dc.contributorOlaya Murillo, Angélica María
dc.contributorRojas Rodríguez, Hernán
dc.contributorFernández Suárez, Leonardo
dc.contributorCubides, Camilo
dc.creatorDussán Cuenca, Anderson
dc.creatorQuiroz Gaitán, Heiddy Paola
dc.creatorCalderón Cómbita, Jorge Arturo
dc.date.accessioned2021-08-17T15:17:45Z
dc.date.accessioned2022-09-21T18:14:31Z
dc.date.available2021-08-17T15:17:45Z
dc.date.available2022-09-21T18:14:31Z
dc.date.created2021-08-17T15:17:45Z
dc.date.issued2020
dc.identifier9789587941616
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79954
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3406913
dc.description.abstractEste libro contiene fundamentos importantes desarrollados en trabajos de investigación, análisis y documentación, que permiten conocer la incidencia positiva de nuevos materiales basados en nanoestructuras semiconductoras y sus potenciales aplicaciones en sistemas de resguardo de la información y en la revolución tecnológica marcada por la espintrónica. (Texto tomado de la fuente).
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherSede Bogotá
dc.publisherBogotá, Colombia
dc.relationPrimera edición
dc.relationA Dussan, HP Quiroz, JG Martínez A. Nano-columnar grain growth structure of boron-compensated silicon thin. Solar Energy Materials & Solar Cells. 2012; 100:53-56.
dc.relationF BenyeTtou, A Aissat, MA Benamar, JP Vilcot. Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia. 2015; 74:139-147.
dc.relationM Fitra, I Daut, M Irwanto, N Gomesh, YM Irwan. Effect of Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013; 36:278-286.
dc.relationA del Río-De Santiago et al. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy. Applied Surface Science. 2015; 333:92-95.
dc.relationY Sbai, A Ait Raiss, L Bahmad, A Benyoussef. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation. Superlattices and Microstructures. 2017; 106:163-169.
dc.relationW Han, RK Kawakami, M Gmitra, J Fabian. Graphene Spintronics. Nature Nanotechnology, 2014;9:794-807.
dc.relationZ Mo et al. Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells. Optik–International Journal for Light and Electron Optics. 2017; 149:63-68.
dc.relationY Zhang, Z-X Xie, Y-X Deng, X Yu. Impurity distribution and ferromagnetism in Mn-doped GaAs nanowires: A first-principle study. Physics Letters A. 2015;379(42):2745-2749.
dc.relationF Brieler. Nanostructured Diluted Magnetic Semiconductors within Mesoporous Silica. Alemania: Giessen; 2005.
dc.relationM Furis, N Rawat, JG Cherian, A Wetherby, R Waterman, S McGill. Organic analogues of diluted magnetic semiconductors: bridging quantum chemistry to condensed matter physics. Proc. SPIE 9551. 2015; Spintronics VIII:95512.
dc.relationJA Calderón. Estudio de las propiedades ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica [Tesis de Maestría]. Bogotá D. C.: Universidad Nacional de Colombia; 2016.
dc.relationT Shinjo. Nanomagnetism and Spintronics. Oxford: Elsevier; 2009.
dc.relationJP Liu, E Fullerton, O Gutfleisch, DJ Sellmyer. Nanoscale Magnetic Materials and applications. New York, USA: Springer; 2009.
dc.relationK Sato, E Saitoh. Spintronics for Next Generation Innovative Devices. 1. a ed. United Kingdom: John Wiley & Sons; 2015.
dc.relationMN Baibich et al. Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices. Physical Review Letters. 1988 nov;61(21):2472-2475.
dc.relationG Binasch, P Grünberg, F Saurenbach, W Zinn. Enhanced Magnetoresistance in Layered Magnetic Structures with antiferromagnetic interlayer exchange. Physical Review B. 1989 marzo;39(7):4828-4830.
dc.relationibm Reaserch. ibm Reaserch [Online]. Disponible en http://www.research.ibm. com/research/gmr.html (12 de marzo de 2020).
dc.relationT Matsuno, S Sugahara, M Tanaka. Novel Reconfigurable Logic Gates Using Spin Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics. 2004 sep;34(9A):6032-6037.
dc.relationV Dediu, M Murgia, MC Matacotta, C Taliani, S Barbanera. Room Temperature spin polarized injection in organic semiconductor. Solid State Communications. 2002; 122:181-184.
dc.relationM Ouyang, DD Awschalom. Coherent Spin Transfer Between Molecularly Bridged Quantum Dots. Science. 2003 ago; 301:1074-1078.
dc.relationFJ Wang, ZH Xiong, D Wu, J Shi, ZV Vardeny. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synthetic Metals. 2005; 155:172-175.
dc.relationJK Furdyna. Diluted Magnetic Semiconductors. Journal of Applied Physics. 1998 mar;64(4):29-54.
dc.relationT Dietl. Transport properties of ii-vi semimagnetic semiconductors. Journal of Crystal Growth. 1990;101(1-4):808-817.
dc.relationJ Kossut, JA Gaj. Basic Consequences of sp-d and d-d interactions in dms. J Kossut (ed.). Introduction to the Physics of Diluted Magnetic Semiconductors. New York, usa: Springer; 2010. ch. 1. Pp. 1-17.
dc.relationH Ohno et al. (GaMn)As: A New Diluted Magnetic Semiconductor Based on GaAs. Applied Physics Letters. 1996;69(3):363-365.
dc.relationH Ohno. Preparation and Properties of iii–v based New Diluted Magnetic Semiconductors. Advances in colloid and Interface Science. 1997;71-72:61-75.
dc.relationT Dielt, H Ohno, F Matsukura, J Cibert, D Ferrand. Zener Model Description of Ferromagnetism in Zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019-1022.
dc.relationK Sato et al. First-principles Theory of Dilute Magnetic Semiconductors. Reviews of Modern Physics. 2010 may; 82:1633-1690.
dc.relationT Dietl, H Ohno. Diluted Ferromagnetic Semiconductors: Physics and Spintronics Structures. Reviews of Modern Physics. 2014; 86:187-251.
dc.relationH Wang, L Chen, J Zhao. Enhancement of the Curie temperature of ferromagnetic Semiconductor (Ga,Mn)As. Science China Physics, Mechanics and Astronomy. 2013 ene;56(1):99-110.
dc.relationWZ Wang et al. Influence of Si doping on magnetic properties of (Ga,Mn)As. Physica E. 2008 jun;41:84-87.
dc.relationYJ Cho, KM Yu, X Liu, W Walukiewicz, JK Furdyna. Effects of donor doping on Ga1−xMnxAs. Applied Physics Letters. 2008 dic; 93:262505-1-262505-3.
dc.relationGM Schott et al. Doping of low-temperature GaAs and GaMnAs with carbon. Applied Physics Letters. 2008 nov;85(20):4678-4680.
dc.relationT Dietl, H Ohno, F Matsukura, J Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000 feb 11;287(5455):1019-1022.
dc.relationT Dietl, H Ohno, F Matsukura. Hole-mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Physical Review B. 2001 abr; 63:195205-1-195205-21.
dc.relationYD Park et al. Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C. Physical Review B. 2003;68:085210-1-085210-5.
dc.relationKY Wang et al. (Ga,Mn)As Grown on (311) GaAs Substrates: Modified Mn Incorporation and Magnetic Anisotropies. Physical Review B. 2005 sep; 72:115207-1-115207-6.
dc.relationU. Wurstbauer et al. Ferromagnetic GaMnAs grown on (110) faced GaAs. Applied Physics Letters. 2008 mar;92(102506):102506-1-102506-3.
dc.relationKY Wang et al. Magnetism in (Ga,Mn)As Thin Films With TC Up To 173K. aip Conference Proceedings. 2005; 772:333-334.
dc.relationK Khazen, HJ von Bardeleben, JL Cantin. Intrinsically limited critical temperatures of highly doped Ga1−xMnxAs thin films. Physical Review B. 2010 jun;81(235201):235201-1-235201-6.
dc.relationS Fukami and H Ohno. Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics. 2017 jun;56(08002A1):0802A1-1-0802A1-12.
dc.relationS Ikeda et al. Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters. 2008;93(082508):082508-1-082508-3.
dc.relationJM Albella. Láminas delgadas y recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid: Editorial csic; 2003.
dc.relationY Pauleau. Chemical Physics of Thin Film Deposition Processes for Micro- and Nano- Technologies. Lithuania: Springer; 2001.
dc.relationH Singh Nalwa. Deposition and Processing. San Diego Ca.: Academic Press, 2002.
dc.relationDM Mattox. Handbook of Physical Vapor Deposition (pvd) Processing. usa: William Andrew; 2010.
dc.relationJA Calderón, F Mesa, A Dussan. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys. Applied Surface Science. 2017; 396:1113-1118.
dc.relationA Fert. Espintrónica: Electrones, espines, ordenadores y teléfonos. Acto de Investidura del Grado de Doctor Honoris Causa. Zaragoza, España: Prensas Universitarias de Zaragosas; 2009. Pp. 31-49.
dc.relationK Takanashi, S Mizukami. Spintronic Properties and Advanced Materials. Spintronic Properties and Advanced Materials. New York, usa: Springer; 2013. ch. 5.
dc.relationZ Wilamowski, AM Werpachowska. Spintronics in semiconductors. Materials Science-Poland. 2006;24(3):1-5.
dc.relationN Badera et al. Photoconductivity of cobalt doped CdS thin films. Physics Procedia. 2013; 49:190-198.
dc.relationJ Ling, Y Shengjiao, J Yimin, W Chunming. Electrochemical Deposition of Diluted Magnetic Semiconductor ZnMnSe2 On Reduced Graphene Oxide polyimide Substrate and its Properties. Journal of Alloys and Compounds. 2014; 609:233-238.
dc.relationS Güner et al. The structural and magnetic properties of Co+ implanted ZnO films. Applied Surface Science. 2014;310:235-241.
dc.relationA Chtchelkanova, S Wolf, Y Idzerda. Magnetic Interactions and Spin Transport. New York: Springer; 2003. Pp. 343-348.
dc.relationNA Sobolev et al. Ferromagnetic Resonance and Hall Effect Characterization of GaMnSb Layers. Journal of Superconductivity and Novel Magnetism. 2007; 20:399-403.
dc.relationVR Singh et al. Bulk and surface magnetization of Co atoms in rutile Ti1−xCoxO2−δ thin films revealed by x-ray magnetic circular dichroism. Journal of Physics: Condensed Matter. 2011; 23:176001-176005.
dc.relationP Misra. Spintronics. Physics of Condensed Matter. 1ra ed. Londres: Elsevier; 2012, pp. 339-366.
dc.relation[58] L Sheng. Semiconductor Physical Electronics. New York: Springer; 2006.
dc.relationJ Singleton. Band Theory and Electronic Properties of Solids. Londres: Oxford University Press; 2012.
dc.relationPS Dutta, HL Bhat, V Kumar. The physics and technology of gallium antimonide: An emerging optoelectronic material. Applied Physics Review. 1997;81(9):5821-5870.
dc.relationP Klipstein. Physics and technology of antimonide heterostructure devices at scd: Proceedings of spie. The International Society for Optical Engineering. 2015; 9370:937020-1-937020-8.
dc.relationJM Albella, JM Martínez-Duart, JJ Jiménez Lidón. Optoelectrónica y comunicación óptica. Madrid: Consejo Superior de Investigaciones Científicas; 1988.
dc.relationLE Orgel. Introducción a la Química de los Metales de Transición: Teoría de Campo Ligando. Madrid: Editorial Reverté; 2003.
dc.relationH Munekata et al. Diluted magnetic iii-v semiconductors. Physical Review Letters. 1989;63(17):1849-1852.
dc.relationH Ohno. Preparation and properties of iii-v based new diluted magnetic semiconductors. Advances in Colloid and Interface Science. 1997;71-72:61-75.
dc.relation——. Preparation and properties of iii-v based new diluted magnetic semiconductor. Advances in Colloid and Interface Science, 1997.
dc.relationF Matsukura, E Abe, H Ohno. Magnetotransport properties of (GaMn)Sb. Journal of Applied Physics. 2000;87(9):6442-6444.
dc.relationS Yanagi, K Kuga, T Slupinski, H Munekata. Carrier-induced ferromagnetic order in the narrow gap iii–v magnetic alloy semiconductor (In,Mn)Sb. Physica E. 2004;20:333-337.
dc.relationT Adhikari, S Basu. Electrical properties of Gallium Manganese Antimonide: a New Diluted Magnetic Semiconductor. Japan Journal Applied Physics. 1994;33:4581-4582.
dc.relationM-Y Zhu et al. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline film. Acta Physica Sinica. 2015;64(7):077501.
dc.relationA Talantsev, O Koplak, R Morgunov. Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films. Superlattices and Microstructures. 2016;95:14-23.
dc.relationJ Kossut, JA Gaj. Introduction to the Physics of Diluted Magnetic Semiconductors. New York: Springer; 2010.
dc.relationS Basu, T Adhikari. Variation of band gap with Mn concentration in Ga1-xMnx Sb a new iii-v Diluted Magnetic Semiconductor. Solid State Comunications. 1995; 95(1):53-55.
dc.relationPK Sharma, RK Dutta, AC Pan. Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. Journal of Magnetism and Magnetic Materials.2009;321:3457-3461.
dc.relationSK Kamilla, BK Samantaray, S Basu. Effect of Ni concentrations on the microhardness of GaNiSb ternary alloys. Journal of Alloys and Compounds. 2006; 414:235-239.
dc.relationML Ferreira Nascimento. Brief history of X-ray tube patents. World Patent Information. 2014; 37:48-53.
dc.relationH Alloul. Introduction to the Physics of Electrons in Solids. New York: Springer; 2010.
dc.relationAH Compton, SK Allison. X-rays in Theory and Experiment. New York: D. Van Nostrand Company; 1935.
dc.relationY Waseda, E Matsubara, K Shinoda. X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. New York: Springer; 2011.
dc.relationHP Quiroz, JA Calderón, A Dussan. Estructura cristalina del compuesto Cu2 ZnSnSe4 depositado por co-evaporación: análisis comparativo estannitakesterita. Universitas Scientiarum. 2014;19(2):115-121.
dc.relationJA Pinilla Arismendy. Implementación de los métodos rir y Rietveld para análisis cuantitativo de fases cristalinas con y sin presencia de material amorfo por difracción de rayos-X de muestras policristalinas[Tesis de maestría]. Bucaramanga: Universidad Industrial de Santander; 2005.
dc.relationRA Young. Introduction to the Rietveld Method. Oxford: Oxford University Press; 1993.
dc.relationV Pecharsky, P Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials. New York: Springer; 2009.
dc.relationHP Quiroz. Preparación y estudio de las propiedades estructurales, ópticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia; 2014.
dc.relationVJ Esteve Cano. El método de Rietveld. España: Universitat Jaume I; 2006.
dc.relationHP Quiroz, A Dussan. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies. Journal of Applied Physics. 2016; 120:051703.
dc.relationHP Quiroz, A Dussan. Nanocrystalline Cu2 ZnSnSe4 thin films for solar cells application: Microdiffraction and structural characterization. Journal of Applied Physics. 2016; 120:051705.
dc.relationA Dussan, HP Quiroz, NJ Seña Gaibao. Identificación de una Nueva Fase en la Estructura Cristalina del Compuesto Cuaternario Cu2 ZnSnSe4 Durante la Etapa Incorporación del ZnSe. Revista EIA. 2014;11(1): E25-E29.
dc.relationN Seña, A Dussan, F Mesa, E Castaño, R González-Hernández. “Electronic Structure and Magnetism of Mn-Doped GaSb for Spintronic Applications: A dft Study. Journal Applied Physics. 2016; 120:051704.
dc.relationJA Calderón, HP Quiroz, A Dussan. Optical and Structural Properties of GaSbDoped Mn Based Diluted Magnetic Semiconductor Thin Films Grown via dc Magnetron Sputtering. Advanced Materials Letters. 2017;8(5):650-655.
dc.relationKV Shalímova. Física de los Semiconductores. Moscú: Mir; 1975.
dc.relationC Kittel. Introducción a la Física del Estado Sólido. Madrid: Editorial Reverté; 2003.
dc.relationCP Pool Jr., FJ Owens. Introducción a la Nanotecnología. Madrid: Editorial Reverté; 2007.
dc.relationPM Amirthara, DG Seiler. Optical and Physical Properties of Materials. New York: McGraw Hil; 2009.
dc.relationSR Bhattacharyya, RN Gayen, R Paul, AK Pal. Determination of optical constants of thin films from transmittance trace. Thin Solid Films. 2009; 517:5530–5536.
dc.relationR Swanepoel. Determination of the Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientific Instruments. 1983; 16:1214-1222.
dc.relationA Dussan, HP Quiroz. Optical and Morphological Properties of TiO2 Nanotubes for Sensor Applications. Advanced Materials Research. 2015; 1119:121-125.
dc.relationS Blundell. Magnetism in Condensed Matter. Londres: Oxford University Press; 2001.
dc.relationRA Salas Merino. Modelado Avanzado de Núcleos de Ferritas Comerciales en Simuladores de Circuitos [Tesis doctoral]. Madrid: Universidad Carlos iii de Madrid Escuela Politécnica Superior; 2011.
dc.relationPaul Hlawiczka. Introducción a la electrónica cuántica. New York: Editorial Reverté; 1977.
dc.relationN Nagaosa, J Sinova, S Onoda, AH MacDonald, NP Ong. Anomalous Hall Effect. Reviews of Modern Physics. 2010; 82:1540-1589.
dc.relationX Guo. Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science. 2001; 20:168-176.
dc.relationJJ Van Hapert. Hopping Conduction and Chemical Structure. Alemania: Faculteit Natuur- en Sterrenkunde Universiteit Utrecht; 1973.
dc.relationA Dussan, RH Buitrago. Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics. 2005;97(043711):043711-1-043711-5.
dc.relationM Thamilselvan, K Premnazeer, SK Narayandass, Field and temperaturedependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B. 2003; 337:404–412.
dc.relationPP Freitas et al. Spin Valves Sensor. Sensor and Actuartos. 2000; 81:2-8.
dc.relationC Hordequin, JP Nozieres, J Pierre. Half metallic NiMnSb-based spin-valve structures. Journal of Magnetism and Magnetic Materials. 1998; 183:225-231.
dc.relationZ Michael, JT Martin. Spin Electronics: Lecture Notes in Physics. Berlin: Springer; 2001.
dc.relationR Ferreira et al. Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection,” Journal Applied Physics, vol. 99, pp. 08K706:1- 08K706:3, 2006.
dc.relationAN Slavin, V Tiberkevich, ieee Trans. Magnetism. 2009; 45:1875.
dc.relationE Monteblanco, C Ortiz Pauyac, W Savero, JC Rojas Sánchez. Espintrónica: la Electrónica del Espín. Spintronics: Spin Electronics. Revista Tecnifica (Tecnia), 2017:5-16.
dc.relationRB Morgunov, GL L’vova, AD Talantsev, Y Lu, S Mangin. Ferromagnetic resonance of CoFeB/Ta/CoFeB spin valves versus CoFeB film. Thin Solid Films. 2017; 640:8-13.
dc.relationAV Svalovab, VO Vaskovskiy, I Orue, GV Kurlyandska. Tailoring of switching field in GdCo-based spin valves by inserting Co layer. Journal of Magnetism and Magnetic Materials. 2017; 441:795-798.
dc.relationK Tarawneh, N Al-Aqtash, R Sabiria. Large magnetoresistance of MnBi/Bi/MnBi spin valve. Journal of Magnetism and Magnetic Materials. 2014; 363:43-48.
dc.relationME Bernal, A Dussan, F Mesa. Structural, optical and morphological properties of Ga1−xMnx As thin films deposited by magnetron sputtering for spintronic device applications. Physica B: Condensed Matter. 2012;407(16):3210-3213.
dc.relationM Gryglas-Borysiewicz et al. Magnetotransport investigations of (Ga,Mn) As/GaAs Esaki diodes under hydrostatic pressure. Applied Surface Science. 2017; 396:1875-1879.
dc.relationSD Birajdar, RC Alange, SD More, VD Murumkar, KM Jadhav. Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manufacturing. 2018; 20:174-180.
dc.relationSA Ahmed. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics. 2017; 7:604-610.
dc.relationAA Raiss, Y Sbai, L Bahmad, A Benyoussef. Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. Journal of Magnetism and Magnetic Materials. 2015; 385:295-301.
dc.relationSP Nehra, MK Jangid, S Sri. Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films. International Journal of Hydrogen Energy. 2009;34(17):7306-7310.
dc.relationA Dussan, A Bohórquez, HP Quiroz. Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Applied Surface Science. 2017; 424:111-114.
dc.relationL Wang et al. Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials. 2018; 342:579-588.
dc.relationAD Talantsev, OV Koplak, RB Morgunov. Ferromagnetism and microwave magnetoresistance of GaMnSb films. Physics of the Solid State. 2015;57(2):322-330.
dc.relationVA Elyukhin. Self-assembling of 1Sb4Mn magnetic clusters in GaAs:(Mn, Sb). Superlattices and Microstructures. 2014; 70:7-12.
dc.relationU Ilyas et al. Enhanced ferromagnetic response in ZnO:Mn thin films by tailoring composition and defect concentration. Journal of Magnetism and Magnetic Materials. 2013; 344:171-175.
dc.relationC Ding, S Wu, L Wu, Y Xu, L Zhang. The investigation of the defect structures for Co2+ in ZnO microwires, thin films and bulks. Journal of Physics and Chemistry of Solids. 2017; 106:94-98.
dc.relationBK Meyer, H Alves, DM Hofmann, W Kriegseis, et al. Physica Status Solidi B. 2004;241(2): 231-260.
dc.relationO Madelung. Data in Science and Technology: Semiconductors. Berlín: Spring; 1992.
dc.relationHP Quiroz. Preparación y Estudio de las Propiedades Estructurales, Ópticas y Morfológicas de Nanotubos de TiO2 para su Aplicación en Sensores Ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia, 2014.
dc.relationI Tatlıdil, E Bacaksız, C Kurtuluş Buruk, C Breen, M Sökmen. A Short Literature Survey on Iron and Cobalt Ion Doped TiO2 Thin Films and Photocatalytic Activity of these Films Against Fungi. Journal of Alloys and Compounds. 2017; 517:80-86.
dc.relationD Sarkar, CK Ghosh, UN Maiti, KK Chattopadhyay. Effect of Spin Polarization on the Optical Properties of Co-doped TiO2 Thin Films. Physica B. 2011; 406:1429–1435.
dc.relationI Ganesh et al. Preparation and Characterization of Co-doped TiO2 Materials for Solar Light Induced Current and Photocatalytic Applications. Materials Chemistry and Physics. 2012; 135:220-234.
dc.relationY Matsumoto, M Murakami, T Shono, T Hasegawa, T Fukumura, M Kawasaki, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science. 2001; 291:854-856.
dc.relationAJ Bohórquez, HP Quiroz, A Dussan. Growth and Crystallization of Cobaltdoped TiO2 Alloys: Effect of Substrate and Annealing Temperature. Applied Surface Science. 2019; 474:97-101.
dc.relationHP Quiroz. Estudio de las Propiedades Físicas del TiO2:Co como un Semiconductor Magnético Diluido para Aplicaciones en Espintrónica [Tesis de doctorado]. Bogotá D.C.: Universidad Nacional de Colombia, 2019.
dc.relationMV Kamalakar, C Groenveld, A Dankert, SP Dash. Long distance spin communication in chemical Vapor Deposited Graphene. Nature Communications [Internet]. 2015: 1-8. www.nature.com/naturecommunications
dc.relationAF Vincent et al. Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems. ieee Transactions on Biomedical Circuits and Systems. 2015 abr;9(2):166-174.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos Reservados al Autor, 2020
dc.titleNanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
dc.typeLibros


Este ítem pertenece a la siguiente institución