| dc.relation | [1] J. B. Holmes, “La prótesis y sus componentes Opciones, opciones y más opciones,”
Amputee Coalition of America, 2005.
[2] B. Mundial, “Informe mundial la discapacidad discapacidad.” pp. 3–15, 2011.
[3] “OMS | Dispositivos y tecnologías de apoyo a las personas con discapacidad,”
WHO, 2016. .
[4] J. Cohen, “Current concepts review. Corrosion of metal orthopaedic implants.,” J.
Bone Joint Surg. Am., vol. 80, no. 10, p. 1554, 1998.
[5] G. Gonzalez, “Evaluación de la resistencia a la corrosión de recubrimientos de
ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas.” pp.
15–35, 2012.
[6] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques -
Principles, Methods, Equipment and Applications (2nd Edition). 2002.
[7] K.-K. Chew, “The corrosion scenario in human body: Stainless steel 316L
orthopaedic implants,” Nat. Sci., vol. 04, no. 3, pp. 184–188, 2012.
[8] R. Seligman, Corrosion Handbook. 2008.
[9] D. A. Jones, Principles and Prevention of Corrosion. 1996.
[10] European Federation of Corrosion, A Working Party Report Illustrated Case
Histories of Marine Corrosion, no. 5. 1990.
[11] B. Samuel, Corrosion Control, Second., no. 780. 2001.
[12] M. A. Arenas and J. J. De Damborenea, “Generation of conversion coatings using
rare earths on galvanised steel | Generación de capas de conversión con elementos
de tierras raras sobre acero galvanizado,” Rev. Metal., vol. SPEC. VOL., no.
December, pp. 433–437, 2005.
[13] M. Atik, P. de Lima Neto, L. A. Avaca, and M. A. Aegerter, “Sol-gel thin films for
corrosion protection,” Ceramics International, vol. 21, no. 6. pp. 403–406, 1995.
CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA
CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE
CERIO SOBRE AISI 316L.
87
[14] D. M. Mattox, “Substrate preparation for thin film deposition-a survey,” vol. 124,
no. 1, pp. 3–10, 1985.
[15] W. F. Smith, Fundamentos de la ciencia e ingenieria de materiales, 4ta ed. 2004.
[16] M. Street, L. Wt, T. Albrektsson, P.-I. Brånemark, H.-A. Hansson, and J.
Lindström, “Osseointegrated Titanium Implants: Requirements for Ensuring a
Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” Direct, vol. 6470, no.
780368323, pp. 155–170, 1981.
[17] H. Ming, Z. Zhang, J. Wang, E. H. Han, and W. Ke, “Microstructural
characterization of an SA508-309L/308L-316L domestic dissimilar metal welded
safe-end joint,” Mater. Charact., vol. 97, no. November, pp. 101–115, 2014.
[18] U.S. Geological Survey, Mineral Commodity Summaries 2018. 2018.
[19] J. T. Dahle and Y. Arai, “Environmental Geochemistry of Cerium : Applications
and Toxicology of Cerium Oxide Nanoparticles,” pp. 1253–1278, 2015.
[20] F. Zhang et al., “Cerium oxide nanoparticles : Size-selective formation and structure
analysis,” vol. 80, no. 1, pp. 127–129, 2002.
[21] Y. Li, J. G. He, and X. W. Huang, “Synthesis and Properties of Cerium Oxide
Nanoparticles,” Adv. Mater. Res., vol. 299–300, pp. 118–121, 2011.
[22] R. Sharmila, N. Selvakumar, and K. Jeyasubramanian, “Evaluation of corrosion
inhibition in mild steel using cerium oxide nanoparticles,” Mater. Lett., vol. 91, pp.
78–80, 2013.
[23] Z. Shi, Z. Zhou, P. Shum, and L. K. Y. Li, “Thermal stability, wettability and
corrosion resistance of sputtered ceria films on 316 stainless steel,” Appl. Surf. Sci.,
2017.
[24] M. V. R. Murty, “Sputtering: The material erosion tool,” Surf. Sci., vol. 500, no. 1–
3, pp. 523–544, 2002.
[25] W. Jane and C. Tip-Wah, “Encyclopedia of tribology,” Springuer Reference, vol.
150, no. 1–2. p. 382, 1991.
88 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN
DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE
AISI 316L.
[26] A. Edgar, O. Jairo, and C. Ivonne, “High-efficiency solar cell with earth-abundant
liquid-processed absorber,” in Journal of Electronic Materials, vol. 23, no. 7, 1977,
pp. 11–12.
[27] P. D. Davidse, “Theory and practice of RF sputtering,” Vacuum, vol. 17, no. 3, pp.
139–145, 1967.
[28] B. Charles, Vacuum deposition onto webs, films, and foils, 3rd ed. 2015.
[29] R. D. Arnell, P. J. Kelly, and J. W. Bradley, “Recent developments in pulsed
magnetron sputtering,” Surf. Coatings Technol., vol. 188–189, no. 1-3 SPEC.ISS.,
pp. 158–163, 2004.
[30] M. de Jager and J. van Noort, Atomic Force Microscopy. 2007.
[31] JEOL, “Scanning Electron Microscope A To Z,” Serv. Adv. Technol., p. 32, 2006.
[32] Y. Hamaguchi, “Optical microscopy,” Tanpakushitsu Kakusan Koso., vol. 42, no. 7
Suppl, pp. 1026–1032, 1997.
[33] S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo, Handbook of
Microscopy: Applications in materials Science, Solid-State Physics and Chemistry
Methods I. 1997.
[34] D. B. Murphy, Fundamentals of light microscopy and Electronic Imaging, vol. 83,
no. 991. 2001.
[35] O. Ledea, H. Castro, R. Gonzáles, M. Farina, A. Linhares, and M. Oliveira,
“Application of Scanning Electron Microscopy on Poliapatita,” Rev. CENIC.
Ciencias Químicas, pp. 1–6, 2010.
[36] Australian Microscopy & Microanalysis Research Facility, “Scanning Electron
Microscope Training module,” 2014.
[37] F. Spanish and M. Faraldos, “Técnicas de analisis y caracterización de MaTeriales
Marisol Faraldos,” no. September, 2014.
[38] S. Reed, “Introduction to Energy Dispersive X-ray Spectrometry,” in Electron
probe microanalysis, 1969, pp. 1–12.
[39] A. Wassilkowska, A. Czaplicka-Kotas, A. Bielski, and M. Zielina, “an Analysis of
CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA
CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE
CERIO SOBRE AISI 316L.
89
the Elemental Composition of Micro-Samples Using Eds Technique,”
http://www.ejournals.eu/Czasopismo-Techniczne/, vol. 2014, no. Chemia Zeszyt 1-
Ch (18) 2014, pp. 133–148, 2015.
[40] B. andrzej W. Anna, c.-k. Anna, Z. Michaeł, “An analysis of the elemental
composition of micro-samples using eds technique,” 2014.
[41] W. Dan, S. Michael, and J. Donovan, “Specimen interaction and information
generated with electron beam instruments.,” in Electron Beam Microanalysis theory
and apli cation, no. 1, 2013, pp. 1–25.
[42] W. Dan, S. Michael, and J. Donovan, “The Energy Discriminating X-ray Detector,”
in 2013, pp. 1–18.
[43] M. M. J. Treacy, “Collection of simulated XRD powder patterns for zeolites,” Appl.
Catal., vol. 21, no. 2, pp. 388–389, 1986.
[44] W. Yoshio, M. Eiichiro, and S. Kozo, X-Ray Diffraction Crystallography. Springer,
2011.
[45] G. Rene, X-ray By Diffraction Polycrystalline Materials. 2007.
[46] Corrosion Education Committe od Assiessing, Assessment of Corrosion education.
2007.
[47] DANE, “Discapacidad,” 2010. .
[48] M. F. García-Sánchez et al., “Synthesis and characterization of nanostructured
cerium dioxide thin films deposited by ultrasonic spray pyrolysis,” J. Am. Ceram.
Soc., vol. 93, no. 1, pp. 155–160, 2010.
[49] D. Roman et al., “Effect of deposition temperature on microstructure and corrosion
resistance of ZrN thin films deposited by DC reactive magnetron sputtering,”
Mater. Chem. Phys., vol. 130, no. 1–2, pp. 147–153, 2011.
[50] K. Velásquez, “ESTUDIO PRELIMINAR DE BIOCOMPATIBILIDAD DE
CÉLULAS OSTEOBLÁSTICAS DE RATÓN CON MATERIALES CERÁMICOS
TIPO OXINITRURO.” pp. 27–29, 2015.
90 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN
DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE
AISI 316L.
[51] G. I. Cubillos, M. Bethencourt, and J. J. Olaya, “Corrosion resistance of zirconium
oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray
pyrolysis-nitriding,” Appl. Surf. Sci., vol. 327, no. January 2019, pp. 288–295, 2015.
[52] W. Phae-ngam et al., “Oblique angle deposition of nanocolumnar TiZrN films via
reactive magnetron co-sputtering technique: The influence of the Zr target powers,”
Curr. Appl. Phys., vol. 19, no. 8, pp. 894–901, 2019.
[53] G. I. Cubillos González, “Evaluación de la resistencia a la corrosión de
recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas
electroquímicas,” p. 321, 2013.
[54] G. I. Cubillos, J. J. Olaya, M. Bethencourt, G. Antorrena, and K. El Amrani,
“Synthesis and characterization of zirconium oxynitride ZrO x N y coatings
deposited via unbalanced DC magnetron sputtering,” Mater. Chem. Phys., vol. 141,
no. 1, pp. 42–51, 2013.
[55] K. Konstantinov, I. Stambolova, P. Peshev, B. Darriet, and S. Vassilev,
“Preparation of ceria films by spray pyrolysis method,” Int. J. Inorg. Mater., vol. 2,
no. 2–3, pp. 277–280, 2000.
[56] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J. C. Galvan, S. Radzki, and M. A.
Villegas, “Preparation and electrochemical study of cerium-silica sol-gel thin
films,” J. Alloys Compd., vol. 380, no. 1-2 SPEC. ISS., pp. 219–224, 2004.
[57] A. U. Chaudhry, B. Mansoor, T. Mungole, G. Ayoub, and D. P. Field, “Corrosion
mechanism in PVD deposited nano-scale titanium nitride thin film with intercalated
titanium for protecting the surface of silicon,” Electrochim. Acta, vol. 264, pp. 69–
82, 2018.
[58] Z. Abdullah, I. Azzura, and S. Ahmad, “The Influence of Porosity on Corrosion
Attack of Austenitic Stainless Steel,” J. Phys. Conf. Ser., vol. 914, no. 1, 2017.
[59] A. S. Hamdy, “Advanced nano-particles anti-corrosion ceria based sol gel coatings
for aluminum alloys,” Mater. Lett., vol. 60, no. 21–22, pp. 2633–2637, 2006 | |