dc.contributorOcampo Cifuentes, Marisol
dc.contributorFIDIC
dc.contributorGrupo Funcional Tuberculosis
dc.creatorSánchez Barinas, Christian David
dc.date.accessioned2021-09-24T22:49:48Z
dc.date.available2021-09-24T22:49:48Z
dc.date.created2021-09-24T22:49:48Z
dc.date.issued2021-09-24
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80306
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractMycobacterium tuberculosis (Mtb) es uno de los patógenos más exitosos de la humanidad, siendo el principal causante de tuberculosis, responsable del mayor número de muertes a nivel mundial por un agente infeccioso, estimándose que un tercio de la población mundial es portadora del bacilo. La adaptación evolutiva de este patógeno se debe principalmente a su habilidad para evadir el sistema inmune del hospedero, evitando que éste despliegue una respuesta inmune efectiva en casos donde se desarrolla tuberculosis activa. Es así como se hace necesario mejorar el reconocimiento del patógeno por actores del sistema inmune para lo cual se pueden emplear células dendríticas (CDs) derivadas por métodos estándares con 1,25 ng/mL IL-4 y 2,5 ng/mL GM-CSF fueron pulsados con péptidos sintéticos (n=114) provenientes de proteínas (n=16) involucradas en la interacción micobacteria-hospedero, los cuales han sido modificados en la secuencia de aminoácidos; los cambios estratégicos permiten una mayor interacción con el CMH-II del hospedero y de esta manera hacen que los péptidos sean más inmunogénicos que las secuencias nativas. Esta interacción permite entrar en contacto con linfocitos TCD4+ lo que se evaluó mediante la expansión clonal de células de memoria; además estos linfocitos permitieron el control del crecimiento intracelular de Mtb en macrófagos infectados. Este trabajo contribuye así a que empleando péptidos modificados considerados como candidatos vacunales contra tuberculosis y presentados por CDs, se pueda aumentar la respuesta inmunológica del individuo y llegar a contribuir en el control de la infección por Mtb mediante la presentación antigénica a linfocitos TCD4+ conocidos como los mayores efectores en la inmunidad contra tuberculosis.(Texto tomado de la fuente)
dc.description.abstractMycobacterium tuberculosis (Mtb) is one of the most successful pathogens of humanity, being the main cause of tuberculosis, responsible for the highest number of deaths worldwide by an infectious agent that estimates a third of the world's population is a carrier of the bacillus. The evolutionary adaptation of this pathogen is mainly due to its ability to evade the host's immune system, preventing it from displaying an effective immune response in cases where active tuberculosis develops. This is how it is necessary to improve the recognition of the pathogen by actors of the immune system for which dendritic cells (DC). That was how, DC’s were derived by standard methods with 1,25 ng/mL IL-4 and 2,5 ng/mL GM-CSF were pulsed with synthetic peptides (n=114) from proteins (n=16) involved in the mycobacterial-host interaction, which have been modified in the amino acid sequence; the strategic changes allow greater interaction with the host MHC-II and thus make the peptides more immunogenic than the native sequences. This interaction allows contact with TCD4+ lymphocytes, which is evaluated by clonal expansion of memory; in addition, these lymphocytes allowed the control of the intracellular growth of Mtb in infected macrophages. This work thus contributes to the fact that using peptides modified specifically as vaccine candidates against tuberculosis and pulsed by CD, can increase the individual's immune response, and contribute to the control of Mtb infection by antigenic presentation to TCD4+ lymphocytes known as major effectors in immunity against tuberculosis.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Bioquímica
dc.publisherDepartamento de Ciencias Fisiológicas
dc.publisherFacultad de Medicina
dc.publisherBogotá - Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin Exp Immunol. 2009;157(2):235-43.
dc.relationGagneux S, P. S. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. . Lancet Infect Dis. 2007;7(5):328-37.
dc.relationCoscolla M, S. G. Consequences of genomic diversity in Mycobacterium tuberculosis. Seminars in Immunology 2014;26(6):431-44.
dc.relationWHO. Global Tuberculosis Report 2020. 2020.
dc.relationMashael Al-Saeedi., Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist. 2017;10:333-42.
dc.relationPalomino JC, Martin A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3:317-40.
dc.relationDockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 Years? Frontiers in Immunology. 2017;8:1134.
dc.relationMoliva J, Turner J, Torrelles J. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine. 2015;33(39):5035-41.
dc.relationHatherill M, Tait D, McSha H. Clinical Testing of Tuberculosis Vaccine Candidates. Microbiology Spectrum. 2016;4(5).
dc.relationAERAS. Global Clinical Portfolio of TB Vaccine Candidates. 2020.
dc.relationOcampo M, Patarroyo M, Vanegas M, Alba M, Patarroyo M. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology. 2014;40(2):117-45.
dc.relationRodríguez DC, Ocampo M, Reyes C, Arévalo-Pinzón G, Munoz M, Patarroyo MA, et al. Cell-Peptide Specific Interaction Can Inhibit Mycobacterium tuberculosis H37Rv Infection. Journal of Cellular Biochemistry. 2015;117:946-58.
dc.relationDíaz D, Ocampo M, Varela Y, Curtidor H, Patarroyo M, Patarroyo M. Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion. Molecular and Cellular Biochemistry. 2017;430(1-2):149-60.
dc.relationOcampo M, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Specific Interaction between Mycobacterium tuberculosis Lipoprotein-derived Peptides and Target Cells Inhibits Mycobacterial Entry In Vitro. Chemical biology & drug design. 2014;84(6):626-41.
dc.relationCarabali-Isajar M, Ocampo M, Rodriguez D, Vanegas M, Curtidor H, Patarroyo M, et al. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic & Medicinal Chemistry. 2018;36(9):2401-9.
dc.relationPatarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi epitope, subunit-based, chemically synthesized anti-malarial vaccines. Molecular Immunology. 2008;12:1915-35.
dc.relationCurtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. molecules. 2017;22:2199.
dc.relationPatarroyo M, Bermúdez A, Alba M, Vanegas M, Moreno-Vranich A, Poloche L, et al. IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS ONE. 2015;10(4):e0123249.
dc.relationAhsan M. Recent advances in the development of vaccines for tuberculosis. Therapeutic Advances in Vaccines. 2015;3(3):66-75.
dc.relationDalmia N, Ramsay AJ. Prime–boost approaches to tuberculosis vaccine development. Expert Rev Vaccines. 2012;11(10):1221-33.
dc.relationGoldberg M, Saini N, Porcelli S. Evasion of Innate and Adaptive Immunity by Mycobacterium tuberculosis. American Society for Microbiology. 2014;2(5).
dc.relationPatarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chemical Reviews. 2011;111:3459-507.
dc.relationPatarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. ACCOUNTS OF CHEMICAL RESEARCH. 2008;41(3):377-236.
dc.relationStewart G, Robertson B, Young D. Tuberculosis: a problem with persistence. Nat Rev Microbiol. 2003;1(2):97-105.
dc.relationErnst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12:581-91.
dc.relationBaena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens. 2009;74(3):189-204.
dc.relationvan Crevel R, Ottenhoff T, van der Meer J. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15(2):294-309.
dc.relationMantilla Galindo A, Ocampo M, Patarroyo M. Experimental models used in evaluating anti tuberculosis vaccines: the latest advances in the field. Expert Review of Vaccines. 2019;18(4):365-377. 144
dc.relationOrr M, Ireton G, Beebe E, Huang PW, Reese V, Argilla D, et al. Immune subdominant antigens as vaccine candidates against Mycobacterium tuberculosis. Journal Immunology. 2014;193(6):2911-8.
dc.relationTameris M, Hatherill M, Landry B, Scriba T, Snowden M, Lockhart S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381(9871):1021-8.
dc.relationDoherty T, Olsen A, Weischenfeldt J, Huygen K, D'Souza S, Kondratieva T, et al. Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis. J Infect Dis. 2004;190(12):2146-53.
dc.relationDemangel C, Bean A, Martin E, Feng C, Kamath A, Britton W. Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guérin infected dendritic cells. Eur J Immunol. 1999;29(6):1972-9.
dc.relationRubakova E, Petrovskaya S, Pichugin A, Khlebnikov V, McMurray D, Kondratieva E, et al. Specificity and efficacy of dendritic cell-based vaccination against tuberculosis with complex mycobacterial antigens in a mouse model. Tuberculosis. 2007;87(2):134-44.
dc.relationGarcía J, Puentes A, Rodríguez L, Ocampo M, Curtidor H, Vera R, et al. Mycobacterium tuberculosis Rv2536 protein implicated in specific binding to human cell lines. Protein Science. 2005;14(9):2236-45.
dc.relationForero M, Puentes A, Cortés J, Castillo F, Vera R, Rodríguez L, et al. Identifying putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Science. 2005;14(11):2767-80.
dc.relationVera-Bravo R, Torres E, Valbuena J, Ocampo M, Rodriguez L, Puentes A, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochemical and biophysical research communications. 2005;332(3):771-81.
dc.relationChapeton-Montes J, Plaza D, Curtidor H, Forero M, Vanegas M, Patarroyo M, et al. Characterizing the Mycobacterium tuberculosis Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Science. 2008;17(2):342-51.
dc.relationPlaza D, Curtidor H, Patarroyo M, Chapeton-Montes J, Reyes C, Barreto J, et al. The Mycobacterium tuberculosis membrane protein Rv2560--biochemical and functional studies. The FEBS journal. 2007;274(24):6352-64.
dc.relationPatarroyo M, Curtidor H, Plaza D, Ocampo M, Reyes C, Saboya O, et al. Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine candidates? Vaccine. 2008;26(34):4387-95.
dc.relationPatarroyo M, Plaza D, Ocampo M, Curtidor H, Forero M, Rodriguez L, et al. Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochemical and biophysical research communications. 2008;372(4):935-40.
dc.relationCifuentes D, Ocampo M, Curtidor H, Vanegas M, Forero M, Patarroyo M, et al. Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: potential TB vaccine candidate antigen. BMC Microbiology. 2010.
dc.relationCáceres S, Ocampo M, Arévalo-Pinzón G, Jimenez R, Patarroyo M, Patarroyo M. The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides. 2011;32(1):1-10.
dc.relationOcampo M, Aristizábal-Ramírez D, Rodríguez D, Muñoz M, Curtidor H, Vanegas M, et al. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein engineering. 2012;25(5):235-42.
dc.relationOcampo M, Rodríguez D, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids. 2012;42(6):2067-77.
dc.relationRodríguez D, Ocampo M, Curtidor H, Vanegas M, Patarroyo M, Patarroyo M. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides. 2012;38(2):208-16.
dc.relationOPS-OMS. Situación del control de la Tuberculosis en las Américas; 2021.
dc.relationMaltempe FG, Caleffi-Ferracioli KR, Ribeirodo RC, de Oliveira D, F.,, Dias Siqueira VL, Regiane LS, et al. Activity of rifampicin and linezolid combination in Mycobacterium tuberculosis. Tuberculosis. 2017;104:24-9.
dc.relationBertholet S, Ireton G, Ordway D, Windish H, Pine S, Kahn M, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med. 2010;2(53):53ra74.
dc.relationINS. Boletín informativo semanal. Semana 16. 2021.
dc.relationForrellad MA. KL, Gioffré A. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1): 3–66.
dc.relationMaitra A. MT, HealyCell J. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019;43(5): 548–575.
dc.relationKaur I. GM, Skovierová H. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol. 2009;69:23-78
dc.relationKieser KJ, Rubin EJ. How sisters grow apart: mycobacterial growth and division. Nature Reviews Microbiology. 2014;12:550-62
dc.relationSH K. How can immunology contribute to the control of tuberculosis? Nature reviews Immunology. Nat Rev Immunol 2001;1(1):20-30.
dc.relationKrutzik SR, Modlin RL. The role of Toll-like receptors in combating mycobacteria. Seminars in Immunology. 2004;16(1):35-41.
dc.relationHarding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010;8(4):296-307.
dc.relationFerwerda G, Girardin SE, Kullberg B, Bourhis LL, de Jong DJ, Langenberg DML, et al. NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(3):e34.
dc.relationPandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, et al. NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathog. 2009;5(7):e1000500.
dc.relationCoulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL, Yang Y, et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. journal of Experimental Medicine. 2009.
dc.relationAwuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cellular and molecular life sciences. 2016;74(9):1625-48.
dc.relationMogues T, Goodrich M, Ryan L, LaCourse R, North R. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2001;193(3):271-80.
dc.relationPai M, Behr M, Dowdy D, Dheda K, Divangahi M, Boehme C et al. Tuberculosis. Nature Reviews Disease Primers. 2016;2(1).
dc.relationRamakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology. 2012;12(5):352-366.
dc.relationScanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, et al. Depletion of Cd4+ T Cells Causes Reactivation of Murine Persistent Tuberculosis despite Continued Expression of Interferon γ and Nitric Oxide Synthase 2. J Exp Med. 2000;192(3):347-58.
dc.relationRepique C, Li A, Brickey W, Ting J, Collins F, Morris S. Susceptibility of mice deficient in the MHC class II transactivator to infection with Mycobacterium tuberculosis. Scand J Immunol. 2003;58(1):15-22.
dc.relationBürdek M, Spranger S, Wilde S, Frankenberger B, Schendel DJ, Geiger C. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation. J Transl Med. 2010;8:90.
dc.relationHajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLoS ONE. 2015;10(12):e0144397.
dc.relationGriffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nature communications. 2016.
dc.relationLucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. 2007;26(4):503-17.
dc.relationDauer M, Schad K, Herten J, Junkmann J, Bauer C, Kiefl R, et al. FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells. J Immunol Methods. 2005;302(1-2):145-55.
dc.relationMailliard R, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens C, Kapsenberg M, et al. alpha type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004;64(17):5934-7.
dc.relationBernal-Estevez DA, Tovar-Murillo DR, Parra- Lopez CA. Functional and Phenotypic Analysis of Two-Day Monocyte-Derived Dendritic Cells Suitable for Immunotherapy Purposes. SOJ Immunology. 2016;4(21):1-18.
dc.relationWegner J, Hackenberg S, Scholz C, Chuvpilo S, Tyrsin D, Matskevich A, et al. High density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood. 2015;126(2):185-94.
dc.relationMartinuzzi E, Afonso G, Gagnerault M-C, Naselli G, Mittag D, Combadière B, et al. Accelerated co-cultured dendritic cells (acDCs) enhance human antigen-specific T-cell responses. Blood. 2011;118(8):2128-37.
dc.relationVerdijk P, van Veelen PA, de Ru. AH, Hensbergen PJ, Mizuno K, Koerten HK, et al. Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. Eur J Immunol. 2004;34(1):156-64.
dc.relationSherman M, Weber D, Spotts E, Moore J, Jensen P. Inefficient peptide binding by cell surface class II MHC molecules. Cell Immunol. 1997;182(1):1-11.
dc.relationWinzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med. 1997;185(2):317.28.
dc.relationCella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997;9(1):10-6.
dc.relationRutella S, Danese S, G. L. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435-40.
dc.relationShinde P, Fernandes S, Melinkeri S, Kale V, Limaye L. Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Nature. 2018;8:5705.
dc.relationForrellad MA. KL, Gioffré A. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1): 3–66.
dc.relationBarratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano III S, et al. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. . J Immunol. 2000;164(5):2487-95.
dc.relationZimmer M, Larregina A, Castillo C, Capuano S, Falo LJ, Murphey-Corb M, et al. Disrupted homeostasis of Langerhans cells and interdigitating dendritic cells in monkeys with AIDS. Blood. 2002;99(8):2859-68.
dc.relationSallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182(2):389-400.
dc.relationMajlessi L, Benoit C, Albrecht I, García JE, Nouze C, Pieters J, et al. Inhibition of Phagosome Maturation by Mycobacteria Does Not Interfere with Presentation of Mycobacterial Antigens by MHC Molecules. Journal Immunology. 2007;179(3):1825-33.
dc.relationSteinman RM, Turley S, Mellman I, K. I. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191(3):411-6.
dc.relationSantambrogio L, Sato AK, Carven GJ, Belyanskaya SL, Strominger JL, Stern LJ. Extracellular antigen processing and presentation by immature dendritic cells. PNAS. 1999;96(26):15056-61.
dc.relationRosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M., Drijfhout JW, et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol. 2013;43:2554-65.
dc.relationSallusto F, Geginat J, A. L. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745-63.
dc.relationMoser JM, Sassano ER, Leistritz del C, Eatrides JM, Phogat S, Koff W, et al. Optimization of a dendritic cell-based assay for the in vitro priming of naïve human CD4+ T cells. J Immunol Methods. 2010;353(1-2):8-19.
dc.relationMackey MF, Barth RJ Jr, RJ. N. The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 1998;63(4):418- 28.
dc.relationKrowka JF, Cuevas B, Maron DC, Steimer KS, Ascher MS, . SH. Expresión de CD69 después de la estimulación in vitro: un método rápido para cuantificar las respuestas de linfocitos alterados en individuos infectados por el VIH. J Adquirir inmunodeficiencia Syndr Hum Retrovirol. 1996;11(1):95-104.
dc.relationGonzález-Amaro R., Cortés JR, Sánchez-Madrid F, P. M. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625-32.
dc.relationBernal-Estévez DA. Evaluación de la capacidad inmuno-estimulante de la terapia neo adyuvante con Doxorrubicina Ciclofosfamida en pacientes con cáncer de mama: Universidad Nacional de Colombia; 2017.
dc.relationQuah B. PC. The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation. J Vis Exp. 2010;(44): 2259.
dc.relationParish CR. GM, Quah B. Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation. . Curr Protoc Immunol. 2009;Chapter 4:Unit4.9.
dc.relationZhou Juhua, Nagarkatii P, Zhong Y, Nagarkatti M. Characterization of T-Cell Memory Phenotype after In Vitro Expansion of Tumor-infiltrating Lymphocytes from Melanoma Patients. Anticancer Res. 2011;31(12):4099-109.
dc.relationGeginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory and effector memory CD4+ T cells. Pathol Biol (Paris). 2003;51(2):64-6.
dc.relationSallusto F, Lenig D, Förster R, Lipp M, A. L. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6574):708-12.
dc.relationGattinoni L. RN. Moving T memory stem cells to the clinic. Blood. 2013;121(4):567.
dc.relationJenkins MK, JJ. M. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J Immunol. 2012;188(9):4135-40.
dc.relationZhu J, Yamane H, WE. P. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445-89.
dc.relationMuranski P, Restifo N. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121(13):2402-14.
dc.relationLeung S, Liu X, Fang L, Chen X, Guo T, Zhang J. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol. 2010;7(3):182-9.
dc.relationZhu J, WE. P. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557-69.
dc.relationFuertes Marraco SA, Neubert NJ, Verdeil G, DE. S. Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol. 2015;6:310.
dc.relationL.S.K. W. PD-1 and CTLA4: Two checkpoints, one pathway? Europe PMC Funders Group. 2017;2(11).
dc.relationWalker LS, DM. S. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852-63.
dc.relationKopf, M., Coyle, A. J., Schmitz, N., Barner, M., Oxenius, A., Gallimore, A., et al. (2000). Inducible costimulator protein controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192, 53–61.
dc.relationHerman, A. E., Freeman, G. J., Mathis, D., and Benoist, C. (2004). CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489.
dc.relationRottman, J. B., Smith, T., Tonra, J. R., Ganley, K., Bloom, T., Silva, R., et al. (2001). The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2, 605–611.
dc.relationHubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory Molecules on Immunogenic Versus Tolerogenic Human Dendritic Cells. Frontiers in Immunology. 2013;4.
dc.relationFillatreau S, Gray D. T Cell Accumulation in B Cell Follicles Is Regulated by Dendritic Cells and Is Independent of B Cell Activation. Journal of Experimental Medicine. 2003;197(2):195-206.
dc.relationB Wagner, L Fattorini, M Wagner, S H Jin, R Stracke, G Amicosante, et al. Antigenic properties and immunoelectron microscopic localization of Mycobacterium fortuitum beta lactamase. Antimicrobial Agents and Chemotherapy. 1995;39:3739-45.
dc.relationBoggiano C, Eichelberg K, Ramachandra L, Shea J, Ramakrishnan L, Behar S, et al. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design"- Meeting report. Vaccine. 2017;35.
dc.relationUsman MM. IS, Teoh TC. Vaccine research and development: tuberculosis as a global health threat. Central-European journal of immunology. Cent Eur J Immunol. 2017;42(29): 196– 204.
dc.relationPoyntz HC. SE, Griffiths KL. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis. 2014;94:226–237.
dc.relationMoliva JI. TJ, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine. 2015;22; 33 (39):5035-41.
dc.relationVizcaíno C, Restrepo-Montoya D, Rodríguez D, Niño LF, Ocampo M, e. a. Computational Prediction and Experimental Assessment of Secreted/ Surface Proteins from Mycobacterium tuberculosis H37Rv. PLoS Comput Biol. 2010;6(6).
dc.relationRestrepo-Montoya D, Vizcaino C, Nino LF, Ocampo M, Patarroyo ME, MA. P. Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinformatics. 2009;10:134.
dc.relationLi W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(W1):W580- 4.
dc.relationBairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2005;33.
dc.relationGardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics. 2005;21(5):617-23.
dc.relationKuo-Chen Chou, &., Hong-Bin Shen. "Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms". Nature Protocols. 2008;3:153-62.
dc.relationHong-Bin Shen, &, Kuo-Chen Chou. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Engineering, Design and Selection. 2007;20:39-46.
dc.relationRashid M, Saha S, R G. Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics. 2007;8:337.
dc.relationJannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne, Brunak. S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783-95.
dc.relationJannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer, Brunak. S. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:167.
dc.relationAgnieszka S.Juncker, Hanni Willenbrock, Gunnar von Heijne, Søren Brunak, Henrik Nielsen, Anders Krogh. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12(8):1652-62.
dc.relationBendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58.
dc.relationSonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology. 1998;6:175-82.
dc.relationKäll L, Krogh A, Sonnhammer. ELL. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Research. 2007;35:429-32.
dc.relationJulenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15(2):153-64.
dc.relationYubin Xie, Yueyuan Zheng, Hongyu Li, Xiaotong Luo, Zhihao He, Shuo Cao, et al. GPS Lipid: a robust tool for the prediction of multiple lipid modification sites. Scientific Reports. 2016;6.
dc.relationLarsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Research. 2006;2(2).
dc.relationJones D. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.
dc.relationLawrence A Kelley, Stefans Mezulis, Christopher M Yates, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10:845- 58.
dc.relationBienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, et al. The SWISS MODEL Repository - new features and functionality. Nucleic Acids Research. 2017;45:313-19.
dc.relationBiasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. 2014;42:252-58.
dc.relationSalomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3:198-210.
dc.relationDamian Szklarczyk, John H Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Milan Simonovic ea. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362-D8.
dc.relationOcampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology. 2012;40(2):117-45.
dc.relationMerrifield R. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.
dc.relationSreerama N., RW. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry. 2000;15:252-60.
dc.relationOcampo M, Patarroyo MA, Vanegas M, Alba MP, ME. P. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology 2013;40(2).
dc.relationBermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infection and Immunity. 1996;64(4):1400-06.
dc.relationLuiz E. Bermudez, Felix J. Sangari, Peter Kolonoski, Mary Petrofsky, Goodman. J. The Efficiency of the Translocation of Mycobacterium tuberculosis across a Bilayer of Epithelial and Endothelial Cells as a Model of the Alveolar Wall Is a Consequence of Transport within Mononuclear Phagocytes and Invasion of Alveolar Epithelial Cells. Infection and Immunity. 2002;70(1):140-46.
dc.relationReynisson B, Barra C, Kaabinejadian S, Hildebrand W, Peters B, Nielsen M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. Journal of Proteome Research. 2020;19(6):2304-2315.
dc.relationCoscolla M, Gagneuxa aS. Consequences of genomic diversity in Mycobacterium tuberculosis. Seminars in Immunology. 2014;26:431-44.
dc.relationGasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., et al. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. Human Press. 2007:571-607.
dc.relationJackKyte F, Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 1982;157(1):105-32.
dc.relationShen HB, KC. C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. . Protein and peptide letters. 2009;16(12):1478-84.
dc.relationChen J., Liu H., Yang J., Chou K-C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. AminoAcids. 2007;33:423-8.
dc.relationAndreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen. M. Accurate pan specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(0):641-50.
dc.relationKelly SM, Jess TJ, NC. P. How to study proteins by circular dichroism. . Biochimica et Biophysica Acta. 2005;10:119-39.
dc.relationHajam I, Dar P, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLOS ONE. 2015;10(12):e0144397.
dc.relationSánchez-Barinas C, Ocampo M, Vanegas M, Castañeda-Ramirez J, Patarroyo M, Patarroyo M. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules. 2018;23(3):526.
dc.relationSánchez-Barinas C, Ocampo M, Tabares L, Bermúdez M, Patarroyo M, Patarroyo M. Specific Binding Peptides from Rv3632: A Strategy for BlockingMycobacterium tuberculosisEntry to Target Cells?. BioMed Research International. 2019;2019:1-13.
dc.relationH. Škovierová, G. Larrouy-Maumus, H. Pham et al., “Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis,” The Journal of Biological Chemistry, vol. 285, no. 53, pp. 41348–41355, 2010.
dc.relationJacobs AJ, Juthathip Mongkolsapaya, Gavin R. Screaton, Helen McShane, aRJ. W. Antibodies and tuberculosis. Tuberculosis (Edinb). 2016;101:102-3.
dc.relationPatarroyo ME, Bermúdez A, MA. P. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chemical Reviews 2011.
dc.relationCurtidor H, Patarroyo M, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 40(29):117-45.
dc.relationCarabali-Isajar M, Ocampo M, Varela Y, Díaz-Arévalo D, Patarroyo M, Patarroyo M. Antibodies targeting Mycobacterium tuberculosis peptides inhibit mycobacterial entry to infection target cells. International Journal of Biological Macromolecules. 2020;161:712-720.
dc.relationBürdek M, Spranger S, Wilde S, Frankenberger B, Schendel D, Geiger C. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation. Journal of Translational Medicine. 2010;8(1):90.
dc.relationDelgado G, Granados D. Células Dendríticas (CDs) diferenciadas a partir de Monocitos humanos como herramienta para el estudio de agentes antileishmaniales. Nova. 2008;6(10):162.
dc.relationLubong Sabado R, Kavanagh D, Kaufmann D, Fru K, Babcock E, Rosenberg E et al. In Vitro Priming Recapitulates In Vivo HIV-1 Specific T Cell Responses, Revealing Rapid Loss of Virus Reactive CD4+ T Cells in Acute HIV-1 Infection. PLoS ONE. 2009;4(1):e4256.
dc.relationParra D, Rieger A, Li J, Zhang Y, Randall L, Hunter C et al. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. Journal of Leukocyte Biology. 2011;91(4):525-536.
dc.relationLucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic Cells Prime Natural Killer Cells by trans-Presenting Interleukin 15. Immunity. 2007;26(4):503-517.
dc.relationSchlienger K, Craighead N, Lee K, Levine B, June C. Efficient priming of protein antigen– specific human CD4+ T cells by monocyte-derived dendritic cells. Blood. 2000;96(10):3490-3498.
dc.relationLópez C, Yepes-Pérez Y, Díaz-Arévalo D, Patarroyo M, Patarroyo M. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile. Frontiers in Cellular and Infection Microbiology. 2018;8.
dc.relationRosalia R, Quakkelaar E, Redeker A, Khan S, Camps M, Drijfhout J et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T cell activation. European Journal of Immunology. 2013;43(10):2554-2565.
dc.relationDavoust J, Banchereau J. Naked antigen-presenting molecules on dendritic cells. Nature Cell Biology. 2000;2(3):E46-E48.
dc.relationSantambrogio L, Sato A, Carven G, Belyanskaya S, Strominger J, Stern L. Extracellular antigen processing and presentation by immature dendritic cells. Proceedings of the National Academy of Sciences. 1999;96(26):15056-15061.
dc.relationBrinke A, Trzonkowska N, Mansilla MJ, Turksma AW, Piekarska K, et al. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front Immunol 2017.
dc.relationKaufmann SH . Libro de Abbas Lancet 2010; 375:2110-19.
dc.relationYoon H, Kim TS, Braciale TJ. The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus. PLoS One 2010; 5(11): e15423.
dc.relationDavoust J, Banchereau J. Naked antigen-presenting molecules on dendritic cells. Nature Cell Biology. 2000;2(3):E46-E48.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleUso de células dendríticas en la generación de respuesta inmune inducida por péptidos sintéticos derivados de mycobacterium tuberculosis
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución