dc.contributorVernot Hernandez, Jean Paul
dc.contributorFisiología Celular y Molecular
dc.creatorOspina Muñoz, Natalia
dc.date.accessioned2021-01-22T16:55:12Z
dc.date.available2021-01-22T16:55:12Z
dc.date.created2021-01-22T16:55:12Z
dc.date.issued2020-11-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78877
dc.description.abstractLa Interleuquina 8 (IL-8) es un importante regulador del microambiente tumoral (MAT), promoviendo la transición epitelio mesenquimal (EMT) y la adquisición de propiedades de células stem por parte de las células tumorales (CSC). El ensayo de formación de mamoesferas se ha utilizado para la identificación y enriquecimiento de las CSC. La IL-8 induce la formación de mamoesferas más grandes, lo que sugiere el enriquecimiento de CSC. En el presente trabajo nuestro objetivo fue estudiar las características fenotípicas y funcionales de las células presentes en las mamoesferas de las células MCF-7 previamente tratadas con IL-8. Las células MCF-7 adheridas fueron tratadas con IL-8 durante 5 días y luego fueron cultivadas por 5 días más en condiciones no adherentes (resistencia a la anoikis). Demostramos que la presencia de mamoesferas con mayor tamaño en la condición IL-8, no fue consecuencia de una mayor proliferación mediada por esta citoquina. Se encontró que a pesar del mantenimiento del fenotipo EMT con presencia de células híbridas que expresaban tanto E-cadherina como SNAI2, las propiedades esenciales de células stem se vieron afectadas en las mamoesferas tratadas con IL-8. La capacidad de autorrenovación se incrementó en las células tratadas con IL-8 solo en la primera generación de mamoesferas, pero este incremento no se sostuvo en ensayos consecutivos. En consecuencia, la autorrenovación, la reprogramación, la capacidad de diferenciación a adipocitos y la clonogenicidad también se vieron afectadas. También, mostramos que las mamoesferas estaban enriquecidas en células luminales diferenciadas (EpCAM+/CD49f-). Además, las células MCF-7 aisladas de mamoesferas derivadas de IL-8 también presentaron una mayor migración e invasión dirigida por IL-8. Adicionalmente, las células dentro de las mamoesferas derivadas del tratamiento con IL-8 fueron altamente resistentes al Paclitaxel (PLX) y la Doxorrubicina (DOX). Por lo tanto, mostramos aquí que la línea de cáncer de seno no agresiva MCF-7, a pesar de un índice bajo de funciones stem, podría adquirir selectivamente atributos particulares de células stem muy relevantes para la progresión del cáncer.
dc.description.abstractThe Interleukin 8 (IL-8) is an important regulator of the tumor microenvironment (TME), promoting the epithelial-mesenchymal transition (EMT) and the acquisition of stem-like cell properties in cancer cells (CSC). The mammosphere-formation assay has been used for the identification of CSC. IL-8 induces the formation of larger mammospheres, suggesting CSC enrichment. In the present work, we aimed to study the phenotypic and functional characteristics of the cells present within the mammospheres of MCF-7 cells previously treated with IL-8. MCF-7 cells treated for 5 days or not with this cytokine, were further cultivated in ultralow attachment (anoikis) plates for another 5 days to allow mammospheres formation. We showed that the enhanced mammospheres formation by MCF-7 cells was not a consequence of higher cell proliferation by IL-8 stimulation. Despite maintaining an EMT phenotype with the presence of hybrid cells expressing both E-cadherin and SNAI2, essential stemness properties were impaired in mammospheres treated with IL-8. Self-renewal capacity was increased in IL-8-treated cells only in the first generation of mammospheres but was not sustained in consecutive assays. Accordingly, self-renewal and reprogramming gene expression, differentiation capacity to adipocytes and clonogenicity were also impaired. We showed also that mammospheres were enriched in differentiated luminal cells (EpCAM+/CD49f-). Furthermore, MCF-7 cells isolated from IL-8-derived mammospheres presented also higher IL-8-directed-migration and -invasion. Consistent with this, they were also highly resistant to Paclitaxel (PLX) and Doxorubicin (DOX). Therefore, we showed here that the non-aggressive breast cancer line MCF-7, despite having a low stemmess index, might selectively acquire particular stem-like cell attributes very relevant for cancer progression.
dc.languagespa
dc.publisherBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationKrap, N. et al. (2016) ‘Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools’, Stem Cell Reports, 6(1), pp. 121–136. doi: 10.1016/j.stemcr.2015.12.006.
dc.relationAl-Hajj, M. et al. (2003) ‘Prospective identification of tumorigenic breast cancer cells.’, Proceedings of the National Academy of Sciences of the United States of America, 100(7), pp. 3983–8. doi: 10.1073/pnas.0530291100.
dc.relationAl-Khalaf, H. H. et al. (2019) ‘Senescent Breast Luminal Cells Promote Carcinogenesis through Interleukin-8-Dependent Activation of Stromal Fibroblasts’, Molecular and Cellular Biology, 39(2). doi: 10.1128/mcb.00359-18.
dc.relationDe Angelis, M. L. et al. (2019) ‘Stem Cell Plasticity and Dormancy in the Development of Cancer Therapy Resistance.’, Front Oncol., 9(626).
dc.relationAponte, P. M. and Caicedo, A. (2017) ‘Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment’, Stem Cells International. doi: 10.1155/2017/5619472.
dc.relationArmstrong, A. J. et al. (2011) ‘Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers’, Molecular Cancer Research, 9, pp. 997–1007. doi: 10.1158/1541-7786.MCR-10-0490.
dc.relationArvelo, F., Sojo, F. and Cotte, C. (2016) ‘Tumour progression and metastasis’, ecancermedicalscience, 10(617). doi: 10.3332/ecancer.2016.617.
dc.relationBachelot, T. et al. (2003) ‘Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients.’, British journal of cancer, 88(11), pp. 1721–6. doi: 10.1038/sj.bjc.6600956.
dc.relationBadve, S. and Nakshatri, H. (2012) ‘Breast-cancer stem cells-beyond semantics’, The Lancet Oncology, 13(1), pp. e43-8. doi: 10.1016/S1470-2045(11)70191-7.
dc.relationBai, K. H. et al. (2020) ‘Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index’, Cancer Medicine, 00, pp. 1–9. doi: 10.1002/cam4.3047.
dc.relationBailey, P. C. et al. (2018) ‘Single cell tracking of breast cancer cells enables highly accurate prediction of sphere formation using only early doubling information’, iScience. Elsevier Inc., 8, pp. 29–39. doi: 10.1016/j.isci.2018.08.015.
dc.relationBaksh, D., Song, L. and Tuan, R. S. (2004) ‘Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy’, Journal of Cellular and Molecular Medicine, 8(3), pp. 301–316. doi: 10.1111/j.1582-4934.2004.tb00320.x.
dc.relationBalkwill, F., Charles, K. A. and Mantovani, A. (2005) ‘Smoldering and polarized inflammation in the initiation and promotion of malignant disease’, Cancer Cell, pp. 211–217. doi: 10.1016/j.ccr.2005.02.013.
dc.relationBarrett, L. E. et al. (2012) ‘Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma’, Cancer Cell, 21, pp. 11–24. doi: 10.1016/j.ccr.2011.11.025.
dc.relationBartholomew, J. N., Volonte, D. and Galbiati, F. (2009) ‘Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway’, Cancer Research, 69(7), pp. 2878–2886. doi: 10.1158/0008-5472.CAN-08-2857.
dc.relationBartkova, J. et al. (2006) ‘Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints.’, Nature, 444(7119), pp. 633–637. doi: 10.1038/nature05268.
dc.relationBattula, V. L. et al. (2010) ‘Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells’, Stem Cells, 28(8), pp. 1435–1445. doi: 10.1002/stem.467.
dc.relationBavik, C. et al. (2006) ‘The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms’, Cancer Research, 66(2), pp. 794–802. doi: 10.1158/0008-5472.CAN-05-1716.
dc.relationBen-Porath, I. et al. (2008) ‘An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors’, Nature Genetics, 40(5), pp. 499–507. doi: 10.1038/ng.127.
dc.relationBenoy, I. H. et al. (2004) ‘Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival’, Clinical Cancer Research, 10(21), pp. 7157–7162. doi: 10.1158/1078-0432.CCR-04-0812.
dc.relationBhatia, B. et al. (2008) ‘Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT’, International Journal of Cancer, 122(7), pp. 1483–1495. doi: 10.1002/ijc.23222.
dc.relationBi, H. et al. (2019) ‘Interleukin-8 promotes cell migration via CXCR1 and CXCR2 in liver cancer’, Oncology Letters, 18, pp. 4176–4184. doi: 10.3892/ol.2019.10735.
dc.relationBickel, M. (1993) ‘The role of interleukin-8 in inflammation and mechanisms of regulation.’, Journal of periodontology, 64, pp. 456–460. Available at: http://medcontent.metapress.com/index/A65RM03P4874243N.pdf%5Cnhttp://europepmc.org/abstract/MED/8315568.
dc.relationBoffetta, P. and Hainaut, P. (2018) Encyclopedia of cancer, Encyclopedia of Cancer. doi: 10.5860/choice.40-1906.
dc.relationBonnet, D. and Dick, J. E. (1997) ‘Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell’, Nature Medicine, 7, pp. 730–737. doi: 10.1038/nm0797-730.
dc.relationBrabletz, T. et al. (2005) ‘Migrating cancer stem cells - An integrated concept of malignant tumour progression’, Nature Reviews Cancer, 5, pp. 744–749. doi: 10.1038/nrc1694.
dc.relationBray, F., Ferlay, J., Soerjomataram, I., Siegel, Rebecca L, et al. (2018) ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.’, CA: a cancer journal for clinicians. doi: 10.3322/caac.21492.
dc.relationBray, F., Ferlay, J., Soerjomataram, I., Siegel, Rebecca L., et al. (2018) ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA: A Cancer Journal for Clinicians, 68, pp. 394–424. doi: 10.3322/caac.21492.
dc.relationCamp, E. R. et al. (2011) ‘Slug expression enhances tumor formation in a noninvasive rectal cancer model’, Journal of Surgical Research, 170(1), pp. 56–63. doi: 10.1016/j.jss.2011.02.012.
dc.relationCampisi, J. (2000) ‘Cancer, aging and cellular senescence’, In Vivo, 14(1), pp. 183–188.
dc.relationCampisi, J. et al. (2011) ‘Cellular senescence: A link between cancer and age-related degenerative disease?’, Seminars in Cancer Biology, pp. 354–359. doi: 10.1016/j.semcancer.2011.09.001.
dc.relationCarey, L. A. et al. (2006) ‘Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study.’, JAMA : the journal of the American Medical Association, 295(21), pp. 2492–502. doi: 10.1001/jama.295.21.2492.
dc.relationCariati, M. et al. (2008) ‘Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line’, International Journal of Cancer, 122(2), pp. 298–304. doi: 10.1002/ijc.23103.
dc.relationCastro-Vega, L. J. et al. (2015) ‘The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells’, Carcinogenesis, 36(10), pp. 1180–1192. doi: 10.1093/carcin/bgv101.
dc.relationChaffer, C. L. et al. (2011) ‘Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state’, Proceedings of the National Academy of Sciences of the United States of America, 108(19), pp. 7950–7955. doi: 10.1073/pnas.1102454108.
dc.relationChaffer, C. L. et al. (2013) ‘Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity’, Cell, 154(1), pp. 61–74. doi: 10.1016/j.cell.2013.06.005.
dc.relationCharafe-Jauffret, E. et al. (2009) ‘Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature’, Cancer research, 69(4), pp. 1302–1313. doi: 10.1158/0008-5472.CAN-08-2741.
dc.relationChen, S. and Huang, E. H. (2014) ‘The Colon Cancer Stem Cell Microenvironment Holds Keys to Future Cancer Therapy’, Journal of Gastrointestinal Surgery, pp. 1040–1048. doi: 10.1007/s11605-014-2497-1.
dc.relationChoi, H. S. et al. (2019) ‘Disruption of the NF-κB/IL-8 Signaling Axis by Sulconazole Inhibits Human Breast Cancer Stem Cell Formation’, Cells, 8(9), p. 1007.
dc.relationColacino, J. A. et al. (2018) ‘Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling’, Stem Cell Reports. ElsevierCompany., 10, pp. 1596–1609. doi: 10.1016/j.stemcr.2018.03.001.
dc.relationCollado, M., Blasco, M. A. and Serrano, M. (2007) ‘Cellular Senescence in Cancer and Aging’, Cell, pp. 223–233. doi: 10.1016/j.cell.2007.07.003.
dc.relationCollado, M. and Serrano, M. (2006) ‘The power and the promise of oncogene-induced senescence markers.’, Nature reviews. Cancer, 6(6), pp. 472–476. doi: 10.1038/nrc1884.
dc.relationCoppé, J.-P. et al. (2008) ‘Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.’, PLoS biology, 6(12), pp. 2853–2868. doi: 10.1371/journal.pbio.0060301.
dc.relationCoppé, J.-P. et al. (2010) ‘The senescence-associated secretory phenotype: the dark side of tumor suppression.’, Annual review of pathology, 5, pp. 99–118. doi: 10.1146/annurev-pathol-121808-102144.
dc.relationCrabtree, J. S. and Miele, L. (2018) ‘Breast cancer stem cells’, Biomedicines, 6(3). doi: 10.3390/biomedicines6030077.
dc.relationDavalos, A. R. et al. (2010) ‘Senescent cells as a source of inflammatory factors for tumor progression’, Cancer and Metastasis Reviews, pp. 273–283. doi: 10.1007/s10555-010-9220-9.
dc.relationDenekamp, J. (1994) ‘Tumour stem cells: facts, interpretation and consequences’, Radiotherapy and Oncology, 30, pp. 6–10. doi: 10.1016/0167-8140(94)90003-5.
dc.relationDey, D. et al. (2009) ‘Phenotypic and Functional Characterization of Human Mammary Stem/Progenitor Cells in Long Term Culture’, PLoS ONE, 4(4), p. e5329. doi: 10.1371/journal.pone.0005329.
dc.relationDominguez, C. et al. (2017) ‘Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer’, JCI Insight, 2(21), p. e94296. doi: 10.1172/jci.insight.94296.
dc.relationDominguez, C., David, J. M. and Palena, C. (2017) ‘Epithelial-mesenchymal transition and inflammation at the site of the primary tumor’, Seminars in Cancer Biology, 47, pp. 177–184. doi: 10.1016/j.semcancer.2017.08.002.
dc.relationDongre, A. and Weinberg, R. A. (2019) ‘New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer’, Nature Reviews Molecular Cell Biology. doi: 10.1038/s41580-018-0080-4.
dc.relationDontu, G. et al. (2003) ‘In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells’, Genes Dev, 17(10), pp. 1253–1270. doi: 10.1101/gad.1061803.
dc.relationDumont, N. et al. (2013) ‘Breast Fibroblasts Modulate Early Dissemination, Tumorigenesis, and Metastasis through Alteration of Extracellular Matrix Characteristics’, Neoplasia, 15(3), pp. 249–262. doi: 10.1593/neo.121950.
dc.relationFernando, R. I. et al. (2010) ‘The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells’, Journal of Clinical Investigation, 120(2), pp. 533–544. doi: 10.1172/JCI38379.
dc.relationFernando, R. I. et al. (2011) ‘IL-8 Signaling Plays a Critical Role in the Epithelial-Mesenchymal Transition of Human Carcinoma Cells’, Cancer Research, 71(15). doi: 10.1158/0008-5472.CAN-11-0156.
dc.relationFoster, S. A. et al. (1998) ‘Inactivation of p16 in human mammary epithelial cells by CpG island methylation.’, Molecular and cellular biology, 18(4), pp. 1793–801. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=121409&tool=pmcentrez&rendertype=abstract.
dc.relationFraser, D. M. et al. (2014) ‘Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study.’, British journal of cancer, 111(April), pp. 1–5. doi: 10.1038/bjc.2014.264.
dc.relationFriedmann-Morvinski, D. and Verma, I. M. (2014) ‘Dedifferentiation and reprogramming: Origins of cancer stem cells’, EMBO Reports, 15(3), pp. 244–253. doi: 10.1002/embr.201338254.
dc.relationFukumura, D. et al. (1998) ‘Tumor induction of VEGF promoter activity in stromal cells’, Cell, (6), pp. 715–725. doi: 10.1016/S0092-8674(00)81731-6.
dc.relationGilmore, A. P. (2005) ‘Anoikis’, Cell Death and Differentiation, 12, pp. 1473–1477. doi: 10.1038/sj.cdd.4401723.
dc.relationGinestier, C. et al. (2010) ‘CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts’, Journal of Clinical Investigation, 120(2), pp. 485–497. doi: 10.1172/JCI39397.
dc.relationGingold, J. et al. (2016) ‘Modeling Cancer with Pluripotent Stem Cells’, Trends in Cancer, 2(9), pp. 485–494. doi: 10.1016/j.trecan.2016.07.007.
dc.relationGreer, E. L. and Brunet, A. (2005) ‘FOXO transcription factors at the interface between longevity and tumor suppression.’, Oncogene, 24(50), pp. 7410–7425. doi: 10.1038/sj.onc.1209086.
dc.relationGrosse-Wilde, A. et al. (2015) ‘Stemness of the hybrid Epithelial/Mesenchymal State in Breast Cancer and Its Association with Poor Survival’, PLoS ONE, 10(5), p. e0126522. doi: 10.1371/journal.pone.0126522.
dc.relationGuo, W. et al. (2012) ‘Slug and Sox9 cooperatively determine the mammary stem cell state’, Cell, 148(5), pp. 1015–1028. doi: 10.1016/j.cell.2012.02.008.
dc.relationGupta, N., Gupta, P. and Srivastava, S. K. (2019) ‘Penfluridol overcomes paclitaxel resistance in metastatic breast cancer’, Scientific Reports, 9(5066). doi: 10.1038/s41598-019-41632-0.
dc.relationGyamfi, J. et al. (2018) ‘Interleukin-6 / STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells’, Scientific Reports. Springer US, 8, p. 8859. doi: 10.1038/s41598-018-27184-9.
dc.relationHa, H., Debnath, B. and Neamati, N. (2017) ‘Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases’, Theranostics, 7(6), pp. 1543–1588. doi: 10.7150/thno.15625.
dc.relationHanahan, D. and Weinberg, R. A. (2011) ‘Hallmarks of cancer: The next generation’, Cell, pp. 646–674. doi: 10.1016/j.cell.2011.02.013.
dc.relationHaslehurst, A. M. et al. (2012) ‘EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer’, BMC Cancer, 12, p. 91. doi: 10.1186/1471-2407-12-91.
dc.relationHay, E. (1995) ‘An overview of epithelio-mesenchymal transformation’, Acta Anat, 154(1), pp. 8–20. doi: 10.1159/000147748.
dc.relationHerrera-Gayol, a and Jothy, S. (1999) ‘Adhesion proteins in the biology of breast cancer: contribution of CD44.’, Experimental and molecular pathology, 66, pp. 149–156. doi: 10.1006/exmp.1999.2251.
dc.relationHiraga, T., Ito, S. and Nakamura, H. (2016) ‘EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation’, International Journal of Cancer, 138(7), pp. 1698–1708. doi: 10.1002/ijc.29921.
dc.relationHoadley, K. A. et al. (2014) ‘Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin’, Cell, 158, pp. 929–944. doi: 10.1016/j.cell.2014.06.049.
dc.relationHollier, B. G., Evans, K. and Mani, S. A. (2009) ‘The epithelial-to-mesenchymal transition and cancer stem cells: A coalition against cancer therapies’, Journal of Mammary Gland Biology and Neoplasia, 14(1), pp. 29–43. doi: 10.1007/s10911-009-9110-3.
dc.relationHollstein, M. et al. (1991) ‘p53 mutations in human cancers.’, Science, 253(5015), pp. 49–53. doi: 10.1126/science.1905840.
dc.relationHorne, H. N. et al. (2018) ‘E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium’, Scientific Reports, 8(6574). doi: 10.1038/s41598-018-23733-4.
dc.relationHu, J. et al. (2017) ‘A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity’, Cell Death and Disease. Nature Publishing Group, 8(3), p. e2679. doi: 10.1038/cddis.2017.72.
dc.relationHuang, S. et al. (2018) ‘Cellular communication promotes mammosphere growth and collective invasion through microtubule-like structures and angiogenesis’, Oncology Reports, 40(6), pp. 3297–3312. doi: 10.3892/or.2018.6778.
dc.relationIglesias, J. M. et al. (2013) ‘Mammosphere Formation in Breast Carcinoma Cell Lines Depends upon Expression of E-cadherin’, PLoS ONE, 8(10). doi: 10.1371/journal.pone.0077281.
dc.relationIliopoulos, D. et al. (2011) ‘Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion.’, Proceedings of the National Academy of Sciences of the United States of America, 108(4), pp. 1397–402. doi: 10.1073/pnas.1018898108.
dc.relationJarrard, D. F. et al. (1999) ‘p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells’, Cancer Research, 59(12), pp. 2957–2964.
dc.relationJohnson, M. (2012) ‘Fetal Bovine Serum’, Materials and Methods, 2, p. 117. doi: 10.13070/mm.en.2.117.
dc.relationJolly, M. K. et al. (2015) ‘Implications of the hybrid epithelial/mesenchymal phenotype in metastasis’, Frontiers in Oncology, 5(155). doi: 10.3389/fonc.2015.00155.
dc.relationKalluri, R. and Weinberg, R. A. (2009) ‘The basics of epithelial-mesenchymal transition’, Journal of Clinical Investigation, 119(6), pp. 1420–1428. doi: 10.1172/JCI39104.
dc.relationKang, H. et al. (2005) ‘Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer.’, Breast cancer research : BCR, 7(4), pp. R402–R410. doi: 10.1186/bcr1022.
dc.relationKim, N. W. et al. (1994) ‘Specific association of human telomerase activity with immortal cells and cancer.’, Science (New York, N.Y.), 266(5193), pp. 2011–5. doi: 10.1126/science.7605428.
dc.relationKim, S. and Alexander, C. M. (2014) ‘Tumorsphere assay provides more accurate prediction of in vivo responses to chemotherapeutics’, Biotechnology Letters, 36(3), pp. 481–488. doi: 10.1007/s10529-013-1393-1.
dc.relationKim, S. Y. et al. (2013) ‘Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells’, Cellular Signalling, 25(4), pp. 961–969. doi: 10.1016/j.cellsig.2013.01.007.
dc.relationKnüpfer, H. and Preiß, R. (2007) ‘Significance of interleukin-6 (IL-6) in breast cancer (review)’, Breast Cancer Research and Treatment, pp. 129–135. doi: 10.1007/s10549-006-9328-3.
dc.relationKorkaya, H. et al. (2012) ‘Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population’, Molecular Cell, 47(4), pp. 570–584. doi: 10.1016/j.molcel.2012.06.014.
dc.relationKröger, C. et al. (2019) ‘Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells’, Proceedings of the National Academy of Sciences of the United States of America, 116(15), pp. 7353–7362. doi: 10.1073/pnas.1812876116.
dc.relationKrtolica, A. et al. (2001) ‘Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging.’, Proceedings of the National Academy of Sciences of the United States of America, 98(21), pp. 12072–7. doi: 10.1073/pnas.211053698.
dc.relationKuai, W. X. et al. (2012) ‘Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells’, World Journal of Gastroenterology, 18(9), pp. 979–985. doi: 10.3748/wjg.v18.i9.979.
dc.relationLamouille, S., Xu, J. and Derynck, R. (2014) ‘Molecular mechanisms of epithelial-mesenchymal transition’, Nature Reviews Molecular Cell Biology. doi: 10.1038/nrm3758.
dc.relationLanza, R. et al. (2009) Essentials of Stem Cell Biology, Essentials of Stem Cell Biology. doi: 10.1016/C2009-0-00078-6.
dc.relationLapidot, T. et al. (1992) ‘Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID Mice’, Science, 255, pp. 1137–1141. doi: 10.1126/science.1372131.
dc.relationLapidot, T. et al. (1994) ‘A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.’, Nature, 367(6464), pp. 645–648. doi: 10.1038/367645a0.
dc.relationLasry, A. and Ben-Neriah, Y. (2015) ‘Senescence-associated inflammatory responses: Aging and cancer perspectives’, Trends in Immunology, pp. 217–228. doi: 10.1016/j.it.2015.02.009.
dc.relationLawson, D. A. et al. (2015) ‘Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells’, Nature, 526(7571), pp. 131–5. doi: 10.1038/nature15260.
dc.relationLecharpentier, A. et al. (2011) ‘Detection of circulating tumour cells with a hybrid (epithelial/ mesenchymal) phenotype in patients with metastatic non-small cell lung cancer’, British Journal of Cancer, 105, pp. 1338–1341. doi: 10.1038/bjc.2011.405.
dc.relationLi, W. et al. (2017) ‘Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis’, Scientific Reports, 7(1), p. 13856. doi: 10.1038/s41598-017-14364-2.
dc.relationLi, Y. et al. (2015) ‘Slug contributes to cancer progression by direct regulation of ERα signaling pathway’, International Journal of Oncology, 46(4), pp. 1461–72. doi: 10.3892/ijo.2015.2878.
dc.relationLim, E. et al. (2009) ‘Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers’, Nature Medicine, 15(8). doi: 10.1038/nm.2000.
dc.relationLin, Y. et al. (2004) ‘Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays’, International Journal of Cancer, 109(4), pp. 507–515. doi: 10.1002/ijc.11724.
dc.relationLiu, D. and Hornsby, P. J. (2007) ‘Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion’, Cancer Research, 67(7), pp. 3117–3126. doi: 10.1158/0008-5472.CAN-06-3452.
dc.relationLiu, S. et al. (2014) ‘Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts’, Stem Cell Reports. The Authors, 2(1), pp. 78–91. doi: 10.1016/j.stemcr.2013.11.009.
dc.relationLong, X. et al. (2016) ‘IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review)’, International Journal of Oncology, 48(1), pp. 5–12. doi: 10.3892/ijo.2015.3234.
dc.relationLouis, S. A. et al. (2008) ‘Enumeration of Neural Stem and Progenitor Cells in the Neural Colony-Forming Cell Assay’, Stem Cells, 26(4), pp. 988–96. doi: 10.1634/stemcells.2007-0867.
dc.relationLovitt, C. J., Shelper, T. B. and Avery, V. M. (2018) ‘Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins’, BMC Cancer, 18(41). doi: 10.1186/s12885-017-3953-6.
dc.relationMalhotra, G. K. et al. (2010) ‘Histological, molecular and functional subtypes of breast cancers’, Cancer Biology and Therapy, 10(10), pp. 955–960. doi: 10.4161/cbt.10.10.13879.
dc.relationMalta, T. M. et al. (2018) ‘Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation’, Cell, 173(2), pp. 338–354. doi: 10.1016/j.cell.2018.03.034.
dc.relationMani, S. A. et al. (2008) ‘The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells’, Cell, 133(4), pp. 704–715. doi: 10.1016/j.cell.2008.03.027.
dc.relationMantovani, A. et al. (2008) ‘Tumour immunity: effector response to tumour and role of the microenvironment’, The Lancet, pp. 771–783. doi: 10.1016/S0140-6736(08)60241-X.
dc.relationMarjanovic, N. D., Weinberg, R. A. and Chaffer, C. L. (2013) ‘Cell plasticity and heterogeneity in cancer’, Clinical Chemistry, 59(1), pp. 168–179. doi: 10.1373/clinchem.2012.184655.
dc.relationMartin, T. A. et al. (2005) ‘Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer’, Ann.Surg.Oncol., 12(1068-9265 (Print)), pp. 488–496.
dc.relationMcDermott, S. P. and Wicha, M. S. (2010) ‘Targeting breast cancer stem cells’, Molecular Oncology, pp. 404–419. doi: 10.1016/j.molonc.2010.06.005.
dc.relationMilanovic, M. et al. (2018) ‘Senescence-associated reprogramming promotes cancer stemness’, Nature, 553, pp. 96–100. doi: 10.1038/nature25167.
dc.relationMitra, A., Mishra, L. and Li, S. (2015) ‘EMT, CTCs and CSCs in tumor relapse and drug-resistance’, Oncotarget, pp. 10697–10711. doi: 10.18632/oncotarget.4037.
dc.relationMorel, A.-P. P. et al. (2008) ‘Generation of breast cancer stem cells through epithelial-mesenchymal transition’, PloS one, 3(8), p. e2888. doi: 10.1371/journal.pone.0002888.
dc.relationNaor, D. et al. (2002) ‘CD44 in cancer’, Critical reviews in clinical laboratory sciences, 39(6), pp. 527–579. doi: 10.1080/10408360290795574.
dc.relationNieto, M. A. (2002) ‘The snail superfamily of zinc-finger transcription factors.’, Nature reviews. Molecular cell biology, 3(3), pp. 155–66. doi: 10.1038/nrm757.
dc.relationNieto, M. A. et al. (2016) ‘EMT: 2016’, Cell, 166(1), pp. 21–45. doi: 10.1016/j.cell.2016.06.028.
dc.relationNing, Y. et al. (2011) ‘Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models’, International Journal of Cancer, 128(9), pp. 2038–2049. doi: 10.1002/ijc.25562.
dc.relationOlumi, A. F. et al. (1999) ‘Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium’, Cancer Research, 59, pp. 5002–5011.
dc.relationOrtiz-Montero, P. et al. (2018) ‘CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis’, Cancer Management and Research, 10, pp. 5767–5784. doi: 10.2147/CMAR.S176654.
dc.relationOrtiz-Montero, P., Londoño-Vallejo, A. and Vernot, J. P. (2017) ‘Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line’, Cell Communication and Signaling. Cell Communication and Signaling, 15(1), pp. 1–18. doi: 10.1186/s12964-017-0172-3.
dc.relationOsta, W. A. et al. (2004) ‘EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy’, Cancer Research, 64, pp. 5818–5824. doi: 10.1158/0008-5472.CAN-04-0754.
dc.relationPalena, C., Hamilton, D. H. and Fernando, R. I. (2012) ‘Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment’, Future Oncol., 8(6), pp. 713–722. doi: 10.2217/fon.12.59.Influence.
dc.relationPaoli, P., Giannoni, E. and Chiarugi, P. (2013) ‘Anoikis molecular pathways and its role in cancer progression’, Biochimica et Biophysica Acta - Molecular Cell Research, 1833, pp. 3481–3498. doi: 10.1016/j.bbamcr.2013.06.026.
dc.relationPardali, K. and Moustakas, A. (2007) ‘Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer’, Biochimica et Biophysica Acta - Reviews on Cancer, 1775, pp. 21–62. doi: 10.1016/j.bbcan.2006.06.004.
dc.relationPark, S. H. et al. (2012) ‘Structure of the chemokine receptor CXCR1 in phospholipid bilayers’, Nature, 491(7426), pp. 779–783. doi: 10.1038/nature11580.
dc.relationPastushenko, I. and Blanpain, C. (2019) ‘EMT Transition States during Tumor Progression and Metastasis’, Trends in Cell Biology, 29(3), pp. 212–226. doi: 10.1016/j.tcb.2018.12.001.
dc.relationPece, S. et al. (2010) ‘Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content’, Cell, 140(1), pp. 62–73. doi: 10.1016/j.cell.2009.12.007.
dc.relationPei, J., Wang, Y. and Li, Y. (2020) ‘Identification of key genes controlling breast cancer stem cell characteristics via stemness indices analysis’, Journal of Translational Medicine, 18(1), p. 74. doi: 10.1186/s12967-020-02260-9.
dc.relationPlaks, V., Kong, N. and Werb, Z. (2015) ‘The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells?’, Cell Stem Cell, pp. 225–238. doi: 10.1016/j.stem.2015.02.015.
dc.relationPolyak, K. and Kalluri, R. (2010) ‘The role of the microenvironment in mammary gland development and cancer.’, Cold Spring Harbor perspectives in biology, 2(11). doi: 10.1101/cshperspect.a003244.
dc.relationPonti, D. et al. (2005) ‘Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties’, Cancer Research, 65(13), pp. 5506–11. doi: 10.1158/0008-5472.CAN-05-0626.
dc.relationPowan, P. et al. (2017) ‘Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells’, American Journal of Physiology - Cell Physiology, 313(5), pp. C556–C566. doi: 10.1152/ajpcell.00096.2017.
dc.relationQuail, D. F. and Joyce, J. A. (2013) ‘Microenvironmental regulation of tumor progression and metastasis.’, Nature medicine, 19(11), pp. 1423–1437. doi: 10.1038/nm.3394.
dc.relationRajendran, V. and Jain, M. V. (2018) In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells, Methods in Molecular Biology. doi: 10.1007/978-1-4939-7401-6_8.
dc.relationRen, J. L. et al. (2009) ‘Inflammatory signaling and cellular senescence’, Cellular Signalling, pp. 378–383. doi: 10.1016/j.cellsig.2008.10.011.
dc.relationReya, T et al. (2001) ‘Stem cells, cancer, and cancer stem cells.’, Nature, 414(6859), pp. 105–11. doi: 10.1038/35102167.
dc.relationReya, Tannishtha et al. (2001) ‘Stem cells, cancer, and cancer stem cells’, Nature, 414, pp. 105–111. doi: 10.1038/35102167.
dc.relationRich, J. N. (2016) ‘Cancer stem cells: understanding tumor hierarchy and heterogeneity’, Medicine, 95(S1), pp. S2–S7. doi: 10.1038/nrm3584.
dc.relationRothwell, P. M. et al. (2011) ‘Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials’, The Lancet, 377(9759), pp. 31–41. doi: 10.1016/S0140-6736(10)62110-1.
dc.relationSansone, P. et al. (2007) ‘IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland’, Journal of Clinical Investigation, 117(12), pp. 3988–4002. doi: 10.1172/JCI32533.
dc.relationSarrio, D. et al. (2012) ‘Epithelial and Mesenchymal Subpopulations Within Normal Basal Breast Cell Lines Exhibit Distinct Stem Cell/Progenitor Properties’, Stem Cells, 30(2), pp. 292–303. doi: 10.1002/stem.791.
dc.relationSchäfer, M. and Werner, S. (2008) ‘Cancer as an overhealing wound: an old hypothesis revisited.’, Nature reviews. Molecular cell biology, 9(8), pp. 628–38. doi: 10.1038/nrm2455.
dc.relationSchmittgen, T. D. and Livak, K. J. (2008) ‘Analyzing real-time PCR data by the comparative CT method’, Nature Protocols, 3(6), pp. 1101–1108. doi: 10.1038/nprot.2008.73.
dc.relationSchneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012) ‘NIH Image to ImageJ: 25 years of image analysis’, Nature Methods, 9(7), pp. 671–675. doi: 10.1038/nmeth.2089.
dc.relationSerrano, M. et al. (1997) ‘Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a)’, Cell, 88(5), pp. 593–602. doi: 10.1016/S0092-8674(00)81902-9.
dc.relationShay, J. W. and Bacchetti, S. (1997) ‘A survey of telomerase activity in human cancer’, European Journal of Cancer, 33(5), pp. 787–791. doi: 10.1016/s0959-8049(97)00062-2.
dc.relationSingh, J. K. et al. (2013) ‘Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells.’, Breast cancer research : BCR, 15(4), p. 210. doi: 10.1186/bcr3436.
dc.relationSmit, L. et al. (2016) ‘An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation.’, Oncotarget, 7(3), pp. 2596–610. doi: 10.18632/oncotarget.6354.
dc.relationSmyrek, I. et al. (2019) ‘E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity’, Biology Open, 8. doi: 10.1242/bio.037051.
dc.relationSneath, R. J. and Mangham, D. C. (1998) ‘The normal structure and function of CD44 and its role in neoplasia.’, Molecular pathology : MP, 51(4), pp. 191–200. doi: 10.1136/mp.51.4.191.
dc.relationStemmler, M. P. et al. (2019) ‘Non-redundant functions of EMT transcription factors’, Nature Cell Biology. doi: 10.1038/s41556-018-0196-y.
dc.relationStreicher, S. a et al. (2014) ‘Case-control study of aspirin use and risk of pancreatic cancer.’, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 23(7), pp. 1254–63. doi: 10.1158/1055-9965.EPI-13-1284.
dc.relationStrouhalova, K. et al. (2020) ‘Vimentin intermediate filaments as potential target for cancer treatment’, Cancers, 12(184). doi: 10.3390/cancers12010184.
dc.relationTaddei, M. L. et al. (2012) ‘Anoikis: An emerging hallmark in health and diseases’, Journal of Pathology, 226, pp. 380–393. doi: 10.1002/path.3000.
dc.relationTakahashi, K. and Yamanaka, S. (2006) ‘Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors’, Cell, 126, pp. 663–676. doi: 10.1016/j.cell.2006.07.024.
dc.relationTam, W. L. and Weinberg, R. A. (2013) ‘The epigenetics of epithelial-mesenchymal plasticity in cancer’, Nature Medicine, 19(11), pp. 1438–1449. doi: 10.1038/nm.3336.
dc.relationThiery, J. P. et al. (2009) ‘Epithelial-Mesenchymal Transitions in Development and Disease’, Cell, pp. 871–890. doi: 10.1016/j.cell.2009.11.007.
dc.relationTodorović-Raković, N. and Milovanović, J. (2013) ‘Interleukin-8 in Breast Cancer Progression’, Journal of Interferon & Cytokine Research, 33(10), pp. 563–70. doi: 10.1089/jir.2013.0023.
dc.relationVernot, J. P. (2020) ‘Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity’, Frontiers in Molecular Biosciences, 7(63).
dc.relationVisvader, J. E. (2009) ‘Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis’, Genes and Development, 23(22), pp. 2563–2577. doi: 10.1101/gad.1849509.
dc.relationVisvader, J. E. and Lindeman, G. J. (2008) ‘Cancer stem cells in solid tumours: accumulating evidence and unresolved questions.’, Nature reviews. Cancer, 8(10), pp. 755–68. doi: 10.1038/nrc2499.
dc.relationVisvader, J. E. and Lindeman, G. J. (2012) ‘Cancer stem cells: Current status and evolving complexities’, Cell Stem Cell, pp. 717–728. doi: 10.1016/j.stem.2012.05.007.
dc.relationWang, R. et al. (2014) ‘Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors’, Journal of Thoracic Disease, 6(6), pp. 829–837. doi: 10.3978/j.issn.2072-1439.2014.03.38.
dc.relationWang, Y. and Zhou, B. P. (2013) ‘Epithelial-mesenchymal Transition---A Hallmark of Breast Cancer Metastasis.’, Cancer hallmarks, 1(1), pp. 38–49. doi: 10.1166/ch.2013.1004.
dc.relationWaugh, D. J. J. and Wilson, C. (2008) ‘The interleukin-8 pathway in cancer’, Clinical Cancer Research, 14(21), pp. 6735–6741. doi: 10.1158/1078-0432.CCR-07-4843.
dc.relationWeitzenfeld, P. et al. (2013) ‘Progression of luminal breast tumors is promoted by ménage à trois between the inflammatory cytokine TNF α and the hormonal and growth-supporting arms of the tumor microenvironment’, Mediators of Inflammation. doi: 10.1155/2013/720536.
dc.relationWeitzenfeld, P., Meshel, T. and Ben-baruch, A. (2016) ‘Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells’, Oncotarget, 7(49), pp. 81123–81143. doi: 10.18632/oncotarget.13213.
dc.relationWu, Y. and Zhou, B. P. (2010) ‘TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion.’, British journal of cancer, 102(4), pp. 639–44. doi: 10.1038/sj.bjc.6605530.
dc.relationXie, G. et al. (2012) ‘IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures’, International Journal of Oncology, 40(4), pp. 1171–1179. doi: 10.3892/ijo.2011.1275.
dc.relationXu, R., Chen, L. and Yang, W. T. (2019) ‘Aberrantly elevated Bmi1 promotes cervical cancer tumorigenicity and tumor sphere formation via enhanced transcriptional regulation of Sox2 genes’, Oncology Reports, 42, pp. 688–696. doi: 10.3892/or.2019.7188.
dc.relationXue, W. et al. (2007) ‘Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.’, Nature, 445(7128), pp. 656–60. doi: 10.1038/nature05529.
dc.relationYang, J. et al. (2004) ‘Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis’, Cell, 117(7), pp. 927–939. doi: 10.1016/j.cell.2004.06.006.
dc.relationYao, C., Lin, Y., Chua, M. S., et al. (2007) ‘Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells’, International Journal of Cancer, 121, pp. 1949–1957. doi: 10.1002/ijc.22930.
dc.relationYao, C., Lin, Y., Ye, C. S., et al. (2007) ‘Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer’, Chinese Medical Journal, 120(20), pp. 1766–1772.
dc.relationYersal, O. and Barutca, S. (2014) ‘Biological subtypes of breast cancer: Prognostic and therapeutic implications.’, World journal of clinical oncology, 5(3), pp. 412–24. doi: 10.5306/wjco.v5.i3.412.
dc.relationYounis, L. K., El Sakka, H. and Haque, I. (2007) ‘The Prognostic Value of E-cadherin Expression in Breast Cancer.’, International journal of health sciences, 1(1), pp. 43–51.
dc.relationZeisberg, M. and Neilson, E. G. (2009) ‘Biomarkers for epithelial-mesenchymal transitions’, Journal of Clinical Investigation, pp. 1429–1437. doi: 10.1172/JCI36183.
dc.relationZhang, C. et al. (2016) ‘Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA’, Proceedings of the National Academy of Sciences of the United States of America, 113(14), pp. E2047–E2056. doi: 10.1073/pnas.1602883113.
dc.relationZhang, J. et al. (2018) ‘Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in pancreatic cancer’, Oncology Letters, 15, pp. 1771–1776. doi: 10.3892/ol.2017.7512.
dc.relationZhang, P. et al. (2010) ‘Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression’, Journal of Biological Chemistry, 285(12), pp. 9180–9189. doi: 10.1074/jbc.M109.077958.
dc.relationZhang, Y. et al. (2020) ‘mRNAsi index: Machine learning in mining lung adenocarcinoma stem cell biomarkers’, Genes, 11(257). doi: 10.3390/genes11030257.
dc.relationZheng, H. et al. (2020) ‘An absolute human stemness index associated with oncogenic dedifferentiation’, Briefings in Bioinformatics, 00(00), pp. 1–10. doi: 10.1093/bib/bbz174.
dc.relationZhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, and C. D. (2017) ‘Cancer stem cells in progression of colorectal cancer.’, Oncotarget, 9(70), pp. 33403–33415.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleTransición Epitelio-Mesenquimal y funciones stem: Papel de la IL-8 en la funcionalidad de las células de la línea celular de cáncer de seno MCF-7 en condiciones de resistencia a la anoikis
dc.typeOtro


Este ítem pertenece a la siguiente institución