dc.contributor | Franco-Ariza, Camilo Andrés | |
dc.contributor | Cortés-Correa, Farid Bernardo | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Fenómenos de Superficie - Michael Polanyi | |
dc.creator | Hurtado-Castaño, Yira Victoria | |
dc.date.accessioned | 2020-06-01T15:32:51Z | |
dc.date.accessioned | 2022-09-21T18:28:00Z | |
dc.date.available | 2020-06-01T15:32:51Z | |
dc.date.available | 2022-09-21T18:28:00Z | |
dc.date.created | 2020-06-01T15:32:51Z | |
dc.date.issued | 2020-08-31 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77577 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3408654 | |
dc.description.abstract | Despite all the controversies, the consumption of fossil fuels is the main source of energy worldwide, with oil supplying 36% of the global energy demand. Thus, the industry's interest in obtaining greater amounts of crude oil from the reservoirs is maintained through processes of enhanced oil recovery (EOR), with special focus on unconventional reservoirs. One of the EOR techniques is the injection of foams in the presence of nanoparticles, which not only improves the mobility rate between the fluid that displaces (gas or water) and the displaced fluid (crude) but also serves as a blocking agent for areas of high permeability. However, despite the multiple experimental studies published on the subject, this method of recovery is not applied in a massive way. This is because foams are a metastable fluid, that is, the bubbles are unstable over time. Commonly foams can be stabilized using surfactants, however, surfactants are negatively affected by high temperatures, the presence of salts and adsorption in porous media, consequently, reservoirs of crude oil are not a favorable environment for foams. Hence, it is intended to reinforce their stability with an additive that maintains its properties in reservoir conditions. According to the scientific literature, the essential additive to reinforce the stability of foams are nanoparticles, so the objective of this thesis is to develop nanoparticles of different chemical and functionalized nature that improve the stability of the foams used in processes of improved oil recovery by steam injection and in this way determine the influence of the interactions between surfactants and particles in the stability of the foams | |
dc.description.abstract | A pesar de todas las controversias el consumo de hidrocarburos fósiles es la principal fuente de energía a nivel mundial, siendo el petróleo quien suple el 37% de la demanda global de energía. Así pues, el interés de la industria por obtener mayores cantidades de crudo de los yacimientos se mantiene a través de procesos de recobro mejorado de crudo (EOR), con especial foco en yacimientos no convencionales. Una de las técnicas EOR es la inyección de espumas en presencia de nanopartículas, que no solo mejora la tasa de movilidad entre el fluido que desplaza (gas o agua) y el fluido desplazado (crudo) sino que también sirve como un agente de bloqueo para zonas de alta permeabilidad. Sin embargo, a pesar de los múltiples estudios experimentales publicados en el tema, este método de recobro no se aplica de forma masiva. Esto porque en esencia las espumas son un fluido metaestable, es decir, las burbujas son inestables en el tiempo. Comúnmente las espumas se pueden estabilizar utilizando tensoactivos, sin embargo, los tensoactivos son negativamente afectados por altas temperaturas, la presencia de sales y la adsorción en medios porosos, en consecuencia, los yacimientos no son un ambiente favorable para las espumas. De ahí que se pretenda reforzar la estabilidad de estas con un aditivo que mantenga sus propiedades a las condiciones de yacimiento. Según la literatura científica el aditivo esencial para reforzar la estabilidad de las espumas son las nanopartículas, por lo que el objetivo de esta tesis es desarrollar nanopartículas de diferentes naturalezas químicas y funcionalizadas que mejoren la estabilidad de las espumas usadas en procesos de recuperación mejorada de petróleo por inyección de vapor y de esta forma determinar la influencia de las interacciones entre tensoactivos y partículas en la estabilidad de las espumas. | |
dc.language | eng | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Departamento de Procesos y Energía | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | World Energy Outlook 2017 2017. https://www.iea.org/weo2017/. | |
dc.relation | Manrique, E. J.; Thomas, C. P.; Ravikiran, R.; Izadi Kamouei, M.; Lantz, M.; Romero, J. L.; Alvarado, V. In EOR: current status and opportunities, SPE improved oil recovery symposium, Society of Petroleum Engineers: 2010. | |
dc.relation | Besson, C., Resources to reserves: oil & gas technologies for the energy markets of the future. OECD Publishing: 2013. | |
dc.relation | Short-Term Energy Outlook - U.S. Energy Information Administration (EIA). https://www.eia.gov/outlooks/steo/. | |
dc.relation | Eson, R.; Cooke, R. In A comprehensive analysis of steam foam diverters and application methods, SPE California Regional Meeting, Society of Petroleum Engineers: 1989. | |
dc.relation | Chen, Q.; Gerritsen, M. G.; Kovscek, A. R., Effects of reservoir heterogeneities on the steam-assisted gravity-drainage process. SPE Reservoir Evaluation & Engineering 2008, 11 (05), 921-932. | |
dc.relation | Chen, Q.; Gerritsen, M. G.; Kovscek, A. R. In Improving steam-assisted gravity drainage using mobility control foams: foam assisted-SAGD (FA-SAGD), SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers: 2010 | |
dc.relation | Gurgel, A.; Moura, M.; Dantas, T. N. C.; Neto, E. L. B.; Neto, A. A. D., A review on chemical flooding methods applied in enhanced oil recovery. Brazilian journal of petroleum and gas 2008, 2 (2). | |
dc.relation | Taber, J. J.; Martin, F.; Seright, R., EOR screening criteria revisited-Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Reservoir Engineering 1997, 12 (03), 189-198. | |
dc.relation | Sanger, P.; Hagoort, J., Recovery of gas-condensate by nitrogen injection compared with methane injection. SPE Journal 1998, 3 (01), 26-33 | |
dc.relation | Andrianov, A.; Farajzadeh, R.; Mahmoodi Nick, M.; Talanana, M.; Zitha, P. L., Immiscible foam for enhancing oil recovery: bulk and porous media experiments. Industrial & Engineering Chemistry Research 2012, 51 (5), 2214-2226. | |
dc.relation | Turta, A. T.; Singhal, A. K., Field foam applications in enhanced oil recovery projects: screening and design aspects. Journal of Canadian Petroleum Technology 2002, 41 (10). | |
dc.relation | Talebian, S. H.; Masoudi, R.; Tan, I. M.; Zitha, P. L. J., Foam assisted CO 2-EOR: a review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering 2014, 120, 202-215. | |
dc.relation | Aarra, M. G.; Ormehaug, P. A.; Skauge, A.; Masalmeh, S. K. In Experimental study of CO2-and methane-foam using carbonate core material at reservoir conditions, SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers: 2011. | |
dc.relation | Sun, X.; Dong, M.; Zhang, Y.; Maini, B. B., Enhanced heavy oil recovery in thin reservoirs using foamy oil-assisted methane huff-n-puff method. Fuel 2015, 159, 962-973. | |
dc.relation | Sun, X.; Dong, M.; Zhang, Y.; Maini, B. B., Enhanced heavy oil recovery in thin reservoirs using Ocampo, A.; Restrepo, A.; Cifuentes, H.; Hester, J.; Orozco, N.; Gil, C.; Castro, E.; Lopera, S.; Gonzalez, C. In successful foam EOR pilot in a mature volatile oil reservoir under miscible gas injection, IPTC 2013: International Petroleum Technology Conference, 2013. | |
dc.relation | Restrepo, A.; Ocampo, A.; Lopera Castro, S. H.; Diaz, M. P.; Clavijo, J.; Marin, J. In GaStim Concept-A Novel Technique for Well Stimulation. Part I: Understanding the Physics, SPE Latin America and Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers: 2012. | |
dc.relation | Cuenca, A.; Lacombe, E.; Morvan, M.; Le Drogo, V.; Giordanengo, R.; Chabert, M.; Delamaide, E. In Design of Thermally Stable Surfactants Formulations for Steam Foam Injection, SPE Heavy Oil Conference-Canada, Society of Petroleum Engineers: 2014. | |
dc.relation | Castro, S. H. L.; Uribe, A. R.; Flórez, A. O., Fluidos divergentes como alternativa de recobro mejorado en yacimientos naturalmente fracturados: un estudio experimental. Boletín de Ciencias de la Tierra 2009, (25), 67-80 | |
dc.relation | Guo, H.; Faber, M. J.; Buijse, M. A.; Zitha, P. L. In A novel alkaline-surfactant-foam EOR process, SPE Enhanced Oil Recovery Conference, Society of Petroleum Engineers: 2011.. | |
dc.relation | Lau, H. C., Alkaline steam foam: Concepts and experimental results. SPE Reservoir Evaluation & Engineering 2012, 15 (04), 445-452 | |
dc.relation | Marsden, S. Foams in porous media; Stanford Univ., CA (USA). Petroleum Research Inst.: 1986.. | |
dc.relation | Kovscek, A.; Patzek, T.; Radke, C. In Mechanistic prediction of foam displacement in multidimensions: A population balance approach, SPE/DOE Improved Oil Recovery Symposium, Society of Petroleum Engineers: 1994. | |
dc.relation | Khatib, Z.; Hirasaki, G.; Falls, A., Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE reservoir engineering 1988, 3 (03), 919-9 | |
dc.relation | Khatib, Z.; Hirasaki, G.; Falls, A., Effects of capillary pressure on coalescence and phase mobilities in Farzaneh, S. A.; Sohrabi, M. In A review of the status of foam application in enhanced oil recovery, EAGE Annual Conference & Exhibition incorporating SPE Europec, Society of Petroleum Engineers: 2013. | |
dc.relation | Bayat, A. E.; Rajaei, K.; Junin, R., Assessing the effects of nanoparticle type and concentration on the stability of CO 2 foams and the performance in enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 511, 222-231 | |
dc.relation | Eftekhari, A. A.; Krastev, R.; Farajzadeh, R., Foam Stabilized by Fly-Ash Nanoparticles for Enhancing Oil Recovery. 2015. | |
dc.relation | Farhadi, H., H., et al. (2016). "Experimental study of nanoparticle-surfactant-stabilized CO 2 foam: Stability and mobility control." Chemical Engineering Research and Design 111: 449-460.; 	; Sun, X., et al. (2015). "Enhanced heavy oil recovery in thin reservoirs using foamy oil-assisted methane huff-n-puff method." Fuel 159: 962-973.; 	; Riahi, S.; Ayatollahi, S.; Ahmadi, H., Experimental study of nanoparticle-surfactant-stabilized CO 2 foam: Stability and mobility control. Chemical Engineering Research and Design 2016, 111, 449-460. | |
dc.relation | Wang, J.; Xue, G.; Tian, B.; Li, S.; Chen, K.; Wang, D.; Sun, Y.; Xu, H.; Petkov, J. T.; Li, Z., Interaction between Surfactants and SiO2 Nanoparticles in Multiphase Foam and Its Plugging Ability. Energy & Fuels 2016, 31 (1), 408-417. | |
dc.relation | Binks, B. P.; Horozov, T. S., Colloidal particles at liquid interfaces. Cambridge University Press: 2006. | |
dc.relation | Binks, B. P.; Horozov, T. S., Colloidal particles at liquid interfaces. Cambridge University Press: Adkins, S. S.; Gohil, D.; Dickson, J. L.; Webber, S. E.; Johnston, K. P., Water-in-carbon dioxide emulsions stabilized with hydrophobic silica particles. Physical Chemistry Chemical Physics 2007, 9 (48), 6333-6343. | |
dc.relation | Yekeen, N.; Manan, M. A.; Idris, A. K.; Samin, A. M.; Risal, A. R., Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles. Journal of Petroleum Science and Engineering 2017, 159, 115-134. | |
dc.relation | Lee, D.; Cho, H.; Lee, J.; Huh, C.; Mohanty, K., Fly ash nanoparticles as a CO2 foam stabilizer. Powder Technology 2015, 283, 77-84. | |
dc.relation | Singh, R.; Mohanty, K. K., Foams stabilized by in-situ surface-activated nanoparticles in bulk and porous media. SPE Journal 2016, 21 (01), 121-130. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Mejoramiento de la estabilidad de espumas divergentes mediante el uso de nanopartículas funcionalidades para procesos de recobro mejorado de petróleo por inyección de vapor | |
dc.type | Otros | |