dc.contributor | Carvajal Quintero, Sandra Ximena | |
dc.contributor | Arango Aramburo, Santiago | |
dc.contributor | Environmental Energy and Education Policy E3P | |
dc.creator | Rodriguez Zabala, Alejandra | |
dc.date.accessioned | 2022-07-19T20:12:44Z | |
dc.date.available | 2022-07-19T20:12:44Z | |
dc.date.created | 2022-07-19T20:12:44Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81716 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El acceso a la energía eléctrica mejora las condiciones de vida de las personas, permite la prestación de otros servicios públicos y es estratégico para lograr acciones productivas de la población. En Colombia, la búsqueda de alternativas para mejorar la prestación de servicios a poblaciones vulnerables ubicadas en Zonas No Interconectadas se ha incrementado significativamente. La eficiencia energética y la adopción de fuentes de energía renovables no convencionales se han implementado como posibles impulsores de la electrificación sostenible. En esta tesis se analiza el problema de la electrificación de las zonas aisladas, comenzando por una revisión de las barreras y oportunidades que presenta la electrificación sostenible con base en aspectos técnicos, económicos, ambientales, geográficos, políticos y sociales.
Además, se hace un estudio técnico y económico para la localidad de Mitú, Vaupés, con el fin de encontrar las causas de las fallas en la prestación del servicio, esto se lleva a cabo por medio de simulaciones en los softwares técnicos de Homer Pro y Digsilent PowerFactory. A partir de las condiciones técnicas del sistema, se diseña un modelo en Dinámica de Sistemas, el cual permite analizar el impacto que tiene realizar las actividades de mantenimiento e inversión en las redes de distribución, el comportamiento de la capacidad de alojamiento y la disminución de la demanda insatisfecha en conjunto con variables económicas como el recaudo y el presupuesto disponible para la intervención de redes. En base a los resultados obtenidos en las simulaciones se proponen tres políticas de soluciones a los problemas encontrados en el escenario base. (Texto tomado de la fuente) | |
dc.description.abstract | Access to electricity improves people's living conditions, allows the provision of other public services and is strategic for achieving productive actions by the population. In Colombia, the search for alternatives to improve the provision of services to vulnerable populations located in Non-Interconnected Zones has increased significantly. Energy efficiency and the adoption of non-conventional renewable energy sources have been implemented as possible drivers of sustainable electrification. This thesis analyzes the problem of electrification of nearby areas, beginning with a review of the barriers and opportunities presented by sustainable electrification based on technical, economic, environmental, geographic, political and social aspects.
In addition, a technical and economic study is carried out for the town of Mitú, Vaupés, in order to find the causes of failures in the provision of the service, this is carried out through simulations in the technical software of Homer Pro and Digsilent Power Factory. Based on the technical conditions of the system, a model in System Dynamics is designed, which allows analyzing the impact of carrying out maintenance and investment activities on the distribution networks, the behavior of the accommodation capacity and the decrease in the unsatisfied demand together with economic variables such as collection and the budget available for the intervention of networks. Based on the results obtained in the simulations, three solution policies are proposed for the problems found in the base scenario. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Facultad de Ingeniería y Arquitectura | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | S. Mandelli, J. Barbieri, R. Mereu, and E. Colombo, “Off-grid systems for rural electrification in developing countries : Definitions , classification and a comprehensive literature review,” vol. 58, pp. 1621–1646, 2016, doi: 10.1016/j.rser.2015.12.338. | |
dc.relation | B. Domenech, M. Ranaboldo, L. Ferrer-Martí, R. Pastor, and D. Flynn, “Local and regional microgrid models to optimise the design of isolated electrification projects,” Renew. Energy, vol. 119, pp. 795–808, 2018, doi: 10.1016/j.renene.2017.10.060 | |
dc.relation | L. Lozano and E. B. Taboada, “Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines,” Energy Policy, vol. 145, no. August, p. 111715, 2020, doi: 10.1016/j.enpol.2020.111715. | |
dc.relation | B. K. Sovacool and S. E. Ryan, “The geography of energy and education: Leaders, laggards, and lessons for achieving primary and secondary school electrification,” Renew. Sustain. Energy Rev., vol. 58, pp. 107–123, 2016, doi: 10.1016/j.rser.2015.12.219. | |
dc.relation | N. G. Johnson and K. M. Bryden, “Energy supply and use in a rural West African village,” Energy, vol. 43, no. 1, pp. 283–292, 2012, doi: 10.1016/j.energy.2012.04.028. | |
dc.relation | I. Arto, I. Capellán-pérez, R. Lago, G. Bueno, and R. Bermejo, “The energy requirements of a developed world,” Energy Sustain. Dev., vol. 33, pp. 1–13, 2016, doi: 10.1016/j.esd.2016.04.001. | |
dc.relation | B. P. Bastakoti, “The electricity-livelihood nexus : some highlights from the Andhikhola Hydroelectric and Rural Electrification Centre ( AHREC ),” vol. 10, no. 3, pp. 26–35, 2006, doi: 10.1016/S0973-0826(08)60541-4. | |
dc.relation | A. López-González, B. Domenech, and L. Ferrer-Martí, “The gendered politics of rural electrification: Education, indigenous communities, and impacts for the Venezuelan Guajira,” Energy Res. Soc. Sci., vol. 70, no. April, p. 101776, 2020, doi: 10.1016/j.erss.2020.101776. | |
dc.relation | Organizacion de las Naciones Unidas-ONU, “Agenda 2030: Objetivos de Desarrollo Sostenible,” Objetivos de Desarrollo, 2015. https://onu.org.gt/objetivos-de-desarrollo/. | |
dc.relation | L. Holstenkamp, “What do we know about cooperative sustainable electrification in the global South ? A synthesis of the literature and refined social-ecological systems framework,” Renew. Sustain. Energy Rev., vol. 109, no. April, pp. 307–320, 2019, doi: 10.1016/j.rser.2019.04.047. | |
dc.relation | P. Kemeny, P. G. Munro, N. Schiavone, G. Van Der Horst, and S. Willans, “Community Charging Stations in rural sub-Saharan Africa : Commercial success , positive externalities , and growing supply chains,” Energy Sustain. Dev., vol. 23, pp. 228–236, 2014, doi: 10.1016/j.esd.2014.09.005. | |
dc.relation | A. Chauhan and R. P. Saini, “Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India,” Renew. Sustain. Energy Rev., vol. 59, pp. 388–405, 2016, doi: 10.1016/j.rser.2015.12.290. | |
dc.relation | A. G. Dagnachew, A. F. Hof, M. R. Roelfsema, and D. P. van Vuuren, “Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa,” Energy Policy, vol. 143, no. December 2017, p. 111572, 2020, doi: 10.1016/j.enpol.2020.111572. | |
dc.relation | A. Mohr and Y. Liu, “Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access,” vol. 143, no. July, 2020, doi: 10.1016/j.biombioe.2020.105876. | |
dc.relation | S. Wang, J. Xing, Z. Jiang, and J. Li, “Decentralized economic dispatch of an isolated distributed generator network,” Int. J. Electr. Power Energy Syst., vol. 105, no. June 2018, pp. 297–304, 2019, doi: 10.1016/j.ijepes.2018.08.035. | |
dc.relation | F. Liévano Martínez and J. E. Londoño, “El Pensamiento Sitemico Como Herramienta Metodológica para la Resolución de Problemas,” Soluciones Postgrado EIA, vol. 8, pp. 43–65, 2012. | |
dc.relation | Congreso de Colombia, Ley 143 de 1994. 1996. | |
dc.relation | D. González-Montoya, C. A. Ramos-Paja, B. A. Potosí-Guerrero, E. E. Henao-Bravo, and A. J. Saavedra-Montes, “Análisis de factibilidad técnico-económico de microrredes que integran celdas de combustible en zonas no interconectadas de Colombia,” TecnoLógicas, vol. 21, no. 43, pp. 71–89, 2018, doi: 10.22430/22565337.1057. | |
dc.relation | J. D. Garzón-Hidalgo and A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, pp. 39–53, 2017, doi: 10.22430/22565337.687. | |
dc.relation | IPSE, “Informe telemetría mensual de diciembre 2019,” 2020. | |
dc.relation | DANE, “Necesidades Básicas Insatisfechas (NBI), Censo Nacional de Población y Vivienda (CNPV),” 2018. | |
dc.relation | J. F. Franco García, “Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia,” 2020. | |
dc.relation | S. Grisales, “Análisis de la viabilidad técnico – económica de la inclusión de energía renovable en una de las principales localidades de las ZNI,” pp. 1–126, 2017. | |
dc.relation | A. Arango Manrique, “Evaluación Técnica y de Mercado de la Operación de una Microrred en Modo Aislado dentro de un Sistema Eléctrico de Potencia con Ambiente Desregulado,” 2017. | |
dc.relation | Unidad de Planeación Minero Energética-UPME, Integración de las energías renovables no convencionales en Colombia. 2015. | |
dc.relation | R. Rodríguez, G. Osma, and G. Ordóñez, “Retos de la planificación energética de micro-redes en regiones rurales remotas con cargas dispersas Energy planning challenges of microgrid in remote rural regions with scattered loads,” pp. 1–8, 2017. | |
dc.relation | U. Deichmann, C. Meisner, S. Murray, and D. Wheeler, “The economics of renewable energy expansion in rural Sub-Saharan Africa,” Energy Policy, vol. 39, no. 1, pp. 215–227, 2011, doi: 10.1016/j.enpol.2010.09.034. | |
dc.relation | D. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, May 2018, doi: 10.22430/22565337.774. | |
dc.relation | I. López, A. Arriaga, and M. Pardo, “The social dimension of sustainable development: The everlasting forgotten?,” Rev. Esp. Sociol., vol. 27, no. 1, pp. 25–41, 2018, doi: 10.22325/fes/res.2018.2. | |
dc.relation | I. Gunnarsdottir, B. Davidsdottir, E. Worrell, and S. Sigurgeirsdottir, “Review of indicators for sustainable energy development,” Renew. Sustain. Energy Rev., vol. 133, no. July, p. 110294, 2020, doi: 10.1016/j.rser.2020.110294. | |
dc.relation | B. Guðlaugsson, R. Fazeli, I. Gunnarsdóttir, B. Davidsdottir, and G. Stefansson, “Classification of stakeholders of sustainable energy development in Iceland: Utilizing a power-interest matrix and fuzzy logic theory,” Energy Sustain. Dev., vol. 57, pp. 168–188, 2020, doi: 10.1016/j.esd.2020.06.006. | |
dc.relation | W. G. Santika, T. Urmee, Y. Simsek, P. A. Bahri, and M. Anisuzzaman, “An assessment of energy policy impacts on achieving Sustainable Development Goal 7 in Indonesia,” Energy Sustain. Dev., vol. 59, pp. 33–48, 2020, doi: 10.1016/j.esd.2020.08.011. | |
dc.relation | O. Dada and C. Mbohwa, “Energy from waste : A possible way of meeting goal 7 of the sustainable development goals,” Mater. Today Proc., vol. 5, no. 4, pp. 10577–10584, 2018, doi: 10.1016/j.matpr.2017.12.390. | |
dc.relation | United Nations, “Energía Asequible Y No Contaminante,” United Nations, 2016, [Online]. Available: http://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/7_Spanish_Why_it_Matters.pdf. | |
dc.relation | J. Castor, K. Bacha, and F. F. Nerini, “SDGs in action : A novel framework for assessing energy projects against the sustainable development goals,” Energy Res. Soc. Sci., vol. 68, no. April, p. 101556, 2020, doi: 10.1016/j.erss.2020.101556. | |
dc.relation | E. Adkins, K. Oppelstrup, and V. Modi, “Rural household energy consumption in the millennium villages in Sub-Saharan Africa,” Energy Sustain. Dev., vol. 16, no. 3, pp. 249–259, 2012, doi: 10.1016/j.esd.2012.04.003. | |
dc.relation | D. Bahadur, B. Behera, A. Ali, and P. Marenya, “A ladder within a ladder : Understanding the factors in fl uencing a household ’ s domestic use of electricity in four African countries,” Energy Econ., vol. 66, pp. 167–181, 2017, doi: 10.1016/j.eneco.2017.05.020. | |
dc.relation | R. Matsika, B. F. N. Erasmus, and W. C. Twine, “Double jeopardy : The dichotomy of fuelwood use in rural South Africa,” Energy Policy, vol. 52, pp. 716–725, 2013, doi: 10.1016/j.enpol.2012.10.030. | |
dc.relation | H. Phong, D. Thi, and B. Van, “The energy consumption structure and African EMDEs ’ sustainable development,” Heliyon, vol. 6, no. April, p. e03822, 2020, doi: 10.1016/j.heliyon.2020.e03822. | |
dc.relation | Banco Mundial, “Acceso a la electricidad (% de población),” 2021. https://datos.bancomundial.org/indicator/EG.ELC.ACCS.ZS. | |
dc.relation | Banco Mundial, “Consumo de energía renovable (% del consumo total de energía final),” 2021. https://datos.bancomundial.org/indicator/EG.FEC.RNEW.ZS. | |
dc.relation | Banco Mundial, “Producción de electricidad a partir de fuentes renovables, excluida la hidroeléctrica (% del total),” 2021. https://datos.bancomundial.org/indicator/EG.ELC.RNWX.ZS. | |
dc.relation | United Nations, “PROGRESS TOWARDS GOAL 7,” 2020. https://un-energy.org/newsdg7/. | |
dc.relation | G. Halkos and E. C. Gkampoura, “Where do we stand on the 17 Sustainable Development Goals? An overview on progress,” Econ. Anal. Policy, vol. 70, pp. 94–122, 2021, doi: 10.1016/j.eap.2021.02.001. | |
dc.relation | International Energy Agency, “Covid-19 impact on electricity,” 2020, [Online]. Available: https://www.iea.org/reports/covid-19-impact-on-electricity. | |
dc.relation | COCIER, “COVID-19: Recuerdos y lecciones aprendidas por el sector eléctrico español un año después,” 2021. http://www.cocier.org/index.php/en/noticias-de-cocier/2397-covid-19-recuerdos-y-lecciones-aprendidas-por-el-sector-electrico-espanol-un-ano-despues. | |
dc.relation | COCIER, “El aire más limpio por el COVID-19 aumentó la energía solar,” 2020, [Online]. Available: https://www.cocier.org/index.php/es/noticias-de-cocier/covid-19/2134-el-aire-mas-limpio-por-el-covid-19-aumento-la-energia-solar. | |
dc.relation | International Energy Agency, “the covid-19 crisis is reversing progress in access to energy in africa,” 2020. https://www.iea.org/articles/the-covid-19-crisis-is-reversing-progress-on-energy-access-in-africa. | |
dc.relation | International Energy Agency, “Africa and Covid-19: Economic recovery and electricity access go hand in hand,” 2020. https://www.iea.org/commentaries/africa-and-covid-19-economic-recovery-and-electricity-access-go-hand-in-hand. | |
dc.relation | D. Asante, Z. He, N. O. Adjei, and B. Asante, “Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method,” Energy Policy, vol. 142, no. 2006, p. 111479, 2020, doi: 10.1016/j.enpol.2020.111479. | |
dc.relation | Y. A. Solangi, C. Longsheng, S. Ahsan, and A. Shah, “Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan : An integrated AHP and fuzzy TOPSIS approach,” Renew. Energy, vol. 173, pp. 209–222, 2021, doi: 10.1016/j.renene.2021.03.141. | |
dc.relation | P. Durance and M. Godet, “Scenario building: Uses and abuses,” Technol. Forecast. Soc. Change, vol. 77, no. 9, pp. 1488–1492, 2010, doi: 10.1016/j.techfore.2010.06.007. | |
dc.relation | J. Vergara Schmalbach, T. Fontalvo Herrera, and F. Maza Avila, “La planeación por escenarios: Revisión de conceptos y propuestas metodológicas,” Prospectiva, vol. 8, no. 2, pp. 21–29, 2010. | |
dc.relation | R. Bradfield, G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden, “The origins and evolution of scenario techniques in long range business planning,” Futures, vol. 37, no. 8, pp. 795–812, 2005, doi: 10.1016/j.futures.2005.01.003. | |
dc.relation | M. Godet, “The Art of Scenarios and Strategic Planning: Tools and Pitfalls,” Technol. Forecast. Soc. Change, vol. 65, no. 1, pp. 3–22, 2000, doi: 10.1016/s0040-1625(99)00120-1. | |
dc.relation | D. Carrizo and C. Moller, “Methodological structures of systematic literature review in software engineering: a systematic mapping study,” Scielo, 2018, [Online]. Available: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-33052018000500045#:~:text=Las revisiones sistemáticas de literatura (RSL) también referidas como revisiones,medicina y la sociología 10. | |
dc.relation | Y. Parag and M. Ainspan, “Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment,” Energy Sustain. Dev., vol. 52, pp. 72–81, 2019, doi: 10.1016/j.esd.2019.07.003. | |
dc.relation | J. M. Ngowi, L. Bångens, and E. O. Ahlgren, “Energy for Sustainable Development Bene fi ts and challenges to productive use of off-grid rural electri fi cation : The case of mini-hydropower in Bulongwa-Tanzania,” Energy Sustain. Dev., vol. 53, pp. 97–103, 2019, doi: 10.1016/j.esd.2019.10.001. | |
dc.relation | L. Matraeva, P. Solodukha, S. Erokhin, and M. Babenko, “Improvement of Russian energy efficiency strategy within the framework of ‘green economy’ concept (based on the analysis of experience of foreign countries),” Energy Policy, vol. 125, no. November 2018, pp. 478–486, 2019, doi: 10.1016/j.enpol.2018.10.049. | |
dc.relation | B. Blankenship, R. Kennedy, A. Mahajan, J. Chun, Y. Wong, and J. Urpelainen, “Increasing rural electrification through connection campaigns ✩,” Energy Policy, vol. 139, no. July 2019, p. 111291, 2020, doi: 10.1016/j.enpol.2020.111291. | |
dc.relation | G. R. Timilsina, G. Hochman, and I. Fedets, “Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms,” Energy, vol. 106, pp. 203–211, 2016, doi: 10.1016/j.energy.2016.03.009. | |
dc.relation | O. Bamisile et al., “An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030,” Energy, vol. 197, p. 117172, 2020, doi: 10.1016/j.energy.2020.117172. | |
dc.relation | C. L. Trujillo et al., “Microrredes eléctricas,” Microrredes Eléctricas, vol. Primera Ed, p. 11, 2015. | |
dc.relation | Unidad de Planeación Minero Energética-UPME, “Plan Energetico Nacional 2020-2050,” p. 83, 2019, [Online]. Available: https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx. | |
dc.relation | L. He, S. Zhang, Y. Chen, L. Ren, and J. Li, “Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China,” Renew. Sustain. Energy Rev., vol. 93, no. May, pp. 631–641, 2018, doi: 10.1016/j.rser.2018.05.053. | |
dc.relation | M. Stadler et al., “Value streams in microgrids: A literature review,” Appl. Energy, vol. 162, pp. 980–989, 2016, doi: 10.1016/j.apenergy.2015.10.081. | |
dc.relation | J. Najafi, A. Peiravi, A. Anvari-Moghaddam, and J. M. Guerrero, “An efficient interactive framework for improving resilience of power-water distribution systems with multiple privately-owned microgrids,” Int. J. Electr. Power Energy Syst., vol. 116, no. May 2018, 2020, doi: 10.1016/j.ijepes.2019.105550. | |
dc.relation | T. M. Vega, “Infraestructura de medicion avanzada para microrredes electricas,” p. 104, 2018, [Online]. Available: https://www.semanticscholar.org/paper/Infraestructura-de-Medición-Avanzada-para-Vega/0fa3314d73abbcf587db8c210400eae447c1bbf0#paper-header. | |
dc.relation | D. B. Rahut, B. Behera, A. Ali, and P. Marenya, “A ladder within a ladder: Understanding the factors influencing a household’s domestic use of electricity in four African countries,” Energy Econ., vol. 66, pp. 167–181, 2017, doi: 10.1016/j.eneco.2017.05.020. | |
dc.relation | A. O. Adelaja, “Barriers to national renewable energy policy adoption: Insights from a case study of Nigeria,” Energy Strateg. Rev., vol. 30, p. 100519, 2020, doi: 10.1016/j.esr.2020.100519. | |
dc.relation | A. Chauhan and R. P. Saini, “Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations,” Renew. Sustain. Energy Rev., vol. 51, pp. 662–681, 2015, doi: 10.1016/j.rser.2015.06.043. | |
dc.relation | A. Rout, B. Mainali, S. Singh, C. Singh, and G. S. Bhati, “Assessing the financial sustainability of rural grid electrification pathway : A case study of India,” Sustain. Prod. Consum., vol. 25, pp. 27–42, 2021, doi: 10.1016/j.spc.2020.08.001. | |
dc.relation | F. Almeshqab and T. S. Ustun, “Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects,” Renew. Sustain. Energy Rev., vol. 102, no. December 2017, pp. 35–53, 2019, doi: 10.1016/j.rser.2018.11.035. | |
dc.relation | M. Derks and H. Romijn, “Sustainable performance challenges of rural microgrids: Analysis of incentives and policy framework in Indonesia,” Energy Sustain. Dev., vol. 53, pp. 57–70, 2019, doi: 10.1016/j.esd.2019.08.003. | |
dc.relation | A. López-González, B. Domenech, and L. Ferrer-Martí, “Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela,” Renew. Sustain. Energy Rev., vol. 95, no. October 2017, pp. 95–109, 2018, doi: 10.1016/j.rser.2018.07.024. | |
dc.relation | E. Tsiaras, D. N. Papadopoulos, C. N. Antonopoulos, V. G. Papadakis, and F. A. Coutelieris, “Planning and assessment of an off-grid power supply system for small settlements,” Renew. Energy, vol. 149, pp. 1271–1281, 2020, doi: 10.1016/j.renene.2019.10.118. | |
dc.relation | M. I. Imam, T. Jamasb, and M. Llorca, “Sector reforms and institutional corruption: Evidence from electricity industry in Sub-Saharan Africa,” Energy Policy, vol. 129, no. February, pp. 532–545, 2019, doi: 10.1016/j.enpol.2019.02.043. | |
dc.relation | H. Ahlborg and L. Hammar, “Drivers and barriers to rural electrification in tanzania and mozambique - grid-extension, off-grid, and renewable energy technologies,” Renew. Energy, vol. 61, pp. 117–124, 2014, doi: 10.1016/j.renene.2012.09.057. | |
dc.relation | C. M. Boliko and D. S. Ialnazov, “An assessment of rural electri fi cation projects in Kenya using a sustainability framework,” Energy Policy, vol. 133, no. August 2018, p. 110928, 2019, doi: 10.1016/j.enpol.2019.110928. | |
dc.relation | B. K. Sovacool, S. Clarke, K. Johnson, M. Crafton, J. Eidsness, and D. Zoppo, “The energy-enterprise-gender nexus: Lessons from the Multifunctional Platform (MFP) in Mali,” Renew. Energy, vol. 50, pp. 115–125, 2013, doi: 10.1016/j.renene.2012.06.024. | |
dc.relation | N. N. Opiyo, “How basic access to electricity stimulates temporally increasing load demands by households in rural developing communities,” Energy Sustain. Dev., vol. 59, pp. 97–106, 2020, doi: 10.1016/j.esd.2020.09.006. | |
dc.relation | M. Shahbaz, A. R. Chaudhary, and I. Ozturk, “Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model,” Energy, vol. 122, pp. 83–93, 2017, doi: 10.1016/j.energy.2017.01.080. | |
dc.relation | Z. Wang, Q. Sun, B. Wang, and B. Zhang, “Purchasing intentions of Chinese consumers on energy-efficient appliances: Is the energy efficiency label effective?,” J. Clean. Prod., vol. 238, p. 117896, 2019, doi: 10.1016/j.jclepro.2019.117896. | |
dc.relation | T. Zohar, Y. Parag, and O. Ayalon, “Strategizing demand management from the middle out: Harnessing middle actors to reduce peak electricity consumption,” Energy Res. Soc. Sci., vol. 61, no. September 2019, p. 101360, 2020, doi: 10.1016/j.erss.2019.101360. | |
dc.relation | Y. Lv, W. Chen, and J. Cheng, “Effects of urbanization on energy efficiency in China : New evidence from short run and long run efficiency models ☆,” Energy Policy, vol. 147, no. August, p. 111858, 2020, doi: 10.1016/j.enpol.2020.111858. | |
dc.relation | J. P. Viteri, F. Henao, J. Cherni, and I. Dyner, “Optimizing the insertion of renewable energy in the off-grid regions of Colombia,” J. Clean. Prod., vol. 235, pp. 535–548, 2019, doi: 10.1016/j.jclepro.2019.06.327. | |
dc.relation | R. Bahmani, H. Karimi, and S. Jadid, “Stochastic electricity market model in networked microgrids considering demand response programs and renewable energy sources,” Electr. Power Energy Syst., vol. 117, no. May 2019, p. 105606, 2020, doi: 10.1016/j.ijepes.2019.105606. | |
dc.relation | D. E. Bedoya Bedoya, “Estudio del control de tensión en sistemas de distribución en Colombia con presencia de generación solar fotovoltaica,” 2019. | |
dc.relation | E. Mulenga, M. H. J. Bollen, and N. Etherden, “Distribution networks measured background voltage variations, probability distributions characterization and Solar PV hosting capacity estimations,” Electr. Power Syst. Res., vol. 192, no. October 2020, p. 106979, 2021, doi: 10.1016/j.epsr.2020.106979. | |
dc.relation | F. P. Sioshansi, “Smart Grid-Integrating Renewable, Distributed, & Efficient Energy,” 2012. | |
dc.relation | J. C. Piai Paiva, G. D. M. Jannuzzi, and C. A. de Melo, “Mapping electricity affordability in Brazil,” Util. Policy, vol. 59, no. May, p. 100926, 2019, doi: 10.1016/j.jup.2019.100926. | |
dc.relation | S. Fankhauser and S. Tepic, “Can poor consumers pay for energy and water ? An affordability analysis for transition countries,” vol. 35, pp. 1038–1049, 2007, doi: 10.1016/j.enpol.2006.02.003. | |
dc.relation | M. Soshinskaya, W. H. J. Crijns-Graus, J. M. Guerrero, and J. C. Vasquez, “Microgrids: Experiences, barriers and success factors,” Renew. Sustain. Energy Rev., vol. 40, pp. 659–672, 2014, doi: 10.1016/j.rser.2014.07.198. | |
dc.relation | K. Sato and Y. Utsugi, “Study on the operation optimization of an isolated island microgrid with renewable energy layout planning,” Energy, vol. 161, pp. 1211–1225, 2018, doi: 10.1016/j.energy.2018.07.109. | |
dc.relation | Organización Mundial de la Salud, “La OMS concluye que el humo del diésel causa cáncer de pulmón,” 2012. | |
dc.relation | B. R. ESPARZA NARVAEZ, “Identificación De Las Consecuencias De Las Emisiones Nox De Los Motores Diésel En El Ambiente Y Las Personas.,” 2019. | |
dc.relation | A. Mazzone, “Decentralised energy systems and sustainable livelihoods , what are the links ? Evidence from two isolated villages of the Brazilian Amazon,” Energy Build., vol. 186, pp. 138–146, 2019, doi: 10.1016/j.enbuild.2019.01.027. | |
dc.relation | A. López-gonzález, L. Ferrer-martí, and B. Domenech, “Sustainable rural electri fi cation planning in developing countries : A proposal for electri fi cation of isolated communities of Venezuela,” vol. 129, no. February, pp. 327–338, 2019, doi: 10.1016/j.enpol.2019.02.041. | |
dc.relation | L. Karpinska and S. Śmiech, “Breaking the cycle of energy poverty. Will Poland make it?,” Energy Econ., vol. 94, p. 105063, 2021, doi: 10.1016/j.eneco.2020.105063. | |
dc.relation | International Energy Agency, “Defining energy access: 2020 methodology,” 2020, [Online]. Available: https://www.iea.org/articles/defining-energy-access-2020-methodology. | |
dc.relation | Ministerio de minas y energía, Integración de las Energías Renovables No Convencionales en Colombia. 2015. | |
dc.relation | S. Henni, P. Staudt, B. Kandiah, and C. Weinhardt, “Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment,” Appl. Energy, vol. 288, no. January, p. 116597, 2021, doi: 10.1016/j.apenergy.2021.116597. | |
dc.relation | M. T. Koecklin, G. Longoria, D. Z. Fitiwi, J. F. DeCarolis, and J. Curtis, “Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland,” Energy Policy, vol. 151, no. November 2020, p. 112185, 2021, doi: 10.1016/j.enpol.2021.112185. | |
dc.relation | D. Olave-Rojas and E. Alvarez-Miranda, “Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach,” Energy, p. 120530, 2021, doi: 10.1016/j.energy.2021.120530. | |
dc.relation | U. Bariss, G. Bazbauers, A. Blumberga, and D. Blumberga, “System Dynamics Modeling of Households ’ Electricity Consumption and Cost-Income Ratio : a Case Study of Latvia,” vol. 20, pp. 36–50, 2017, doi: 10.1515/rtuect-2017-0009. | |
dc.relation | P. Benenson and C. Systematic, “Household Appliance Replacement Program - Impact and Tradeoffs.” | |
dc.relation | E. Mulenga, M. H. J. Bollen, and N. Etherden, “Distribution networks measured background voltage variations, probability distributions characterization and Solar PV hosting capacity estimations,” Electr. Power Syst. Res., vol. 192, no. October 2020, p. 106979, 2021, doi: 10.1016/j.epsr.2020.106979. | |
dc.relation | E. Rodriguez-Ubinas et al., “Passive design strategies and performance of Net Energy Plus Houses,” Energy Build., vol. 83, pp. 10–22, Nov. 2014, doi: 10.1016/j.enbuild.2014.03.074. | |
dc.relation | A. A. Muresan and S. Attia, “Energy efficiency in the Romanian residential building stock: A literature review,” Renew. Sustain. Energy Rev., vol. 74, no. December 2016, pp. 349–363, 2017, doi: 10.1016/j.rser.2017.02.022. | |
dc.relation | S. Attia, “Roadmap for NZEB Implementation,” Net Zero Energy Build., pp. 343–369, 2018, doi: 10.1016/b978-0-12-812461-1.00012-5. | |
dc.relation | Icontec Internacional, “NTC ISO 50001.” 2011. | |
dc.relation | K. Heine, A. Thatte, and P. C. Tabares-Velasco, “A simulation approach to sizing batteries for integration with net-zero energy residential buildings,” Renew. Energy, vol. 139, pp. 176–185, Aug. 2019, doi: 10.1016/j.renene.2019.02.033. | |
dc.relation | International Energy Agency, “Clean Energy Transitions in Emerging Economies,” 2021. https://www.iea.org/programmes/clean-energy-transitions-in-emerging-economies. | |
dc.relation | T. Beaufils and P. O. Pineau, “Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures,” Util. Policy, vol. 61, no. August 2018, 2019, doi: 10.1016/j.jup.2019.100959. | |
dc.relation | International Energy Agency, “Renewables 2020, Analysis and forecast to 2025,” Plast. Eng., vol. 74, no. 9, pp. 56–57, 2020, doi: 10.1002/peng.20026. | |
dc.relation | COCIER, “Con alianza entre privados y Gobierno, el sector eléctrico colombiano sería carbono neutral en 2050,” 2021. https://www.cocier.org/index.php/es/noticias-de-cocier/2398-con-alianza-entre-privados-y-gobierno-el-sector-electrico-colombiano-seria-carbono-neutral-en-2050. | |
dc.relation | M. E. Menconi, S. dell’Anna, A. Scarlato, and D. Grohmann, “Energy sovereignty in Italian inner areas: Off-grid renewable solutions for isolated systems and rural buildings,” Renew. Energy, vol. 93, pp. 14–26, 2016, doi: 10.1016/j.renene.2016.02.034. | |
dc.relation | R. Fachrizal, U. H. Ramadhani, J. Munkhammar, and J. Widén, “Combined PV-EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment,” Sustain. Energy, Grids Networks, vol. 26, p. 100445, 2021, doi: 10.1016/j.segan.2021.100445. | |
dc.relation | X. Luo, Y. Liu, J. Liu, and X. Liu, “Optimal design and cost allocation of a distributed energy resource (DER) system with district energy networks: A case study of an isolated island in the South China Sea,” Sustain. Cities Soc., vol. 51, no. July, p. 101726, 2019, doi: 10.1016/j.scs.2019.101726. | |
dc.relation | International Energy Agency, “Digitalisation and Energy,” 2017, [Online]. Available: https://www.iea.org/reports/digitalisation-and-energy#a-new-era-in-energy. | |
dc.relation | T. L. Duong, P. T. Nguyen, N. D. Vo, and M. P. Le, “A newly effective method to maximize power loss reduction in distribution networks with highly penetrated distributed generations,” Ain Shams Eng. J., no. xxxx, 2020, doi: 10.1016/j.asej.2020.11.003. | |
dc.relation | K. Primc and R. Slabe-erker, “Energy for Sustainable Development Social policy or energy policy ? Time to reconsider energy poverty policies,” Energy Sustain. Dev., vol. 55, pp. 32–36, 2020, doi: 10.1016/j.esd.2020.01.001. | |
dc.relation | S. Nižetić, N. Djilali, A. Papadopoulos, and J. J. P. C. Rodrigues, “Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management,” J. Clean. Prod., vol. 231, pp. 565–591, 2019, doi: 10.1016/j.jclepro.2019.04.397. | |
dc.relation | S. Yang and S. Park, “The effects of renewable energy financial incentive policy and democratic governance on renewable energy aid effectiveness,” Energy Policy, vol. 145, no. May, p. | |
dc.relation | L. C. M. Blasques and J. T. Pinho, “Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration,” Energy Policy, vol. 45, pp. 721–729, Jun. 2012, doi: 10.1016/j.enpol.2012.03.028. | |
dc.relation | T. Levin and V. M. Thomas, “Can developing countries leapfrog the centralized electrification paradigm?,” Energy Sustain. Dev., vol. 31, pp. 97–107, 2016, doi: 10.1016/j.esd.2015.12.005. | |
dc.relation | M. Banaei and B. Rezaee, “Fuzzy scheduling of a non-isolated micro-grid with renewable resources,” Renew. Energy, vol. 123, pp. 67–78, 2018, doi: 10.1016/j.renene.2018.01.088. | |
dc.relation | El Congreso de Colombia, Ley 633 Del 2000. 2000. | |
dc.relation | El Congreso de Colombia, “Ley 1995,” 2019. | |
dc.relation | Congreso de Colombia, “Ley 697 de 2001,” D. Of., vol. 44573, no. Octubre 3, pp. 1–4, 2001, [Online]. Available: https://www.habitatbogota.gov.co/transparencia/normatividad/normatividad/ley-697-2001. | |
dc.relation | J. D. Marín-Jiménez, S. X. Carvajal-Quintero, and J. M. Guerrero, “Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógias, vol. 21, no. 42, pp. 169–185, 2018. | |
dc.relation | Ministerio de Minas y Energía (MINMINAS), “Resolución del 182138,” 2007. | |
dc.relation | El Congreso de Colombia, “Ley 1715,” 2014, doi: 10.1038/132817a0. | |
dc.relation | Ministerio de Minas y Energía, “Resolución CREG 038.” p. 20, 2018, [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/71e64d5b21da40e8052582830078b66e/$FILE/Creg038-2018.pdf. | |
dc.relation | S. Arango-Aramburo et al., “Simulating mining policies in developing countries: The case of Colombia,” Socioecon. Plann. Sci., vol. 60, pp. 99–113, 2017, doi: 10.1016/j.seps.2017.04.002. | |
dc.relation | J. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renew. Energy, vol. 139, pp. 1111–1119, 2019, doi: 10.1016/j.renene.2019.02.138. | |
dc.relation | S. X. Carvajal, J. Serrano, and S. Arango, “Colombian ancillary services and international connections: Current weaknesses and policy challenges,” Energy Policy, vol. 52, pp. 770–778, 2013, doi: 10.1016/j.enpol.2012.10.041. | |
dc.relation | F. M. González-Longatt, “Análisis de Sistemas de Potencia empleando DIgSILENT PowerFactory: Análisis en Estado Estacionario,” Semin. DIgSILENT PowerFactory Anal. en Estado Estac., 2013. | |
dc.relation | G. Piraquive, M. Matamoros, E. Cespedes, and J. Rodríguez Chacón, “Actualización de la tasa de rendimiento del capital en Colombia bajo la metodología de Harberger,” Arch. Econ., vol. 487, p. 44, 2018, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Estudios Econmicos/487.pdf. | |
dc.relation | Banco de la Republica-Colombia, “Inflación total y meta,” 2021. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta. | |
dc.relation | Industrial Motor Power Corporation, “2017 CUMMINS KTA50G3,” 2021. https://www.used-power-generators.com/inventory/?/listings/construction-equipment/for-sale/52686425/2017-cummins kta50g3?dlr=1&sfc=0&ssc=0&ftr=1&crmid=9933667&sbc=0&snai=0&fdc=COP. | |
dc.relation | USAENE LLC, “Determinación de Inversiones y Gastos de Administración, Operación y Mantenimiento para la actividad de Generación en Zonas No Interconectadas con Plantas Térmicas,” 2013. . | |
dc.relation | DEPCO POWER SYSTEMS, “Good Used Cummins QST30-G1 750KW Diesel Generator Set,” 2021. https://www.depco.com/generator-sets/cummins-qst30-g1-750kw-stand-by-generator-set-item-14300/. | |
dc.relation | Industrial Motor Power Corporation, “CUMMINS QST30G4 GENERATOR SET,” 2021. https://www.impcorporation.com/es-es/inventory/details/14822/cummins-qst30g4-generator-set. | |
dc.relation | L. Generator Power (Shanghai) Co., “1125kVA/900kw Open Type Electric Industrial Use Diesel Generators,” 2021. . | |
dc.relation | Comision de Regulación de Energía y Gas - CREG, “CREG 091 de 2007 - Formula tarifaria y costo unitario de prestación del servicio en ZNI.” p. 38, 2007, [Online]. Available: http://www.upme.gov.co/zni/portals/0/resoluciones/ResCreg0912007.pdf. | |
dc.relation | Comision de Regulación de Energía y Gas - CREG, “Determinación de inversiones y gastos de administración, operación y mantenimiento para la actividad de generación en zonas no interconectadas con plantas térmicas,” 2013. | |
dc.relation | Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe de telemetría-agosto de 2019.” 2019. | |
dc.relation | Superintendencia delegada para Energía y Gas, “Informe ejecutivo de gestión departamento del Vaupés gobernación del Vaupés,” pp. 1–5, 2011, [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/Energia y gas combustible/Energía/2018/Sep/2012ieg-departamentodelvaupes.pdf. | |
dc.relation | Comision de Regulación de Energía y Gas - CREG, “Consultoría para la determinación de las pérdidas de energía en los mercados de comercialización presentes en el sin y definición de criterios para la evaluación de planes de reducción y/o mantenimiento de pérdidas de energía,” no. 72, 2008. | |
dc.relation | M. K. Kiptoo, M. E. Lotfy, O. B. Adewuyi, A. Conteh, A. M. Howlader, and T. Senjyu, “Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies,” Energy Convers. Manag., vol. 215, no. May, p. 112917, 2020, doi: 10.1016/j.enconman.2020.112917. | |
dc.relation | C. M. Schmidt and G. Bensch, “Impact evaluation of productive use — An implementation guideline for electrification projects,” vol. 40, pp. 186–195, 2012, doi: 10.1016/j.enpol.2011.09.034. | |
dc.relation | F. Riva, “Energy for Sustainable Development When complexity turns into local prosperity : A system dynamics approach to meeting the challenges of the rural electricity-development nexus,” Energy Sustain. Dev., vol. 59, pp. 226–242, 2020, doi: 10.1016/j.esd.2020.10.009. | |
dc.relation | C. Kirubi, A. Jacobson, D. M. Kammen, and A. Mills, “Community-Based Electric Micro-Grids Can Contribute to Rural Development : Evidence from Kenya,” World Dev., vol. 37, no. 7, pp. 1208–1221, 2009, doi: 10.1016/j.worlddev.2008.11.005. | |
dc.relation | F. Riva, H. Ahlborg, E. Hartvigsson, S. Pachauri, and E. Colombo, “Energy for Sustainable Development Electricity access and rural development : Review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling,” Energy Sustain. Dev., vol. 43, pp. 203–223, 2018, doi: 10.1016/j.esd.2018.02.003. | |
dc.relation | A. K. Jain et al., “Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study,” Appl. Energy, vol. 280, no. September, 2020, doi: 10.1016/j.apenergy.2020.115633. | |
dc.relation | S. M. Ismael, S. H. E. Abdel Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renew. Energy, vol. 130, pp. 1002–1020, 2019, doi: 10.1016/j.renene.2018.07.008. | |
dc.relation | S. Abdullah and A. Markandya, “Rural electrification programmes in Kenya : Policy conclusions from a valuation study,” Energy Sustain. Dev., vol. 16, no. 1, pp. 103–110, 2012, doi: 10.1016/j.esd.2011.10.007. | |
dc.relation | North American Electric Reliability Corporation, “Accommodating High Levels of Variable Generation,” North Am. Electr. Reliab. Corp., no. April, p. 104, 2009. | |
dc.relation | H. Louie, Off-Grid Electrcal Systems in Developing Countries. 2018. | |
dc.relation | S. Heslop, I. Macgill, J. Fletcher, and S. Lewis, “Method for determining a PV generation limit on low voltage feeders for evenly distributed PV and Load,” Energy Procedia, vol. 57, pp. 207–216, 2014, doi: 10.1016/j.egypro.2014.10.025. | |
dc.relation | Icontec Internacional, “NTC-ISO 55001,” 2014. | |
dc.relation | S. E. Ahmadi, N. Rezaei, and H. Khayyam, “Energy management system of networked microgrids through optimal reliability-oriented day-ahead self-healing scheduling,” Sustain. Energy, Grids Networks, vol. 23, p. 100387, 2020, doi: 10.1016/j.segan.2020.100387. | |
dc.relation | C. Liao and D. Fei, “Poverty reduction through photovoltaic-based development intervention in China : Potentials and constraints,” World Dev., vol. 122, pp. 1–10, 2019, doi: 10.1016/j.worlddev.2019.04.017. | |
dc.relation | X. Luo, J. Liu, Y. Liu, and X. Liu, “Bi-level optimization of design, operation, and subsidies for standalone solar/diesel multi-generation energy systems,” Sustain. Cities Soc., vol. 48, no. May, p. 101592, 2019, doi: 10.1016/j.scs.2019.101592. | |
dc.relation | J. C. Oviedo-Cepeda, I. Serna-Suárez, G. Osma-Pinto, C. Duarte, J. Solano, and H. A. Gabbar, “Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning,” Energy, vol. 211, 2020, doi: 10.1016/j.energy.2020.119028. | |
dc.relation | V. António, F. José, and M. Santos, “Energy management system ISO 50001 : 2011 and energy management for sustainable development,” Energy Policy, vol. 133, no. July, p. 110868, 2019, doi: 10.1016/j.enpol.2019.07.004. | |
dc.relation | Y. Barlas, “Formal aspects of model validity and validation in system dynamics,” Syst. Dyn. Rev., pp. 183–210, 1996. | |
dc.relation | J. Sterman, “Business Dynamics, System Thinking and Modeling for a Complex World,” 2000. | |
dc.relation | Banco Interamericano de Desarrollo and Departamento Nacional de Planeación, “Política Pública para Remover Obstáculos a Soluciones de Energía Renovable en ZNI,” 2017. | |
dc.relation | J. Franklin et al., “Sobre el uso adecuado del coeficiente de correlación de Pearson: definición, propiedades y suposiciones,” Arch. Venez. Farmacol. y Ter., vol. 37, no. 5, pp. 587–595, 2018. | |
dc.relation | S. Arango, J. J. Prado, and I. Dyner, “Evaluación de políticas públicas para la reducción de la criminalidad en Medellín : una aproximación con dinámica de sistemas,” Ensayos sobre Política Económica, no. 60, pp. 80–109, 2009, doi: 10.32468/espe.6003. | |
dc.relation | H. Theil, “Applied economic forecasting,” vol. 4, 1966. | |
dc.relation | S. M. Hurtado and J. G. Aguado, “Predicción de demanda de energía en Colombia mediante un sistema de inferencia difuso neuronal,” pp. 15–24, 2005. | |
dc.relation | Alcaldia de Mitú, “Información del Municipio,” 2021. https://www.mitu-vaupes.gov.co/MiMunicipio/Paginas/Informacion-del-Municipio.aspx. | |
dc.relation | I. de P. y P. de S. E. para las zonas o I. IPSE, “Informe telemetría mensual de enero 2021,” 2021, [Online]. Available: http://190.216.196.84/cnm/info_mes.php. | |
dc.relation | GENSA, “Caracterización de la demanda eléctrica en el municipio de Mitú–Vaupés zona no interconectada,” 2016. | |
dc.relation | S. Martinez, “REDISEÑO DE LA RED DE DISTRIBUCIÓN DEL MUNICIPIO DE MITÚ – VAUPÉS – ZONA NO INTERCONECTADA,” 2017. | |
dc.relation | Grupo EPM, “Gestión de pérdidas,” 2017. https://2017.sostenibilidadgrupoepm.com.co/gestion-social-y-ambiental/nuestra-gestion/temas-materiales/calidad-y-seguridad-de-los-productos-y-servicios/gestion-de-perdidas/. | |
dc.relation | UPME, “Determinación del Consumo Basico de Subsistencia en los Sectores Residencial, Comercial y Hotelero en el Departamento Archipielado de San Andrés, Providencia y Santa Catalina,” pp. 1–34, 2010. | |
dc.relation | Superservicios, Diagnóstico Anual de la Prestación del Servicio de Energía Eléctrica en las Zonas no Interconectadas, no. September. 2017. | |
dc.relation | Sistema Unico de Información de Servicios Públicos Domiciliarios, “Consolidado de información comercial ZNI,” 2017. http://www.sui.gov.co/web/energia/reportes/comerciales/consolidado-de-informacion-comercial-zni. | |
dc.relation | S. Martinez, “Rediseño de la red de distribución del municipio de Mitú – Vaupés – zona no interconectada,” 2017. | |
dc.relation | Gobernación Departamental del Vaupés, “Decreto Número 000332 de 2020,” 2019. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Incentivos para la promoción de la electrificación sostenible en la zona no interconectada de Colombia | |
dc.type | Trabajo de grado - Maestría | |