dc.contributorLopez, Martha Cristina
dc.contributorLeal Aura Lucia
dc.contributorDelgado Morales Rocio del Pilar
dc.contributorReguero Maria Teresa
dc.contributorResiliencia y Saneamiento, RESA
dc.creatorOviedo Cancino, Alejandra
dc.date.accessioned2021-09-24T03:03:25Z
dc.date.available2021-09-24T03:03:25Z
dc.date.created2021-09-24T03:03:25Z
dc.date.issued2021-09-22
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80288
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl presente trabajo se basó inicialmente en la caracterización fisicoquímica y microbiológica del agua de uso agrícola en la zona occidental de la Sabana de Cundinamarca, conocida como distrito de riego la Ramada, donde se midieron parámetros como pH, conductividad, temperatura, oxígeno disuelto (OD), demanda química de oxígeno (DQO), demanda biológica de oxígeno (DBO5), carbono orgánico total (COT) y sólidos suspendidos totales (S.S.T.) y parámetros microbiológicos como recuento total de Coliformes Totales y Escherichia coli. Los muestreos se llevaron a cabo en seis puntos diferentes de la Ramada, donde el agua recolectada se analizó en el laboratorio de Ingeniería Ambiental de la Universidad Nacional de Colombia. Cabe mencionar, que los parámetros microbiológicos en las muestras de agua se analizaron mediante dos técnicas microbiológicas; la primera para establecer un recuento de la población total (NMP/100mL) y comparar los resultados con la normativa colombiana vigente (Decreto 1594 de 1984) para determinar si es apta para riego agrícola, y finalmente la técnica de filtración por membrana (UFC/100 mL) para obtener colonias aisladas de bacterias Gram negativas, que son de interés en este estudio; a las cuales se les determino el perfil de resistencia a antibióticos betalactámicos. Para llevar a cabo esto, inicialmente se realizó un pase de las colonias aisladas en Chromagares (ESBL – CARBA SMART) con el objetivo de seleccionarlas e identificarlas, para que, mediante el uso de herramientas automatizadas, se observará su perfil de sensibilidad. Por otro lado, para determinar la presencia de antibióticos en estas aguas, se realizó una extracción en fase sólida mediante el uso de cartuchos de extracción OASIS HLA (60mg/3cc), para finalmente analizar las muestras mediante metodologías de residuos múltiples como cromatografía líquida acoplada a espectrometría de masas (LC-MS / MS), con el objetivo de cuantificar los analitos en estudio. Teniendo en cuenta este panorama, se decidió caracterizar e identificar si hay presencia de microorganismos resistentes a antibióticos en aguas de uso agrícola del distrito la Ramada, Cundinamarca. En la caracterización fisicoquímica y microbiológica del agua agrícola, se pudo observar que, parámetros como DQO arrojaron resultados que están entre rangos de 101 mg/L a 1276 mg/L para temporada lluvia, mientras que para temporada seca los rangos oscilaron 102 mg/L a 1301 mg/L, en cambio para DBO5 los parámetros oscilaron 34 mg/L a 390 mg/L en temporada lluvia y para temporada seca fueron de 58 mg/L a 830 mg/L. Igualmente, los recuentos de bacterias como E. coli fueron mayores de 5000 NMP Log/100mL en el sitio 4 y sitio 6 en ambas temporadas. Por su parte, se observó como en estas aguas agrícolas hubo presencia de antibióticos como clindamicina, obteniendo valores mínimos de 1.20 ng/L a 42 ng/L en ambas temporadas, azitromicina con valores máximos de 5550 ng/L y trimetropim con rangos entre 82 ng/L a 339.23 ng/L en temporada seca, mientras que para temporada lluvia oscilaron entre los 45 ng/L a 606.48 ng/L y a su vez, como en el sitio 6 el promedio para este antibiótico fue de 1418.24 ng/L, registrando la presencia de fármacos en aguas para fines agrícolas. Igualmente, la identificación mediante técnicas automatizadas arrojó resultados interesantes, encontrando bacterias resistentes a antibióticos betalactámicos como E. coli, y Klepsiella sp., las cuales pueden causar enfermedades y ser relevantes en el ambiente clínico por su importancia para generar resistencia en antibióticos. (Texto tomado de la fuente)
dc.description.abstractThe present work was initially based on the physicochemical and microbiological characterization of water for agricultural use in the western zone of the Cundinamarca Plains, known as the Ramada irrigation district. Parameters such as pH, conductivity, temperature, dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD5), total organic carbon (TOC) and total suspended solids (TSS) and microbiological parameters such as total coliforms and Escherichia coli count were measured. The samplings were carried out in six different points of the Ramada district, which were: Site 1, Site 2, Site 3, Site 4, Site 5, and Site 6; the collected water was analyzed in the Environmental Engineering laboratory of the Universidad Nacional de Colombia. It is worth mentioning that the microbiological parameters in the water samples were analyzed using two microbiological techniques; the first to establish a count of the total population (MPN / 100mL) and compare the results with the current Colombian regulations (Decree 1594 of 1984) and determine if it is suitable for agricultural irrigation, and finally the membrane filtration technique (CFU/100 mL) to obtain isolated colonies of Gram negative bacteria, which are of interest in this study; to which resistance to beta-lactam antibiotics was evaluated; these were contacted with Chromagares (ESBL - CARBA SMART) in order to select and identify them, so that, through the use of automated tools, their sensitivity profile could be observed. On the other hand, to determine the presence of antibiotics in these waters, a solid phase extraction was carried out using OASIS HLA extraction cartridges (60mg / 3cc), to finally analyze the samples using multiple residue methodologies such as coupled liquid chromatography to mass spectrometry (LC-MS / MS), in order to quantify the analytes under study. Taking this scenario into account, it was decided to characterize and identify whether there is the presence of multi-resistant microorganisms to antibiotics in waters for agricultural use in the La Ramada district, Cundinamarca. It was observed that in these agricultural waters there was presence of antibiotics such as clindamycin, obtaining minimum values of 1.20 ng/L to 42 ng/L in both seasons, azithromycin with maximum values of 5550 ng/L and trimethoprim with ranges between 82 ng/L to 339.23 ng/L in the dry season, while for the rainy season they ranged from 45 ng/L to 606.48 ng/L and in turn, as in site 6, the average for this antibiotic was 1418.24 ng/L, recording the presence of drugs in waters for agricultural purposes. In the physicochemical and microbiological characterization of agricultural water, it could be observed that parameters such as COD yielded results ranging from 101 mg/L to 1276 mg/L for the rainy season, while for the dry season the ranges ranged from 102 mg/L at 1301 mg/L, on the other hand for BOD5 the parameters ranged from 34 mg/L to 390 mg/L in the rainy season and for the dry season they were from 58 mg/L to 830 mg/L. Likewise, the counts of bacteria such as E. coli were greater than 5 MPN Log/100mL in both seasons, whereas for site 6 the limits exceed values of 7 MPN Log/100mL. Likewise, the identification using automated techniques yielded interesting results, finding bacteria such as E. coli, Citrobacter freundii, Enterobacter cloacae and Klepsiella spp., Which can cause diseases and be relevant in the clinical environment due to their importance in generating antibiotic resistance.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá - Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAcevedo Barrios, R. L., Severiche Sierra, C. A., & Jaimes Morales, J. D. C. (2015). Bacterias resistentes a antibióticos en ecosistemas acuáticos. Producción Limpia, 10(2), 160–172. https://doi.org/10.22507/pml.v10n2a14 Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(March), 198–207. https://doi.org/10.1038/nature01511 Ali, Z. M. (2018). Horizontal gene conjugative transmission acquisition and transfer of antibiotic-resistance genes in bacteria. Sci. J, Med. Res., 2(6), 70–74. Alygizakis, N. A., Urík, J., Beretsou, V. G., Kampouris, I., Galani, A., Oswaldova, M., … Fatta-Kassinos, D. (2020). Evaluation of chemical and biological contaminants of emerging concern in treated wastewater intended for agricultural reuse. Environment International, 138(November 2019), 105597. https://doi.org/10.1016/j.envint.2020.105597 Amos, G. C. A., Zhang, L., Hawkey, P. M., Gaze, W. H., & Wellington, E. M. (2014). Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Veterinary Microbiology, 171(3–4), 441–447. https://doi.org/10.1016/j.vetmic.2014.02.017 Araújo, S., A.T. Silva, I., Tacão, M., Patinha, C., Alves, A., & Henriques, I. (2017). Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. International Journal of Food Microbiology, 257, 192–200. https://doi.org/10.1016/j.ijfoodmicro.2017.06.020 Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infectio, 22(2), 110–119. https://doi.org/10.22354/in.v22i2.717 Argüello, H., & Bustos, M. (2018). Contamination by Pathogenic Microorganisms in Water used for Agricultural Irrigation on the Sabana de Bogotá , Colombia. Azzam, M. I., Ezzat, S. M., Othman, B. A., & El-Dougdoug, K. A. (2017). Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Science, 31(2), 109–121. https://doi.org/10.1016/j.wsj.2017.10.001 Balkhair, K. S. (2016). Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater. Saudi Journal of Biological Sciences, 23(1), S83–S92. https://doi.org/10.1016/j.sjbs.2015.10.029 Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. https://doi.org/10.1016/j.copbio.2008.05.006 Barancheshme, F., & Munir, M. (2018). Strategies to combat antibiotic resistance in the wastewater treatment plants. Frontiers in Microbiology, 8(JAN). https://doi.org/10.3389/fmicb.2017.02603 Bean, T. G., Boxall, A. B. A., Lane, J., Herborn, K. A., Pietravalle, S., & Arnold, K. E. (2014). Behavioural and physiological responses of birds to environmentally relevant concentrations of an antidepressant. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656). https://doi.org/10.1098/rstb.2013.0575 Becerra-Castro, C., Lopes, A. R., Vaz-Moreira, I., Silva, E. F., Manaia, C. M., & Nunes, O. C. (2015). Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environment International, 75, 117–135. https://doi.org/10.1016/j.envint.2014.11.001 Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2017). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, (October 2017), 68–80. https://doi.org/10.1093/femsre/fux053 Biel-Maeso, M., Corada-Fernández, C., & Lara-Martín, P. A. (2017). Determining the distribution of pharmaceutically active compounds (PhACs) in soils and sediments by pressurized hot water extraction (PHWE). Chemosphere, 185, 1001–1010. https://doi.org/10.1016/j.chemosphere.2017.07.094 Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., … Udiković-Kolić, N. (2017). Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research, 126, 79–87. https://doi.org/10.1016/j.watres.2017.09.019 Bila, D. M., & Dezotti, M. (2007). Desreguladores endócrinos no meio ambiente: Efeitos e conseqüências. Quimica Nova, 30(3), 651–666. https://doi.org/10.1590/S0100-40422007000300027 Bolaños, J., Montero, N., Rodríguez, N., & Sánchez, A. (2015). Calidad de aguas superciales: estudio de la Quebrada Estero, ubicada en San Ramón. Pensamiento Actual, 15(25), 61–76. Boman, B. J., Wilson, P. C., & Ontermaa, E. A. (2012). Understanding Water Quality Parameters for Citrus Irrigation and Drainage Systems 1 Obtaining a Water Sample. 1–11. Bougnom, B. P., & Piddock, L. J. V. (2017). Wastewater for Urban Agriculture: A Significant Factor in Dissemination of Antibiotic Resistance. Environmental Science and Technology, 51(11), 5863–5864. https://doi.org/10.1021/acs.est.7b01852 Bougnom, B. P., Zongo, C., McNally, A., Ricci, V., Etoa, F. X., Thiele-Bruhn, S., & Piddock, L. J. V. (2019). Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environmental Research, 168(August 2018), 14–24. https://doi.org/10.1016/j.envres.2018.09.022 Bozaslan, B. S., Cakan, H., Ates, P. S., Alturfan, A. A., & Cengiz, S. (2016). The Examination of the Growth of Escherichia coli (E. coli) Strain on Mac Conkey Agar Prepared with Wastewater. International Journal of Environmental Science and Development, 7(11), 793–796. https://doi.org/10.18178/ijesd.2016.7.11.882 Burke, V., Richter, D., Greskowiak, J., Mehrtens, A., Schulz, L., & Massmann, G. (2016). Occurrence of Antibiotics in Surface and Groundwater of a Drinking Water Catchment Area in Germany. Water Environment Research, 88(7), 652–659. https://doi.org/10.2175/106143016x14609975746604 Buszewski, B., Rogowska, A., Pomastowski, P., Złoch, M., & Railean-Plugaru, V. (2017). Identification of microorganisms by modern analytical techniques. Journal of AOAC International, 100(6), 1607–1623. https://doi.org/10.5740/jaoacint.17-0207 Calisto Ulloa, N., Gómez Fuentes, C., & Muñoz, P. (2018). Resistencia a antibióticos en bacterias recolectadas en agua de mar en las proximidades de bases antárticas. Anales Del Instituto de La Patagonia, 46(3), 29–39. https://doi.org/10.4067/s0718-686x2018000300029 Caltagirone, M., Nucleo, E., Spalla, M., Zara, F., Novazzi, F., Marchetti, V. M., … Pagani, L. (2017). Occurrence of extended spectrum β-lactamases, KPC-Type, and MCR-1.2-producing enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese area, Northern Italy. Frontiers in Microbiology, 8(NOV), 1–12. https://doi.org/10.3389/fmicb.2017.02232 Campo, J., Lorenzo, M., Cammeraat, E. L. H., Picó, Y., & Andreu, V. (2017). Emerging contaminants related to the occurrence of forest fires in the Spanish Mediterranean. Science of the Total Environment, 603–604, 330–339. https://doi.org/10.1016/j.scitotenv.2017.06.005 Campo, J., Lorenzo, M., Pérez, F., Picó, Y., Farré, M. la, & Barceló, D. (2016). Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics. Environmental Research, 147, 503–512. https://doi.org/10.1016/j.envres.2016.03.010 Campos, C., Cárdenas, M., & Guerrero, A. (2008). Comportamiento De Los Indicadoresd De Contaminacion Fecal En Diferente Tipo De Aguas De La Sabana De Bogotá ( Colombia ) Performance of Faecal Contamination Indicators in Different Type of Waters From the Sabana of Bogotá ( Colombia ). Universitas Stuttgart, 103–108. Campos, M. C., Beltrán, M., Fuentes, N., & Moreno, G. (2018). Huevos de helmintos como indicadores de contaminación de origen fecal en aguas de riego agrícola, biosólidos, suelos y pastos. (Spanish). Biomédica: Revista Del Instituto Nacional de Salud, 38(1), 42. https://doi.org/10.7705/biomedica.v38i0.3352 Candela, L., Fabregat, S., Josa, A., Suriol, J., Vigués, N., & Mas, J. (2007). Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Science of the Total Environment, 374(1), 26–35. https://doi.org/10.1016/j.scitotenv.2006.12.028 Caovilla, F. A., Sampaio, S. C., Smanhotto, A., Nóbrega, L. H. P., de Queiroz, M. M. F., & Gomes, B. M. (2010). Características químicas de solo cultivado com soja e irrigado com água residuária da suinocultura. Revista Brasileira de Engenharia Agricola e Ambiental, 14(7), 692–697. Carlet, J., Rambaud, C., & Pulcini, C. (2012). Alliance contre les bactéries multirésistantes : Sauvons les antibiotiques ! Annales Francaises d’Anesthesie et de Reanimation, 31(9), 704–708. https://doi.org/10.1016/j.annfar.2012.07.003 Cavaco, L. M., Frimodt-Møller, N., Hasman, H., Guardabassi, L., Nielsen, L., & Aarestrup, F. M. (2008). Prevalence of Quinolone Resistance Mechanisms and Associations to Minimum Inhibitory Concentrations in Quinolone-Resistant Escherichia coli Isolated from Humans and Swine in Denmark. Microbial Drug Resistance, 14(2), 163–169. https://doi.org/10.1089/mdr.2008.0821 Celis Bustos, Y. A., Vanesa Rubio, V., Camacho Navarro, M. M., Celis Bustos, Y. A., Rubio, V. V., & Camacho Navarro, M. M. (2017). Perspectiva histórica del origen evolutivo de la resistencia a antibióticos. Revista Colombiana de Biotecnología, 19(2), 105–117. https://doi.org/10.15446/rev.colomb.biote.v19n2.69501 Chen, X., Vollertsen, J., Nielsen, J. L., Gieraltowska Dall, A., & Bester, K. (2015). Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology, 24(10), 2073–2080. https://doi.org/10.1007/s10646-015-1548-z Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., … Zhang, S. (2013). Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0067353 Christou, A., Agüera, A., Bayona, J. M., Cytryn, E., Fotopoulos, V., Lambropoulou, D., … Fatta-Kassinos, D. (2017). The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – A review. Water Research, Vol. 123, pp. 448–467. https://doi.org/10.1016/j.watres.2017.07.004 Cirelli, G. L., Consoli, S., Licciardello, F., Aiello, R., Giuffrida, F., & Leonardi, C. (2012). Treated municipal wastewater reuse in vegetable production. Agricultural Water Management, 104, 163–170. https://doi.org/10.1016/j.agwat.2011.12.011 Conti, M. E., Iacobucci, M., Cucina, D., & Mecozzi, M. (2007). Multivariate statistical methods applied to biomonitoring studies. International Journal of Environment and Pollution, 29(1–3), 333–343. https://doi.org/10.1504/ijep.2007.012809 Corporación Autonoma Regional de Cundinamarca. (2010). Carta ambiental. Edición No 25 - ISSN-0213 Diciembre de 2010, 7. Retrieved from file:///C:/Users/MASTER/Downloads/Carta Ambiental 25.pdf Correa, P. A., Lin, L. S., Just, C. L., Hu, D., Hornbuckle, K. C., Schnoor, J. L., & Van Aken, B. (2010). The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environment International, 36(8), 901–906. https://doi.org/10.1016/j.envint.2009.07.015 Coulter, B. (2011). MicroScan Microbiology Systems. J Clin Microbiology, 12. Cubides, P. (2018). Evaluación de un tratamiento para mejorar la calidad del agua utilizada para riego en la Sabana occidental de Cundinamarca. Retrieved from http://bdigital.unal.edu.co/70070/2/1018404125.2018.pdf Cui, B., & Liang, S. (2019). Monitoring opportunistic pathogens in domestic wastewater from a pilot-scale anaerobic biofilm reactor to reuse in agricultural irrigation. Water (Switzerland), 11(6). https://doi.org/10.3390/w11061283 Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., … Siemens, J. (2012). Accumulation of pharmaceuticals, enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.004539 De Oliveira Marinho, L. E., Filho, B. C., Roston, D. M., Stefanutti, R., & Tonetti, A. L. (2014). Evaluation of the productivity of irrigated eucalyptus grandis with reclaimed wastewater and effects on soil. Water, Air, and Soil Pollution, 225(1). https://doi.org/10.1007/s11270-013-1830-8 DeForest, J. L., Zak, D. R., Pregitzer, K. S., & Burton, A. J. (2004). Atmospheric Nitrate Deposition, Microbial Community Composition, and Enzyme Activity in Northern Hardwood Forests. Soil Science Society of America Journal, 68(1), 132. https://doi.org/10.2136/sssaj2004.1320 Delgado-Gardea, M. C. E., Tamez-Guerra, P., Gomez-Flores, R., de la Serna, F. J. Z. D., Eroza-de la Vega, G., Nevárez-Moorillón, G. V., … Infante-Ramírez, R. (2016). Multidrug-resistant bacteria isolated from surface water in Bassaseachic Falls National Park, Mexico. International Journal of Environmental Research and Public Health, 13(6), 1–15. https://doi.org/10.3390/ijerph13060597 Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. (2016). A review of health risks and pathways for exposure to wastewater Use in Agriculture. Environmental Health Perspectives, 124(7), 900–909. https://doi.org/10.1289/ehp.1509995 Dou, F. G., Hons, F. M., Ocumpaugh, W. R., Read, J. C., Hussey, M. A., & Muir, J. P. (2013). Soil Organic Carbon Pools Under Switchgrass Grown as a Bioenergy Crop Compared to Other Conventional Crops. Pedosphere, 23(4), 409–416. https://doi.org/10.1016/S1002-0160(13)60033-8 E., B. H. (2015). Nuevas Tecnologías En Diagnóstico Microbiológico: Automatización Y Algunas Aplicaciones En Identificación Microbiana Y Estudio De Susceptibilidad. Revista Médica Clínica Las Condes, 26(6), 753–763. https://doi.org/10.1016/j.rmclc.2015.11.004 Epa, U. S. E. P. (2007). Method 1694 : Pharmaceuticals and Personal Care Products in Water , Soil , Sediment , and Biosolids by HPLC / MS / MS. EPA Method, (December), 77. https://doi.org/10.1002/etc.3451 FAO (Organización de las Naciones Unidadas para la Alimentación y la Agricultura). (2013). Reutilización del agua en la agricultura: ¿Beneficios para todos?(Informe sobre temas hídricos FAO). Fatta-Kassinos, D., Kalavrouziotis, I. K., Koukoulakis, P. H., & Vasquez, M. I. (2011). The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Science of the Total Environment, 409(19), 3555–3563. https://doi.org/10.1016/j.scitotenv.2010.03.036 Fica, A. (2014). RESISTENCIA ANTIBIÓTICA EN BACILOS. 25(3), 432–444. DOI:10.1016/S0716-8640(14)70060-4 Fierer, N., & Jackson, R. (2006). The diversity and biogeography of soil bacterial communities. Proceedings Of The National Academy Of Sciences, 103(3), 626–631. https://doi.org/10.1073?pnas.0507535103 Flores, R., Albornoz, S., Hurtado, J., Montaño, V., & Santa Cruz, A. (2019). EXTENDED-SPECTRUM Β-LACTAMASE AND PLASMID AMPC Β-LACTAMASE-PRODUCING ENTEROBACTERIACEAE IN WATER SOURCES FOR IRRIGATION IN MAICA’S ZONE, COCHABAMBA. 22(2), 15–21. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1817-74332019000200003&lng=es&tlng=es Franco-Duarte, R., Černáková, L., Kadam, S., Kaushik, K. S., Salehi, B., Bevilacqua, A., … Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms, 7(5). https://doi.org/10.3390/microorganisms7050130 Frickmann, H., Masanta, W. O., & Zautner, A. E. (2014). Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BioMed Research International, 2014. https://doi.org/10.1155/2014/375681 Ganjegunte, G., Ulery, A., Niu, G., & Wu, Y. (2018). Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degradation and Development, 29(1), 80–90. https://doi.org/10.1002/ldr.2841 Gil, M., Soto, A., Usma, J., & Gutiérrez, O. (2012). Emerging contaminants in waters: effects and possible treatments Contaminantes emergentes em águas, efeitos e possíveis tratamentos. 7(2), 52–73. Retrieved from http://www.scielo.org.co/pdf/pml/v7n2/v7n2a05.pdf Gozlan, I., Rotstein, A., & Avisar, D. (2013). Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere, 91(7), 985–992. https://doi.org/10.1016/j.chemosphere.2013.01.095 Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., … Doumenq, P. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Research, 111, 297–317. https://doi.org/10.1016/j.watres.2017.01.005 Grossberger, A., Hadar, Y., Borch, T., & Chefetz, B. (2014). Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environmental Pollution, 185, 168–177. https://doi.org/10.1016/j.envpol.2013.10.038 Guo, R., Xie, W., & Chen, J. (2015). Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology. Food and Chemical Toxicology, 78, 116–121. https://doi.org/10.1016/j.fct.2015.02.007 Harrabi, M., Varela Della Giustina, S., Aloulou, F., Rodriguez-Mozaz, S., Barceló, D., & Elleuch, B. (2018). Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environmental Nanotechnology, Monitoring and Management, 10(May), 163–170. https://doi.org/10.1016/j.enmm.2018.05.006 Hernández, F., Ibáñez, M., Botero-Coy, A. M., Bade, R., Bustos-López, M. C., Rincón, J., … Bijlsma, L. (2015). LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Analytical and Bioanalytical Chemistry, 407(21), 6405–6416. https://doi.org/10.1007/s00216-015-8796-x Hou, T. Y., Chiang-Ni, C., & Teng, S. H. (2019). Current status of MALDI-TOF mass spectrometry in clinical microbiology. Journal of Food and Drug Analysis, 27(2), 404–414. https://doi.org/10.1016/j.jfda.2019.01.001 Huang, X., Zheng, J., Liu, C., Liu, L., Liu, Y., & Fan, H. (2017). Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chemical Engineering Journal, 308, 692–699. https://doi.org/10.1016/j.cej.2016.09.110 Huibers, F. P., & Raschid-Sally, L. (2005). Design in domestic wastewater irrigation. Irrigation and Drainage, 54(April), S113–S118. https://doi.org/Doi 10.1002/Ird.191 Inyinbor, A. A., Bello, O. S., Oluyori, A. P., Inyinbor, H. E., & Fadiji, A. E. (2019). Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control, 98(September 2018), 489–500. https://doi.org/10.1016/j.foodcont.2018.12.008 Jablasone, J., Brovko, L. Y., & Griffiths, M. W. (2004). A research note: The potential for transfer of Salmonella from irrigation water to tomatoes. Journal of the Science of Food and Agriculture, 84(3), 287–289. https://doi.org/10.1002/jsfa.1646 Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability (Switzerland), Vol. 9. https://doi.org/10.3390/su9101734 Jiménez, B., Mara, D., Carr, R., & Brissaud, F. (2009). Wastewater treatment for pathogen removal and nutrient conservation: Suitable systems for use in developing countries. Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries, 146–169. https://doi.org/10.4324/9781849774666 Johnning, A., Moore, E. R. B., Svensson-Stadler, L., Shouche, Y. S., Joakim Larsson, D. G., & Kristiansson, E. (2013). Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Applied and Environmental Microbiology, 79(23), 7256–7263. https://doi.org/10.1128/AEM.02141-13 Jones, L. A., McIver, C. J., Kim, M. J., Rawlinson, W. D., & White, P. A. (2005). The aadB gene cassette is associated with blaSHV genes in Klebsiella species producing extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy, 49(2), 794–797. https://doi.org/10.1128/AAC.49.2.794-797.2005 Kadlec, R. H., & Wallace, S. (2009). Treatment Wetlands. In Treatment Wetlands. https://doi.org/10.1201/9781420012514 Ke, C., Li, Z., Liang, Y., Tao, W., & Du, M. (2013). Impacts of chloride de-icing salt on bulk soils, fungi, and bacterial populations surrounding the plant rhizosphere. Applied Soil Ecology, 72, 69–78. https://doi.org/10.1016/j.apsoil.2013.06.003 Kim, K. S., Kam, S. K., & Mok, Y. S. (2015). Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system. Chemical Engineering Journal, 271, 31–42. https://doi.org/10.1016/j.cej.2015.02.073 Kulkarni, P., Olson, N. D., Raspanti, G. A., Goldstein, R. E. R., Gibbs, S. G., Sapkota, A., & Sapkota, A. R. (2017). Antibiotic concentrations decrease during wastewater treatment but persist at low levels in reclaimed water. International Journal of Environmental Research and Public Health, 14(6), 1–13. https://doi.org/10.3390/ijerph14060668 Kuramae, E., Gamper, H., Van Veen, J., & Kowalchuk, G. (2011). Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH. FEMS Microbiology Ecology, 77(2), 285–294. https://doi.org/10.1111/j.1574-6941.2011.01110.x Lagier, J. C., Hugon, P., Khelaifia, S., Fournier, P. E., La Scola, B., & Raoult, D. (2015). The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clinical Microbiology Reviews, 28(1), 237–264. https://doi.org/10.1128/CMR.00014-14 Lees, K., Fitzsimons, M., Snape, J., Tappin, A., & Comber, S. (2016). Pharmaceuticals in soils of lower income countries: Physico-chemical fate and risks from wastewater irrigation. Environment International, 94, 712–723. https://doi.org/10.1016/j.envint.2016.06.018 Libutti, A., Gatta, G., Gagliardi, A., Vergine, P., Pollice, A., Beneduce, L., … Tarantino, E. (2018). Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. 196, 1–14. https://doi.org/10.1016/j.agwat.2017.10.015 Liu, L. T., Wan, L. H., Song, X. H., Xiong, Y., Jin, S. J., & Zhou, L. M. (2013). Relevance of class 1 integrons and extended-spectrum β-lactamases in drug-resistant Escherichia coli. Molecular Medicine Reports, 8(4), 1251–1255. https://doi.org/10.3892/mmr.2013.1626 Logan, L. K., & Weinstein, R. A. (2017). The epidemiology of Carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. Journal of Infectious Diseases, 215(Suppl 1), S28–S36. https://doi.org/10.1093/infdis/jiw282 Lopes, A. R., Faria, C., Prieto-Fernández, Á., Trasar-Cepeda, C., Manaia, C. M., & Nunes, O. C. (2011). Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biology and Biochemistry, 43(1), 115–125. https://doi.org/10.1016/j.soilbio.2010.09.021 Luprano, M. L., De Sanctis, M., Del Moro, G., Di Iaconi, C., Lopez, A., & Levantesi, C. (2016). Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. Science of the Total Environment, 571, 809–818. https://doi.org/10.1016/j.scitotenv.2016.07.055 MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514. https://doi.org/10.1038/s41558-018-0161-6 Manson, J., Hancock, L., & Gilmore, M. (2010). Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Antimicrobial Agents and Chemotherapy, 43(9), 2161–2164. https://doi.org/10.1073/pnas.1000139107 Marinescu, F., Marutescu, L., Savin, I., & Lazar, V. (2015). Antibiotic resistance markers among Gram-negative isolates from wastewater and receiving rivers in South Romania. Romanian Biotechnological Letters, 20(1), 10055–10069. Marrero-moreno, C. M., Mora-llanes, M., Hernández-fillor, R. E., Báez-arias, M., García-morey, T., & Espinosa-castaño, I. (2017). espectro extendido ( BLEEs ) en instalaciones porcinas de la provincia Matanzas Identification of enterobacteria producing extended-spectrum beta-lactamases ( ESBLs ) in pig farms in Matanzas province. 39(3), 1–16. Matheyarasu, R., Bolan, N. S., & Naidu, R. (2016). Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2947-3 Merck Millpore. (2014). Agar para coliformes Chromocult. Darmstadt, 1–4. Retrieved from http://www.merckmillipore.com/INTL/en/product/Chromocult-Coliform-Agar,MM_NF-C164546?ReferrerURL=https%3A%2F%2Fwww.google.com%2F Miao, M., Wen, H., Xu, P., Niu, S., Lv, J., Xie, X., … Chen, L. (2019). Genetic diversity of Carbapenem-Resistant Enterobacteriaceae(CRE) clinical isolates from a Tertiary Hospital in Eastern China. Frontiers in Microbiology, 10(JAN), 1–8. https://doi.org/10.3389/fmicb.2018.03341 Miller, E. L., Nason, S. L., Karthikeyan, K. G., & Pedersen, J. A. (2016). Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. Environmental Science and Technology, 50(2), 525–541. https://doi.org/10.1021/acs.est.5b01546 Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2010). Política Nacional Recurso Hídrico. Mohammed, A. N., & Elbably, M. A. (2016). Technologies of Domestic Wastewater Treatment and Reuse: Options of Application in Developing Countries. JSM Environ Sci Ecol, 4(3). Retrieved from https://www.jscimedcentral.com/EnvironmentalScience/environmentalscience-4-1033.pdf Morosini, M. I., Cercenado, E., Ardanuy, C., & Torres, C. (2012). Detección fenotípica de mecanismos de resistencia en microorganismos grampositivos. Enfermedades Infecciosas y Microbiologia Clinica, 30(6), 325–332. https://doi.org/10.1016/j.eimc.2011.09.009 Mulder, M., Verbon, A., Lous, J., Goessens, W., & Stricker, B. H. (2019). Use of other antimicrobial drugs is associated with trimethoprim resistance in patients with urinary tract infections caused by E. coli. European Journal of Clinical Microbiology and Infectious Diseases, 38(12), 2283–2290. https://doi.org/10.1007/s10096-019-03672-2 Munita, J. M., Arias, C. A., Unit, A. R., & Santiago, A. De. (2016). HHS Public Access. Mechanisms of Antibiotic Resistance, 4(2), 1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.Mechanisms Muñoz, I., Gómez-Ramos, M. J., Agüera, A., Fernández-Alba, A. R., García-Reyes, J. F., & Molina-Díaz, A. (2009). Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture. TrAC - Trends in Analytical Chemistry, 28(6), 676–694. https://doi.org/10.1016/j.trac.2009.03.007 Narciso-da-Rocha, C., & Manaia, C. M. (2017). The influence of the autochthonous wastewater microbiota and gene host on the fate of invasive antibiotic resistance genes. Science of the Total Environment, 575, 932–940. https://doi.org/10.1016/j.scitotenv.2016.09.157 Narciso-da-Rocha, C., Rocha, J., Vaz-Moreira, I., Lira, F., Tamames, J., Henriques, I., … Manaia, C. M. (2018). Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environment International, 118(February), 179–188. https://doi.org/10.1016/j.envint.2018.05.040 Nesme, J., Cécillon, S., Delmont, T. O., Monier, J. M., Vogel, T. M., & Simonet, P. (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology, 24(10), 1096–1100. https://doi.org/10.1016/j.cub.2014.03.036 Nordmann, P., & Poirel, L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical Microbiology and Infection, 20(9), 821–830. https://doi.org/10.1111/1469-0691.12719 O ’neill, J. (2015). Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste the Review on Antimicrobial Resistance. (December). Obi, C. L., Bessong, P. O., Momba, M., Potgieter, N., Samie, A., & Igumbor, E. O. (2004). Profiles of antibiotic susceptibilities of bacterial isolates and physico-chemical quality of water supply in rural Venda communities, South Africa. Water SA, 30(4), 515–519. https://doi.org/10.4314/wsa.v30i4.5104 Olson, R. P., Harrell, L. J., & Kaye, K. S. (2009). Antibiotic resistance in urinary isolates of Escherichia coli from college women with urinary tract infections. Antimicrobial Agents and Chemotherapy, 53(3), 1285–1286. https://doi.org/10.1128/AAC.01188-08 Ortiz, N. (2018). EPs Antibiotics: Photodecomposition and Biocarbon Adsorption. Emerging Pollutants - Some Strategies for the Quality Preservation of Our Environment. https://doi.org/10.5772/intechopen.76893 Osińska, A., Korzeniewska, E., Harnisz, M., & Niestępski, S. (2017). The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Science of the Total Environment, 577, 367–375. https://doi.org/10.1016/j.scitotenv.2016.10.203 Ospina Zuñiga, O., García Cobas, G., Gordillo Rivera, J., & Tovar Hernández, K. (2016). Evaluación de la turbiedad y la conductividad ocurrida en temporada seca y de lluvia en el río Combeima (Ibagué, Colombia). Ingeniería Solidaria, 12(19), 19–36. https://doi.org/10.16925/in.v12i19.1191 Øvreås, V. T. & L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol, 5, 240–245. https://doi.org/10.1016/S1369-5274(02)00324-7 Pachepsky, Y., Shelton, D., Dorner, S., & Whelan, G. (2016). Can E. Coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Critical Reviews in Microbiology, 42(3), 384–393. https://doi.org/10.3109/1040841X.2014.954524 Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026 Pandey, P. ., & Soupir, M. (2013). Assessing the Impacts of E. coli Laden Streambed Sediment on E. coli Loads over a Range of Flows and Sediment Characteristics. Journal of the American Water Resources Association, 49(6), 1261–1269. https://doi.org/10.1111/jawr.12079 Panthi, S., Sapkota, A. R., Raspanti, G., Allard, S. M., Bui, A., Craddock, H. A., … Sapkota, A. (2019). Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environmental Research, 174(August 2018), 1–8. https://doi.org/10.1016/j.envres.2019.04.011 Paola, D., Velandia, L., Inés, M., Caycedo, T., Fernando, C., & Quiroga, P. (2016). Genes de resistencia en bacilos Gram negativos : Impacto en la salud pública en. Universidad y Salud, 18(1), 190. https://doi.org/10.22267/rus.161801.30 Park, J. Y., & Huwe, B. (2016). Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environmental Pollution, 213, 561–570. https://doi.org/10.1016/j.envpol.2016.01.089 Park, S., Szonyi, B., Gautam, R., Nightingale, K., Anciso, J., & Ivanek, R. (2012). Risk factors for microbial contamination in fruits and vegetables at the preharvest level: A systematic review. Journal of Food Protection, 75(11), 2055–2081. https://doi.org/10.4315/0362-028X.JFP-12-160 Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023 Perry, J. D. (2017). A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clinical Microbiology Reviews, 30(2), 449–479. https://doi.org/10.1128/CMR.00097-16 Pincus, D. H. (2010). Microbial identification using the bioMérieux VITEK® 2 system. Encyclopedia of Rapid Microbiological Methods, 1–32. PIVIĆ, R., STANOJKOVIĆ-SEBIĆ, A., MAKSIMOVIĆ, J., JOŠIĆ, D., & DINIĆ, Z. (2018). THE QUALITY OF WATER USED FOR IRRIGATION OF AGRICULTURAL SOIL IN THE BASIN OF RIVER GREAT MORAVA. AgroLife Scientific, 6(1), 188–194. https://doi.org/10.4102/satnt.v4i4.1052 Porse, A., Gumpert, H., Kubicek-Sutherland, J. Z., Karami, N., Adlerberth, I., Wold, A. E., … Sommer, M. O. A. (2017). Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut. Frontiers in Cellular and Infection Microbiology, 7(April), 1–12. https://doi.org/10.3389/fcimb.2017.00126 Posada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A. M., Hernández, F., … Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-48200-6 Qian, Y., & Lin, Y. (2019). Comparison of soil chemical properties prior to and five to eleven years after recycled water irrigation. Journal of Environmental Quality, 48(6), 1758–1765. https://doi.org/10.2134/jeq2019.03.0132 Qiao, M., Ying, G. G., Singer, A. C., & Zhu, Y. G. (2018). Review of antibiotic resistance in China and its environment. Environment International, Vol. 110, pp. 160–172. https://doi.org/10.1016/j.envint.2017.10.016 Rahimi, M. H., Kalantari, N., Sharifidoost, M., & Kazemi, M. (2018). Quality assessment of treated wastewater to be reused in agriculture. Global Journal of Environmental Science and Management, 4(2), 217–230. https://doi.org/10.22034/gjesm.2018.04.02.009 Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18(6), 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x Ranjard, L., & Richaume, A. (2001). Quantitative and qualitative microscale distribution of bacteria in soil. Research in Microbiology, 152(8), 707–716. https://doi.org/10.1016/S0923-2508(01)01251-7 Raphael, E., Wong, L. K., & Riley, L. W. (2011). Extended-spectrum beta-lactamase gene sequences in Gram-negative saprophytes on retail organic and nonorganic spinach. Applied and Environmental Microbiology, 77(5), 1601–1607. https://doi.org/10.1128/AEM.02506-10 Ravea, A. F. G., Kussb, A. V., Peila, G. H. S., Ladeirac, S. R., Villarreald, J. P. V., & Nascentee, P. S. (2019). Biochemical identification techniques and antibiotic susceptibility profile of lipolytic ambiental bacteria from effluents. Brazilian Journal of Biology, 79(4), 555–565. https://doi.org/10.1590/1519-6984.05616 Raven, K. E., Ludden, C., Gouliouris, T., Blane, B., Naydenova, P., Brown, N. M., … Peacock, S. J. (2019). Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes. Microbial Genomics, 5(5). https://doi.org/10.1099/mgen.0.000267 Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452 Roberson, E. B., & Firestone, M. K. (1993). Activity-Soil Response Saline Water Irrigation. 25(6), 693–697. Rock, C. M., Brassill, N., Dery, J. L., Carr, D., McLain, J. E., Bright, K. R., & Gerba, C. P. (2019). Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule. Environmental Research, 172(December 2018), 616–629. https://doi.org/10.1016/j.envres.2018.12.050 Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., … Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242. https://doi.org/10.1016/j.watres.2014.11.021 Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., … Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58 Ruimy, R., Meziane-Cherif, D., Momcilovic, S., Arlet, G., Andremont, A., & Courvalin, P. (2010). RAHN-2, a chromosomal extended-spectrum class A β-lactamase from Rahnella aquatilis. Journal of Antimicrobial Chemotherapy, 65(8), 1619–1623. https://doi.org/10.1093/jac/dkq178 Sainz, S., Basile, G., & Zandanel, L. (2017). Microbiología Aplicadada: Sistemas de Automatización en Microbiología MicroScan. Bioreview, 6(72), 84. Sakhno, NgGunar, O. (2016). Review Article Mathews Journal of Pharmaceutical Science Microbial Identification Methods in Pharmaceutical Analysis : Comparison and Evaluation. 1, 1–8. Schulz, J., Kemper, N., Hartung, J., Janusch, F., Mohring, S. A. I., & Hamscher, G. (2019). Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-41528-z Schwartz, T., Kohnen, W., Bernd, J., & Obst, U. (2003). Detection of Antibiotic Resistant Bacteria and Their Resistance Genes in Wastewater, Surface Water and Drinking Water Biofilms. 43. DOI: 10.1111/j.1574-6941.2003.tb01073.x Seid, R., & Drechsel, P. (2009). Cost-effectiveness analysis of interventions for diarrhoeal disease reduction among consumers of wastewater-irrigated lettuce in Ghana. In Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-income Countries. https://doi.org/10.4324/9781849774666 Silva, J., Torres, P., & Madera, C. (2008). Reuso de aguas residuales domésticas en agricultura . Una revisión Domestic wastewater reuse in agriculture . A review. Agronomia Colombiana, 26(1), 347–359. Retrieved from http://www.revistas.unal.edu.co/index.php/agrocol/article/view/13521/14204 Singh, A. L. (2016). Nitrate and Phosphate Contamination in Water and Possible Remedial. (February 2013). Smit, E., Leeflang, P., Gommans, S., Van Den Broek, J., Van Mil, S., & Wernars, K. (2001). Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied and Environmental Microbiology, 67(5), 2284–2291. https://doi.org/10.1128/AEM.67.5.2284-2291.2001 Solliec, M., Roy-Lachapelle, A., Gasser, M. O., Coté, C., Généreux, M., & Sauvé, S. (2016). Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Science of the Total Environment, 543, 524–535. https://doi.org/10.1016/j.scitotenv.2015.11.061 Solomon, E., Matthews, K. R., Solomon, E. B., Yaron, S., & Matthews, K. R. (2014). Transmission of Escherichia coli O157 : H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and ... Transmission of Escherichia coli O157 : H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent In. 68(August), 397–400. https://doi.org/10.1128/AEM.68.1.397 Song, I., Stine, S. W., Choi, C. Y., & Gerba, C. P. (2006). Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation. Journal of Environmental Engineering, 132(10), 1243–1248. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:10(1243) Tafur, D., & Villegas, V. (2008). Mecanismos de resistencia a los antibióticos en bacterias Gram negativas. Infectio, 12(3), 217–226. https://doi.org/http://www.sld.cu/galerias/pdf/sitios/apua-cuba/mecanismos_de_resistencia_a_los_antibioticos_en_bacterias_gram_negativas.pdf Tang, Q., Song, P., Li, J., Kong, F., Sun, L., & Xu, L. (2016). Control of antibiotic resistance in China must not be delayed: The current state of resistance and policy suggestions for the government, medical facilities, and patient. BioScience Trends, 10(1), 1–6. https://doi.org/10.5582/bst.2016.01034 Tängdén, T., & Giske, C. G. (2015). Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: Clinical perspectives on detection, treatment and infection control. Journal of Internal Medicine, 277(5), 501–512. https://doi.org/10.1111/joim.12342 Tessaro, D., Sampaio, S. C., & Castaldelli, A. P. A. (2016). Wastewater use in agriculture and potential effects on meso and macrofauna soil. Ciência Rural, 46(6), 976–983. https://doi.org/10.1590/0103-8478cr20141648 Thebo, A. L., Drechsel, P., Lambin, E. F., & Nelson, K. L. (2017). A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environmental Research Letters, 12(7). https://doi.org/10.1088/1748-9326/aa75d1 Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3(9), 711–721. https://doi.org/10.1038/nrmicro1234 Titilawo, Y., Obi, L., & Okoh, A. (2015). Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. Science of the Total Environment, 523, 82–94. https://doi.org/10.1016/j.scitotenv.2015.03.095 Unesco. (2015). Agua para un mundo sostenible. Informe de Las Naciones Unidas Sobre Los Recursos Hídricos En El Mundo, 1–8. Unesco. (2017). Aguas residuales. Retrieved from http://unesdoc.unesco.org/images/0024/002476/247647s.pdf US Enviromental Protection Agency Office of Pesticide. (2016). Standard Operating Procedure for VITEK 2 Compact: Use, Maintenance and Quality Control Procedures. EPA, 15. Retrieved from http://www.epa.gov/opp00001/methods/atmpmethods/QC-23-01.pdf Van-camp, L., Bujarrabal, B., Gentile, A. R., Jones, R. J. a, Montanarella, L., Olazabal, C., & Selvaradjou, S. (2004). Reports of the Technical Working Groups Volume - Iv. Management, VI, 1–163. Váradi, L., Luo, J. L., Hibbs, D. E., Perry, J. D., Anderson, R. J., Orenga, S., & Groundwater, P. W. (2017). Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chemical Society Reviews, 46(16), 4818–4832. https://doi.org/10.1039/c6cs00693k Varela, A. R., & Manaia, C. M. (2013). Human health implications of clinically relevant bacteria in wastewater habitats. Environmental Science and Pollution Research, 20(6), 3550–3569. https://doi.org/10.1007/s11356-013-1594-0 Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption. Geoderma, 151(3–4), 68–76. https://doi.org/10.1016/j.geoderma.2009.03.007 Veras, D. L., Alves, L. C., Brayner, F. A., Guedes, D. R. D., MacIel, M. A. V., Rocha, C. R. C., & De Souza Lopes, A. C. (2011). Prevalence of the blaSHV gene in Klebsiella pneumoniae Isolates obtained from hospital and community infections and from the microbiota of healthy individuals in Recife, Brazil. Current Microbiology, 62(5), 1610–1616. https://doi.org/10.1007/s00284-011-9899-z Verburg, I., García-Cobos, S., Leal, L. H., Waar, K., Friedrich, A. W., & Schmitt, H. (2019). Abundance and antimicrobial resistance of three bacterial species along a complete wastewater pathway. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090312 Vila, J., Martí, S., & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 59(6), 1210–1215. https://doi.org/10.1093/jac/dkl509 Wang, Z., Li, J., & Li, Y. (2017). Using Reclaimed Water for Agricultural and Landscape Irrigation in China: a Review. Irrigation and Drainage, 66(5), 672–686. https://doi.org/10.1002/ird.2129 Wasim Aktar, M., Paramasivam, M., Ganguly, M., Purkait, S., & Sengupta, D. (2010). Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: A study for toxicity and ecological impact. Environmental Monitoring and Assessment, 160(1–4), 207–213. https://doi.org/10.1007/s10661-008-0688-5 Wellington, E. M. H., Boxall, A. B. A., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., … Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165. https://doi.org/10.1016/S1473-3099(12)70317-1 WHO. (2014). World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). In New York, United. https://doi.org/10.4054/DemRes.2005.12.9 WHO. (2017). Antibacterial Agents in Clinical Development: An Analisys of the Clinical Development Pipeline, including Tunerculosis. Annual Reports in Medicinal Chemistry, 30(C), 101–110. https://doi.org/10.1016/S0065-7743(08)60924-0 Williams-Nguyen, J., Brett Sallach, J., Bartelt-Hunt, S., Boxall, A. B., Durso, L. M., McLain, J. E., … Zilles, J. L. (2016). Antibiotics and antibiotic resistance in agroecosystems: State of the science. Journal of Environmental Quality, 45(2), 394–406. https://doi.org/10.2134/jeq2015.07.0336 Woodford, N., & Ellington, M. J. (2007). The emergence of antibiotic resistance by mutation. Clinical Microbiology and Infection, 13(1), 5–18. https://doi.org/10.1111/j.1469-0691.2006.01492.x World Health Organization (WHO). (2001). Estrategia mundial de la OMS para contener la resistencia a los antimicrobianos. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 10(4), 284–294. https://doi.org/10.1590/s1020-49892001001000014 World Health Organization (WHO). (2006). Wastewater use in Agriculture. Guidelines For the Safe Use of Wastewater, Excreta and Greywater, 2, 191. WHO | Guidelines for the safe use of wastewater, excreta and greywater - Volume 2 World Health Organization (WHO). (2016). Plan De Acción Mundial Sobre La Resistencia a Los Antimicrobianos. OMS | Plan de acción mundial sobre la resistencia a los antimicrobianos (who.int) Wu, R. S. S. (1999). Eutrophication, water borne pathogens and xenobiotic compounds: Environmental risks and challenges RID B-4203-2010. Marine Pollution Bulletin, 39(1–12), 11–22. https://doi.org/10.1016/S0025-326X(99)00014-4 Xu, C., Wang, Y., Bryngelson, P., Sosic, Z., Dalton, D., & Dithiothreitol, D. T. T. (2019). Advancements of Mass Spectrometry in Biomedical Research. 1140, 289–298. https://doi.org/10.1007/978-3-030-15950-4 Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., … Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385. https://doi.org/10.1016/j.chemosphere.2014.02.040 Yi, K., Wang, D., QiYang, Li, X., Chen, H., Sun, J., … Zeng, G. (2017). Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Science of the Total Environment, 605–606, 368–375. https://doi.org/10.1016/j.scitotenv.2017.06.215 Yim, G., Kwong, W., Davies, J., & Miao, V. (2013). Complex integrons containing qnrB4-ampC (blaDHA-1) in plasmids of multidrug-resistant Citrobacter freundii from wastewater. Can. J. Microbiology, 116(November 2012), 110–116. DOI: 10.1139/cjm-2012-0576 Zhang, S., Han, B., Gu, J., Wang, C., Wang, P., Ma, Y., … He, Z. (2015). Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Chemosphere, 135, 138–145. https://doi.org/10.1016/j.chemosphere.2015.04.001 Zhong, C., Nelson, M., Cao, G., Sadowsky, M. J., & Yan, T. (2017). Complete genome sequence of citrobacter freundii 705SK3, an OXA-48-encoding wastewater isolate. American Society for Microbiology, 5(33), 4–5. doi: 10.1128/genomeA.00842-17
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentificación de bacterias resistentes a betalactámicos en aguas para riego agrícola en la Ramada, Cundinamarca.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución