dc.contributor | Branch Bedoya, John Willian | |
dc.creator | Mosquera González, Davinson | |
dc.date.accessioned | 2022-06-24T20:12:14Z | |
dc.date.accessioned | 2022-09-21T18:19:03Z | |
dc.date.available | 2022-06-24T20:12:14Z | |
dc.date.available | 2022-09-21T18:19:03Z | |
dc.date.created | 2022-06-24T20:12:14Z | |
dc.date.issued | 2022-06 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81631 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3407459 | |
dc.description.abstract | La presente tesis de investigación, tiene como objetivo proponer un método para la segmentación de clientes, incorporando la predicción del valor monetario del cliente como una variable de segmentación, para tal fin, se propone una metodología cuantitativa, en la que los datos a utilizar corresponden a las transacciones de una tienda en línea de regalos para toda ocasión de Reino Unido, denominada “Online Retail II”, que consta de un total de 5.833 clientes y 1.067.371 registros; a partir de los cuales se realiza un proceso de caracterización de los datos, seguido de la predicción del valor monetario de cada cliente utilizando técnicas estadísticas y de aprendizaje de máquinas, que posteriormente se incluye como variable en el proceso de segmentación. Finalmente, se hace un comparativo entre los resultados de segmentar clientes sin incorporar la predicción del valor monetario y la segmentación de clientes incorporando la predicción del valor monetario; con lo que se concluye que el método propuesto, utilizando el algoritmo de Vecinos más cercanos para la predicción del valor monetario del cliente, al incorporarlo en la segmentación de clientes, logra un desempeño económico entre 10% y 20% mejor que segmentar sin incorporar esta variable. (Texto tomado de la fuente) | |
dc.description.abstract | This research thesis aims to propose a method for customer segmentation, incorporating the prediction of the customer's monetary value as a segmentation variable, for this purpose, a quantitative methodology is proposed, in which the data to be used correspond to the transactions of an online all-occasion gifts store in the United Kingdom, called “Online Retail II”, consisting of a total of 5.833 customers and 1.067.371 registrations; from which a data characterization process is carried out, followed by the prediction of the monetary value of each client using statistical and machine learning techniques, which is later included as a variable in the segmentation process. Finally, a comparison is made between the results of segmenting customers without incorporating the prediction of the monetary value and the customer segmentation incorporating the prediction of the monetary value; with which it is concluded that the proposed method, using the Nearest Neighbors algorithm for the prediction of the monetary value of the client, when incorporating it into the client segmentation, achieves an economic performance between 10% and 20% better than segmenting without incorporating this variable. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Analítica | |
dc.publisher | Departamento de la Computación y la Decisión | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Alipour, S. P. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/K-07-2015-0180 | |
dc.relation | Ardanuy, J. (2012). Breve introducción a la bibliometría. In Universitat de Barcelona (pp. 1–25). https://doi.org/10.1038/nmat3485 | |
dc.relation | Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 | |
dc.relation | Bauer, J., & Jannach, D. (2021). Improved Customer Lifetime Value Prediction with Sequence-To-Sequence Learning and Feature-Based Models. ACM Transactions on Knowledge Discovery from Data, 1(1). https://doi.org/10.1145/3441444 | |
dc.relation | Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. SIGMOD Rec., 29(2), 93–104. https://doi.org/10.1145/335191.335388 | |
dc.relation | Cadavid, L., Awad, G., & Franco, C. (2012). Análisis bibliométrico del campo modelado de difusión de innovaciones. Estudios Gerenciales, 28(EE), 213–236. http://www.scielo.org.co/pdf/eg/v28nspe/v28nspea12.pdf | |
dc.relation | Camps, D. (2008). Limitaciones de los indicadores bibliométricos en la evaluación de la actividad científica biomédica. In Colombia Médica (Vol. 39, pp. 74–79). scieloco. | |
dc.relation | Cancer Research UK. (2022). Cancer Research UK Together we will beat cancer. https://www.cancerresearchuk.org/ | |
dc.relation | Channa, H. S. (2019). Customer lifetime value: An ensemble model approach. Advances in Intelligent Systems and Computing, 808, 353–363. https://doi.org/10.1007/978-981-13-1402-5_27 | |
dc.relation | Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013 | |
dc.relation | Chen, D. (2019). Online Retail II Data Set. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Online+Retail+II | |
dc.relation | Chen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing and Customer Strategy Management, 19(3), 197–208. https://doi.org/10.1057/dbm.2012.17 | |
dc.relation | Chen, P. P., Guitart, A., Del Río, A. F., & Periáñez, A. (2019). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2134–2140. https://doi.org/10.1109/BigData.2018.8622151 | |
dc.relation | Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 1–7. https://doi.org/10.1016/j.jksuci.2018.09.004 | |
dc.relation | Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243 | |
dc.relation | Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing Science, 24(2), 275–284. https://doi.org/10.1287/mksc.1040.0098 | |
dc.relation | Forliano, C., De Bernardi, P., & Yahiaoui, D. (2021). Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technological Forecasting and Social Change, 165, 1–16. https://doi.org/10.1016/j.techfore.2020.120522 | |
dc.relation | Guadarrama, T., & Rosales, E. M. (2015). Marketing relacional: valor, satisfacción, lealtad y retención del cliente. Análisis y reflexión teórica. Ciencia y Sociedad, 40(2), 307–340. | |
dc.relation | Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, 48(5), 1275–1287. https://doi.org/10.1007/s10489-017-1105-y | |
dc.relation | Hall, C. M. (2011). Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism. Tourism Management, 32(1), 16–27. https://doi.org/10.1016/J.TOURMAN.2010.07.001 | |
dc.relation | Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127(March 2019), 444–453. https://doi.org/10.1016/j.jbusres.2019.05.001 | |
dc.relation | Herrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research trends in geotourism: A bibliometric analysis using the scopus database. Geosciences (Switzerland), 10(10), 1–29. https://doi.org/10.3390/geosciences10100379 | |
dc.relation | Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 1–5. https://doi.org/10.1073/pnas.0507655102 | |
dc.relation | Hurwitz, J., & Kirsch, D. (2018). Machine Learning for dummies (IBM Limite). | |
dc.relation | Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018). Modeling and application of customer lifetime value in online retail. Informatics, 5(1), 1–22. https://doi.org/10.3390/informatics5010002 | |
dc.relation | Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2019). Comparative analysis of selected probabilistic customer lifetime value models in online shopping. Journal of Business Economics and Management, 20(3), 398–423. https://doi.org/10.3846/jbem.2019.9597 | |
dc.relation | Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer Segmentation using K-means Clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135–139. https://doi.org/10.1109/CTEMS.2018.8769171 | |
dc.relation | Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678 | |
dc.relation | Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17 | |
dc.relation | Nita, A. (2019). Empowering impact assessments knowledge and international research collaboration - A bibliometric analysis of Environmental Impact Assessment Review journal. Environmental Impact Assessment Review, 78(March), 106283. https://doi.org/10.1016/j.eiar.2019.106283 | |
dc.relation | Oblander, E. S., Gupta, S., Mela, C. F., Winer, R. S., & Lehmann, D. R. (2020). The past, present, and future of customer management. Marketing Letters, 31(2–3), 125–136. https://doi.org/10.1007/s11002-020-09525-9 | |
dc.relation | Pareto, V. (1896). Cours d’économie politique. Université de Lausanne. | |
dc.relation | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html | |
dc.relation | Peralta, M. J., Frías, M., & Gregorio, O. (2015). Criterios, clasificaciones y tendencias de los indicadores bibliométricos en la evaluación de la ciencia. Revista Cubana de Información En Ciencias de La Salud, 26(3), 290–309. http://scielo.sld.cu | |
dc.relation | Platzer, M. (2021). Customer Base Analysis with BTYDplus (pp. 1–33). https://cran.r-project.org/web/packages/BTYDplus/vignettes/BTYDplus-HowTo.pdf | |
dc.relation | Rathi, T., & Ravi, V. (2017). Customer Lifetime Value Measurement using Machine Learning Techniques. In Artificial Intelligence: Concepts, Methodologies, Tools, and Applications (pp. 3013–3022). https://doi.org/10.4018/978-1-5225-1759-7.ch124 | |
dc.relation | Roy-García, I., Rivas-Ruiz, R., Pérez-Rodríguez, M., & Palacios-Cruz, L. (2019). Correlation: Not all correlation entails causality. Revista Alergia Mexico, 66(3), 354–360. https://doi.org/10.29262/ram.v66i3.651 | |
dc.relation | Rueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007). Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET ’07 - 2007 Portland International Conference on Management of Engineering & Technology, 2905–2911. https://doi.org/10.1109/PICMET.2007.4349633 | |
dc.relation | Sifa, R., Runge, J., Bauckhage, C., & Klapper, D. (2018). Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE. Hawaii International Conference on System Sciences, 923–932. | |
dc.relation | Simeone, O. (2018). A Brief Introduction to Machine Learning for Engineers. Foundations and Trends® in Signal Processing, 12(3–4), 200–431. https://doi.org/10.1561/2000000102 | |
dc.relation | Sodhi, P., Awasthi, N., & Sharma, V. (2019). Introduction to Machine Learning and Its Basic Application in Python. SSRN Electronic Journal, 1354–1375. https://doi.org/10.2139/ssrn.3323796 | |
dc.relation | Srivastava, R. (2017). Identification of customer clusters using RFM model: a case of diverse purchaser classification. International Journal of Information, Business and Management, 9(4), 201–208. | |
dc.relation | Tsai, T. Y., Lin, C. T., & Prasad, M. (2019). An Intelligent Customer Churn Prediction and Response Framework. Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019, 928–935. https://doi.org/10.1109/ISKE47853.2019.9170380 | |
dc.relation | Valérie, D., & Pierre, A. G. (2010). Bibliometric idicators: Quality masurements of sientific publication. Radiology, 255(2), 342–351. https://doi.org/10.1148/radiol.09090626 | |
dc.relation | Velasco, B., Eiros Bouza, J. M., Pinilla, J. M., & San Román, J. A. (2012). La utilización de los indicadores bibliométricos para evaluar la actividad investigadora. Aula Abierta, 40(2), 75–84. http://dialnet.unirioja.es/servlet/articulo?codigo=3920967&info=resumen&idioma=ENG | |
dc.relation | Villa, E., Ruiz, L., Valencia, A., & Picón, E. (2018). Electronic commerce: factors involved in its adoption from a bibliometric analysis. Journal of Theoretical and Applied Electronic Commerce Research, 13(1), 39–70. https://doi.org/10.4067/S0718-18762018000100104 | |
dc.relation | Win, T. T., & Bo, K. S. (2020). Predicting Customer Class using Customer Lifetime Value with Random Forest Algorithm. Proceedings of the 4th International Conference on Advanced Information Technologies, ICAIT 2020, 236–241. https://doi.org/10.1109/ICAIT51105.2020.9261792 | |
dc.relation | Yoseph, F., & Heikkila, M. (2019). Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method. Proceedings - International Conference on Machine Learning and Data Engineering, ICMLDE 2018, 77–82. https://doi.org/10.1109/iCMLDE.2018.00029 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación | |
dc.type | Tesis | |