, F. J., & Benavente, J. (2013). Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology, 196, 252–266. https://doi.org/https://doi.org/10.1016/j.geomorph.2012.07.027
dc.relationDiago, M. P. R., & Henao, C. A. T. (2004). Diagnóstico Minero Preliminar, Zonificación de Amenazas por Inundaciones, Movimientos en Masa y Sísmica de la Cuenca Hidrográfica del río Sinú. Universidad de Caldas.
dc.relationDu, Y., Chang, C.-I., Ren, H., Chang, C.-C., Jensen, J. ~O., & D’Amico, F. ~M. (2004). New hyperspectral discrimination measure for spectral characterization. Optical Engineering, 43, 1777–1786. https://doi.org/10.1117/1.1766301
dc.relationElliott, M., Day, J. W., Ramachandran, R., & Wolanski, E. (2019). Chapter 1 - A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond. In E. Wolanski, J. W. Day, M. Elliott, & R. Ramachandran (Eds.), Coasts and Estuaries (pp. 1–28). https://doi.org/https://doi.org/10.1016/B978-0-12-814003-1.00001-0
dc.relationEricson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., & Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change, 50(1), 63–82. https://doi.org/https://doi.org/10.1016/j.gloplacha.2005.07.004
dc.relationFeyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. (2014). Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. In Remote Sensing of Environment (Vol. 140). https://doi.org/10.1016/j.rse.2013.08.029
dc.relationFieldin, E. (2018). ARSET: Introducción a la Interferometría SAR. Retrieved from http://arset.gsfc.nasa.gov
dc.relationFoumelis, M., Delgado Blasco, J. M., Desnos, Y.-L., Engdahl, M., Fernandez, D., veci, luis, … Wong, C. (2018). ESA SNAP – StaMPS Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry. https://doi.org/10.13140/RG.2.2.25803.90405
dc.relationGarcía, A. J., Marchamalo, M., Martínez, R., González-Rodrigo, B., & González, C. (2019). Integrating geotechnical and SAR data for the monitoring of underground works in the Madrid urban area: Application of the Persistent Scatterer Interferometry technique. International Journal of Applied Earth Observation and Geoinformation, 74, 27–36. https://doi.org/https://doi.org/10.1016/j.jag.2018.08.025
dc.relationGenz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The Predictive Accuracy of Shoreline Change Rate Methods and Alongshore Beach Variation on Maui, Hawaii. Journal of Coastal Research, 87–105. https://doi.org/10.2112/05-0521.1
dc.relationGhoneim, E., Mashaly, J., Gamble, D., Halls, J., & AbuBakr, M. (2015). Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre- and post-beach protection. Geomorphology, 228(1), 1–14. https://doi.org/10.1016/j.geomorph.2014.08.021
dc.relationGopikrishna, B., & Deo, M. C. (2018). Changes in the shoreline at Paradip Port, India in response to climate change. Geomorphology, 303, 243–255. https://doi.org/https://doi.org/10.1016/j.geomorph.2017.12.012
dc.relationGoudie, A. S. (2006). Global warming and fluvial geomorphology. Geomorphology, 79(3), 384–394. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.06.023
dc.relationGrinsted, A., Moore, J. C., & Jevrejeva, S. (2010). Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad . Climate Dynamics, 34(4), 461–472. https://doi.org/10.1007/s00382-008-0507-2
dc.relationHakkou, M., Maanan, M., Belrhaba, T., El khalidi, K., El Ouai, D., & Benmohammadi, A. (2018). Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean & Coastal Management, 163, 232–239. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2018.07.003
dc.relationHelfensdorfer, A. M., Power, H. E., & Hubble, T. C. T. (2019). Modelling Holocene analogues of coastal plain estuaries reveals the magnitude of sea-level threat. Scientific Reports, 9(1), 2667. https://doi.org/10.1038/s41598-019-39516-4
dc.relationHerrera, J. (2004). Diagnóstico Preliminar del sistema de caños y ciénagas asociadas al caño La Caimanera.
dc.relationHooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13. https://doi.org/https://doi.org/10.1016/j.tecto.2011.10.013
dc.relationIDEAM. (1998). Humedal del valle del rio sinu. Retrieved from http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=19840&shelfbrowse_itemnumber=19305#shelfbrowser
dc.relationIDEAM. (2012). Nivel del mar y régimen de la marea en las estaciones mareográficas de Colombia. https://doi.org/10.1017/CBO9781107415324.004
dc.relationIkeuchi, H., Hirabayashi, Y., Yamazaki, D., Kiguchi, M., Koirala, S., Nagano, T., … Kanae, S. (2015). Modeling complex flow dynamics of fluvial floods exacerbated by sea level rise in the Ganges–Brahmaputra–Meghna Delta. In Environmental Research Letters (Vol. 10). https://doi.org/10.1088/1748-9326/10/12/124011
dc.relationImaduddina, A. H., & Subagyo, W. W. H. (2014). Sea Level Rise Flood Zones: Mitigating Floods in Surabaya Coastal Area. Procedia - Social and Behavioral Sciences, 135, 123–129. https://doi.org/https://doi.org/10.1016/j.sbspro.2014.07.335
dc.relationINVEMAR (2008). Adaptación costera al ascenso del nivel del mar. Technical report, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andreis (INVEMAR), Santa Marta, Colombia.
dc.relationINVEMAR (2009). Evaluación de la vulnerabilidad por ANM en la zona costera del Departamento Magdalena. Technical report, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andreis (INVEMAR).
dc.relationINVEMAR-GEO (2015). Aportes Sedimentarios del Río Sinú y su Relación con los Procesos Costeros del Departamento de Córdoba. Technical report, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andreis (INVEMAR).
dc.relationJ. Tarbuck, E., & K. Lutgens, F. (2005). Ciencias de la tierra : una introducción a la geología física. In M. M. Romo (Ed.), SERBIULA (sistema Librum 2.0) (Octava). Retrieved from https://www.osop.com.pa/wp-content/uploads/2014/04/TARBUCK-y-LUTGENS-Ciencias-de-la-Tierra-8va-ed.-1.pdf
dc.relationJin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3), 364–372. https://doi.org/https://doi.org/10.1016/j.rse.2004.10.012
dc.relationKnox, J. C. (2000). Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews, 19, 439–457. https://doi.org/http://dx.doi.org/10.1016/S0277-3791(99)00074-8
dc.relationLane, E. W. (1955). The Importance of Fluvial Morphology in Hydraulic Engineering. 1955(20), 23–26. https://doi.org/10.11475/sabo1948.1956.23
dc.relationLeopold, L B. (1992). Base level rise: Gradient of deposition. Israel Journal of Earth Sciences, 41, 57–64.
dc.relationLeopold, Luna B, & Bull, W. B. (1979). Base Level, Aggradation, and Grade. Proceedings of the American Philosophical Society, 123(3), 168–202. Retrieved from http://www.jstor.org/stable/986220
dc.relationLiao, Y., Wang, T., & Zheng, W. (1998). Quality analysis of synthesized high resolution multispectral imagery - Geospatial World. Retrieved from https://www.geospatialworld.net/article/quality-analysis-of-synthesized-high-resolution-multispectral-imagery/
dc.relationLlovel, W., Willis, J. K., Landerer, F. W., & Fukumori, I. (2014). Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Climate Change, 4, 1031. Retrieved from https://doi.org/10.1038/nclimate2387
dc.relationLu, Z., & Dzurisin, D. (2014). InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Retrieved from https://books.google.com/books?id=KBI8AwAAQBAJ&pgis=1
dc.relationMaiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257(1), 11–23. https://doi.org/https://doi.org/10.1016/j.margeo.2008.10.006
dc.relationMálikov, I. (2010). Régimen De La Marea En Diferentes Puntos De Las Costas Colombianas. In Ideam (Vol. 64). https://doi.org/10.1007/s13398-014-0173-7.2
dc.relationMassonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 441–500. https://doi.org/10.1029/97RG03139
dc.relationMcFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
dc.relationMcleod, E., Poulter, B., Hinkel, J., Reyes, E., & Salm, R. (2010). Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean & Coastal Management, 53(9), 507–517. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2010.06.009
dc.relationMinisterio de Medio Ambiente y Medio Rural y Marino. (2011). Guía metodológica para el desarrollo del sistema nacional de cartografía de zonas inundables.
dc.relationNatesan, U., Parthasarathy, A., Vishnunath, R., Kumar, G. E. J., & Ferrer, V. A. (2015). Monitoring Longterm Shoreline Changes along Tamil Nadu, India Using Geospatial Techniques. Aquatic Procedia, 4(Icwrcoe), 325–332. https://doi.org/10.1016/j.aqpro.2015.02.044
dc.relationNavarrete, Ramírez, S. M. (2014). Protocolo indicador. Variación línea de costa: perfiles de playa. Indicadores de monitoreo biológico del Subsistema de Áreas Marinas Protegidas (SAMP). Invemar, GEF y PNUD. Serie de Publicaciones Generales del Invemar No. 73, Santa Marta. 36 p. In Serie de publicaciones generales del Invemar. (Vol. 73).
dc.relationOppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., … Sebesvari, Z. (2019). Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 355(6321), 126–129. https://doi.org/10.1126/science.aam6284
dc.relationOzturk, D., Beyazit, I., & Kılıç, F. (2015). Spatiotemporal Analysis of Shoreline Changes of the Kizilirmak Delta. In Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-14-00159.1
dc.relationPage, W. D. (1983). Holocene deformation of the Caribbean coast, northwestern Colombia. Field Trip C: General Geology, Geomorphology and Neotectonics of Northwestern Colombia. 10th Caribbean Geol Conference, Cartagena, Appendix, 1–20.
dc.relationPanel Intergubernamental de Cambio Climático. (2014a). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/DOI: 10.1017/CBO9781107415324
dc.relationPanel Intergubernamental de Cambio Climático. (2014b). Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 1: Global and Sectoral Aspects (Vol. 1). https://doi.org/DOI: 10.1017/CBO9781107415379
dc.relationPinos, J., & Timbe, L. (2019). Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1), 11–18. https://doi.org/https://doi.org/10.1016/j.wse.2019.03.001
dc.relationQiao, G., Mi, H., Wang, W., Tong, X., Li, Z., Li, T., … Hong, Y. (2018). 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. International Journal of Applied Earth Observation and Geoinformation, 68, 238–251. https://doi.org/https://doi.org/10.1016/j.jag.2018.02.009
dc.relationRestrepo, J. D., Kjerfve, B., Correa, I. D., & González, J. (2002). Morphodynamics of a high discharge tropical delta, San Juan River, Pacific coast of Colombia. Marine Geology, 192(4), 355–381. https://doi.org/https://doi.org/10.1016/S0025-3227(02)00579-0
dc.relationRicaurte, C., & Bastidas, M. . (2017). Regionalización oceanográfica: una visión dinámica del Caribe. Retrieved from http://www.invemar.org.co/documents/10182/14479/regionalizacion_oceanografica_baja.pdf
dc.relationRichards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis: An Introduction (3rd ed.; D. E. Ricken & W. Gessner, Eds.). Berlin, Heidelberg: Springer-Verlag.
dc.relationRobertson, K., & Chaparro, J. (1998). Evolución histórica del delta del río Sinú. Cuadernos de Geografía: Revista Colombiana de Geografía, 7(1–2), 70–86. Retrieved from https://revistas.unal.edu.co/index.php/rcg/article/view/70834
dc.relationRomine, B. M., Fletcher, C. H., Frazer, L. N., Genz, A. S., Barbee, M. M., & Lim, S.-C. (2009). Historical Shoreline Change, Southeast Oahu, Hawaii; Applying Polynomial Models to Calculate Shoreline Change Rates. Journal of Coastal Research, 256, 1236–1253. https://doi.org/10.2112/08-1070.1
dc.relationRouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the Third ERTS Symposium, 1, 309–317. Retrieved from citeulike-article-id:9507328
dc.relationRovere, A., Stocchi, P., & Vacchi, M. (2016). Eustatic and Relative Sea Level Changes. Current Climate Change Reports, 2(4), 221–231. https://doi.org/10.1007/s40641-016-0045-7
dc.relationSantos, R. (2008). Interferometría de Radar de Apertura Sintética (InSAR) aplicada a una caldera volcánica: Los Humeros Puebla-México. Universidad Nacional Autónoma de México.
dc.relationSarychikhina, O., Glowacka, E., Suárez Vidal, F., Mellors, R., & Ramírez Hernández, J. (2011). Aplicación de DInSAR a los estudios de subsidencia en el Valle de Mexicali. Boletin de La Sociedad Geológica Mexicana, 63, 1–13. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-33222011000100002&nrm=iso
dc.relationSchumm, S. A. (1993). River Response to Baselevel Change: Implications for Sequence Stratigraphy. The Journal of Geology, 101(2), 279–294. Retrieved from http://www.jstor.org/stable/30081152
dc.relationSerrano, B. E. (2004). The Sinú river delta on the northwestern Caribbean coast of Colombia: Bay infilling associated with delta development. Journal of South American Earth Sciences, 16(7), 623–631. https://doi.org/https://doi.org/10.1016/j.jsames.2003.10.005
dc.relationSINGH, A. (1989). Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003. https://doi.org/10.1080/01431168908903939
dc.relationSuárez, J. (2006). Asesoría Geotécnica para el proyecto Evaluación y Diagnóstico de los Procesos Erosivos aguas abajo de la Central Hidroeléctrica de Urrá.
dc.relationTessler, Z. D., Vörösmarty, C. J., Overeem, I., & Syvitski, J. P. M. (2017). A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology. https://doi.org/10.1016/j.geomorph.2017.09.040
dc.relationThieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2017). Digital Shoreline Analysis System (DSAS) version 4.0 — An ArcGIS extension for calculating shoreline change (ver.4.4, July 2017): U.S. Geological Survey Open-File Report 2008-1278. In Open-File Report. https://doi.org/10.3133/ofr20081278
dc.relationTörnqvist, T. E., Wallace, D. J., Storms, J. E. A., Wallinga, J., van Dam, R. L., Blaauw, M., … Snijders, E. M. A. (2008). Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1, 173. Retrieved from https://doi.org/10.1038/ngeo129
dc.relationTou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Reading, Mass. : Addison-Wesley Pub. Co.
dc.relationUniversidad Nacional de Colombia. (2004). Estudio de los problemas de erosión del río Sinú en el sector de Cantarrana.
dc.relationURRÁ S.A. E.S.P. (2001). Plan de Seguimiento y Monitoreo de la Zona Deltaico Estuarina del rio Sinú.
dc.relationUSGS EROS. (2017). Landsat Collection 1 Level 1. 26. Retrieved from https://landsat.usgs.gov/sites/default/files/documents/LSDS-1656_Landsat_Level-1_Product_Collection_Definition.pdf
dc.relationVernette, G., Correa, I. D., & Bernal, G. (2012). Introducción a los cambios del nivel del mar y sus consecuencias sobre la zona costera. In Ingeniería administrativa. Retrieved from http://www.minas.medellin.unal.edu.co/index.php/es/oferta-academica/pregrado/ingenieria-administrativa
dc.relationWatkins, M. M., Wiese, D. N., Yuan, D., Boening, C., & Landerer, F. W. (2015). Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. https://doi.org/10.1002/2014JB011547
dc.relationWhite, K., & El Asmar, H. M. (1999). Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta. Geomorphology, 29(1), 93–105. https://doi.org/https://doi.org/10.1016/S0169-555X(99)00008-2
dc.relationWu, X., Heflin, M. B., Schotman, H., Vermeersen, B. L. A., Dong, D., Gross, R. S., … Owen, S. E. (2010). Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geoscience, 3, 642. Retrieved from https://doi.org/10.1038/ngeo938
dc.relationXu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
dc.relationYang, Y., & Chui, T. F. M. (2017). Aquatic environmental changes and ecological implications from the combined effects of sea-level rise and land reclamation in Deep Bay, Pearl River Estuary, China. Ecological Engineering, 108(Part A), 30–39. https://doi.org/https://doi.org/10.1016/j.ecoleng.2017.08.003
dc.relationYastika, P. E., Shimizu, N., & Abidin, H. Z. (2019). Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Advances in Space Research, 63(5), 1719–1736. https://doi.org/https://doi.org/10.1016/j.asr.2018.11.008
dc.relationZhang, B., Wang, R., Deng, Y., Ma, P., Lin, H., & Wang, J. (2019). Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 157–173. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.12.008
dc.relationZhang, Z., Wang, C., Tang, Y., Fu, Q., & Zhang, H. (2015). Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers. International Journal of Applied Earth Observation and Geoinformation, 39, 49–55. https://doi.org/https://doi.org/10.1016/j.jag.2015.02.007
dc.relationZhou, Z., Coco, G., Townend, I., Olabarrieta, M., van der Wegen, M., Gong, Z., … Zhang, C. (2017). Is “Morphodynamic Equilibrium” an oxymoron? Earth-Science Reviews, 165, 257–267. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.12.002
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMetodología para la estimación de impactos hidráulicos y geomorfológicos por ascenso del nivel del mar en cuencas con llanuras costeras: caso de aplicación cuenca del río Sinú
dc.typeOtros


Este ítem pertenece a la siguiente institución