dc.contributorOrdóñez Loza, Javier Alonso
dc.contributorChejne Janna, Farid
dc.contributorTermodinámica Aplicada Y Energías Alternativas (TAYEA)
dc.creatorOrrego Restrepo, Estefanía
dc.date.accessioned2021-07-08T16:53:34Z
dc.date.accessioned2022-09-21T18:05:51Z
dc.date.available2021-07-08T16:53:34Z
dc.date.available2022-09-21T18:05:51Z
dc.date.created2021-07-08T16:53:34Z
dc.date.issued2021-07-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79780
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3405847
dc.description.abstractEsta investigación muestra una nueva metodología para evaluar la pirólisis lenta de la biomasa lignocelulósica usando a la celulosa como compuesto modelo. Para esto, se caracterizó la pirólisis de celulosa a través del método de Friedman [1], [2], y los modelos cinéticos de Broido-Shafizadeh [3], Diebold [4] y Ranzi et al. [5]. A partir del modelo de Ranzi et al. [5] se propuso un nuevo modelo cinético para la pirólisis de celulosa considerando los grupos funcionales representativos de los compuestos volátiles producidos durante la reacción. Los valores calculados para la energía de activación por este modelo cinético guardan estrecha relación con los valores calculados por el modelo de Ranzi et al. (Tomado de la fuente)
dc.description.abstractThis research shows a new methodology to evaluate the slow pyrolysis of lignocellulosic biomass using cellulose as a model compound. For this purpose, cellulose pyrolysis was characterized through the Friedman method [1], [2], and the Broido-Shafizadeh [3], Diebold [4] and Ranzi et al. [5]. Based on the model of Ranzi et al. [5] a new kinetic model for cellulose pyrolysis was proposed considering the representative functional groups of the volatile compounds produced during the reaction. The activation energy values calculated by this kinetic model are closely related to the values calculated by the Ranzi et al. Model. (Tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Procesos y Energía
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[1] H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964, doi: 10.1002/polc.5070060121.
dc.relation[2] M. J. Antal and H. L. Friedman, “Kinetics of Cellulose Pyrolysis in Nitrogen and Steam,” Combust. Sci. Technol., vol. 21, pp. 141–152, 1980.
dc.relation[3] A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., vol. 23, pp. 3271–3280, 1979, doi: 10.1002/app.1979.070231112.
dc.relation[4] J. P. Diebold, “A unified, global model for the pyrolysis of cellulose,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 75–85, 1994, doi: 10.1016/0961-9534(94)00039-V.
dc.relation[5] E. Ranzi et al., “Chemical kinetics of biomass pyrolysis,” Energy and Fuels, vol. 22, no. 6, pp. 4292–4300, 2008, doi: 10.1021/ef800551t.
dc.relation[6] Ministerio de Minas y Energía de Colombia, “Colombia has great potential for producing biomass energy: Minister of Mines and Energy,” 2017. [Online]. Available: https://www.minminas.gov.co/web/ingles/noticias?idNoticia=23882538. [Accessed: 05-Mar-2019].
dc.relation[7] N. Altawell, The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. New York, United States of America: Institute of Electrical and Electronics Engineers Inc., 2014.
dc.relation[8] M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, “Top ten fundamental challenges of biomass pyrolysis for biofuels,” Energy Environ. Sci., vol. 5, no. 7, pp. 7797–7809, 2012, doi: 10.1039/c2ee21679e.
dc.relation[9] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, pp. 6505–6524, 2016, doi: 10.1021/acs.energyfuels.6b01242.
dc.relation[10] S. Hameed, A. Sharma, V. Pareek, H. Wu, and Y. Yu, “A review on biomass pyrolysis models: Kinetic, network and mechanistic models,” Biomass and Bioenergy, vol. 123, pp. 104–122, 2019, doi: 10.1016/j.biombioe.2019.02.008.
dc.relation[11] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.
dc.relation[12] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, and S. Gnanakaran, “Insights into hydrogen bonding and stacking interactions in cellulose,” J. Phys. Chem. A, vol. 115, pp. 14191–14202, 2011, doi: 10.1021/jp203620x.
dc.relation[13] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain. Chem. Eng., vol. 3, pp. 293–301, 2015, doi: 10.1021/sc500664h.
dc.relation[14] Q. Liu, Z. Zhong, S. Wang, and Z. Luo, “Interactions of biomass components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis, vol. 90, no. 2, pp. 213–218, 2011, doi: 10.1016/j.jaap.2010.12.009.
dc.relation[15] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017, doi: 10.1016/j.fuel.2016.11.057.
dc.relation[16] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families,” Biomass and Bioenergy, vol. 31, pp. 222–242, 2007, doi: 10.1016/j.biombioe.2006.02.006.
dc.relation[17] F. Stankovikj and M. Garcia-perez, “TG-FTIR method for the characterization of bio-oils in chemical families,” Energy and Fuels, vol. 31, p. 1689−1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.
dc.relation[18] S. Wang, R. U. Bin, L. I. N. Haizhou, S. U. N. Wuxing, Y. U. Chunjiang, and L. U. O. Zhongyang, “Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes,” Chem. Res. Chin. Univ., vol. 30, no. 5, pp. 848–854, 2014, doi: 10.1007/s40242-014-4019-9.
dc.relation[19] D. K. Shen and S. Gu, “The mechanism for thermal decomposition of cellulose and its main products,” Bioresour. Technol., vol. 100, no. 24, pp. 6496–6504, 2009, doi: 10.1016/j.biortech.2009.06.095.
dc.relation[20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, and Z. Li, “Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 102, pp. 16–23, 2013, doi: 10.1016/j.jaap.2013.04.009.
dc.relation[21] Q. Liu, S. Wang, Y. Zheng, Z. Luo, and K. Cen, “Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis,” J. Anal. Appl. Pyrolysis, vol. 82, pp. 170–177, 2008, doi: 10.1016/j.jaap.2008.03.007.
dc.relation[22] F. xiang Xu, X. Zhang, F. Zhang, L. qun Jiang, Z. li Zhao, and H. bin Li, “TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures,” Fuel, vol. 268, pp. 1–8, 2020, doi: 10.1016/j.fuel.2020.117365.
dc.relation[23] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.
dc.relation[24] P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero, and J. M. Criado, “An improved model for the kinetic description of the thermal degradation of cellulose,” Cellulose, vol. 18, pp. 1487–1498, 2011, doi: 10.1007/s10570-011-9602-3.
dc.relation[25] S. Wu, D. Shen, J. Hu, H. Zhang, and R. Xiao, “Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods,” Biomass and Bioenergy, vol. 95, pp. 55–63, 2016, doi: 10.1016/j.biombioe.2016.09.015.
dc.relation[26] L. Taiz and E. Zeiger, Plant Physiology, 3rd ed. Sunderland, England: Sinauer, 2002.
dc.relation[27] D. Shen, R. Xiao, S. Gu, and H. Zhang, “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass,” in Cellulose - Biomass Conversion, Intech, 2013, pp. 193–226.
dc.relation[28] E. Terrell, L. D. Dellon, A. Dufour, E. Bartolomei, L. J. Broadbelt, and M. Garcia-Perez, “A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 2, pp. 526–555, 2020, doi: 10.1021/acs.iecr.9b05744.
dc.relation[29] S. H. Ghaffar and M. Fan, “Structural analysis for lignin characteristics in biomass straw,” Biomass and Bioenergy, vol. 57, pp. 264–279, 2013, doi: 10.1016/j.biombioe.2013.07.015.
dc.relation[30] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi: 10.1016/j.copbio.2019.02.019.
dc.relation[31] G. Costa and I. Plazanet, “Plant Cell Wall, a Challenge for Its Characterisation,” Adv. Biol. Chem., vol. 06, pp. 70–105, 2016, doi: 10.4236/abc.2016.63008.
dc.relation[32] P. Bajpai, “Structure of Lignocellulosic Biomass,” in Pretreatment of Lignocellulosic Biomass Feedstocks for Biofuel Production, SpringerBriefs in Green Chemistry for Sustainability, 2016, p. 5.
dc.relation[33] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” 2016.
dc.relation[34] G. P. Marrugo Escobar, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Universidad Nacional de Colombia, 2015.
dc.relation[35] H. A. Ibrahim, “Introductory Chapter : Pyrolysis,” in Recent Advances in Pyrolysis, Hamah, Syria, 2020, pp. 1–12.
dc.relation[36] L. Loweska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, “Cellulose oxidative and hydrolytic degradation: In situ FTIR approach,” Polym. Degrad. Stab., vol. 88, pp. 512–520, 2005, doi: 10.1016/j.polymdegradstab.2004.12.012.
dc.relation[37] A. Broido and M. A. Nelson, “Char yield on pyrolysis of cellulose,” Combust. Flame, vol. 24, no. C, pp. 263–268, 1975, doi: 10.1016/0010-2180(75)90156-X.
dc.relation[38] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, pp. 902–913, 2017, doi: 10.1016/j.joei.2016.08.004.
dc.relation[39] T. Hosoya, H. Kawamoto, and S. Saka, “Pyrolysis behaviors of wood and its constituent polymers at gasification temperature,” J. Anal. Appl. Pyrolysis, vol. 78, pp. 328–336, 2007, doi: 10.1016/j.jaap.2006.08.008.
dc.relation[40] M. Benítez-Guerrero, J. López-Beceiro, P. E. Sánchez-Jiménez, and J. Pascual-Cosp, “Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products,” Thermochim. Acta, vol. 581, pp. 70–86, 2014, doi: 10.1016/j.tca.2014.02.013.
dc.relation[41] B. C. Smith, Infrared spectral interpretation: a systematic approach, vol. 1. Boca Raton, Florida.: CRC Press LLC, 1999.
dc.relation[42] B. C. Smith, “A Process for Successful Infrared Spectral Interpretation,” Spectroscopy, vol. 31, no. 1, pp. 14–21, 2016.
dc.relation[43] B. C. Smith, Fundamentals of Fourier Transform Infrered Spectroscopy, 2nd ed. Boca Raton, Florida.: CRC Press LLC, 2011.
dc.relation[44] J. Coates, “Interpretation of infrared Spectra, A Practical Approach,” in Encyclopedia ofAnalytical Chemistry, R. A. Meyers, Ed. Chichester: John Wiley & Sons Ltd., 2000, pp. 10815–10837.
dc.relation[45] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007, doi: 10.1016/j.fuel.2006.12.013.
dc.relation[46] S. J. Parikh, B. J. Lafferty, and D. L. Sparks, “An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface,” J. Colloid Interface Sci., vol. 320, pp. 177–185, 2008, doi: 10.1016/j.jcis.2007.12.017.
dc.relation[47] T. Siengchum, M. Isenberg, and S. S. C. Chuang, “Fast pyrolysis of coconut biomass - An FTIR study,” Fuel, vol. 105, pp. 559–565, 2013, doi: 10.1016/j.fuel.2012.09.039.
dc.relation[48] D. K. Shen, S. Gu, and A. V. Bridgwater, “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR,” J. Anal. Appl. Pyrolysis, vol. 87, no. 2, pp. 199–206, 2010, doi: 10.1016/j.jaap.2009.12.001.
dc.relation[49] F. Wülfert, W. T. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem., vol. 70, pp. 1761–1767, 1998, doi: 10.1021/ac9709920.
dc.relation[50] S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochim. Acta, vol. 340–341, pp. 53–68, 1999, doi: 10.1016/S0040-6031(99)00253-1.
dc.relation[51] A. K. Galwey, “Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 1–29, 2014, doi: 10.1007/s11144-014-0770-7.
dc.relation[52] J. M. Criado, P. E. Sánchez-Jiménez, and L. A. Pérez-Maqueda, “Critical study of the isoconversional methods of kinetic analysis,” J. Therm. Anal. Calorim., vol. 92, no. 1, pp. 199–203, 2008, doi: 10.1007/s10973-007-8763-7.
dc.relation[53] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, “Kinetics and mechanism of cellulose pyrolysis,” J. Phys. Chem. C, vol. 113, pp. 20097–20107, 2009, doi: 10.1021/jp906702p.
dc.relation[54] S. Wang, Q. Liu, Z. Luo, L. Wen, and K. Cen, “Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy,” Front. Energy Power Eng. China, vol. 1, no. 4, pp. 413–419, 2007, doi: 10.1007/s11708-007-0060-8.
dc.relation[55] P. Aggarwal, D. Dollimore, and K. Heon, “Comparative thermal analysis study of two biopolymers, starch and cellulose,” J. Therm. Anal., vol. 50, pp. 7–17, 1997, doi: 10.1007/bf01979545.
dc.relation[56] D. Chen, J. Zhou, and Q. Zhang, “Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo,” Bioresour. Technol., vol. 169, pp. 313–319, 2014, doi: 10.1016/j.biortech.2014.07.009.
dc.relation[57] C. Şerbǎnescu, “Kinetic analysis of cellulose pyrolysis: A short review,” Chem. Pap., vol. 68, no. 7, pp. 847–860, 2014, doi: 10.2478/s11696-013-0529-z.
dc.relation[58] G. Zhu, X. Zhu, Z. Xiao, and F. Yi, “Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 126–130, 2012, doi: 10.1016/j.jaap.2011.11.016.
dc.relation[59] R. Capart, L. Khezami, and A. K. Burnham, “Assessment of various kinetic models for the pyrolysis of a microgranular cellulose,” Thermochim. Acta, vol. 417, pp. 79–89, 2004, doi: 10.1016/j.tca.2004.01.029.
dc.relation[60] J. Lédé, “Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 17–32, 2012, doi: 10.1016/j.jaap.2011.12.019.
dc.relation[61] P. K. Chatterjee and C. M. Conrad, “Kinetics of the Pyrolysis of Cotton Cellulose,” Text. Res. J., vol. 36, no. 6, pp. 487–494, 1966, doi: 10.1177/004051756603600601.
dc.relation[62] S. Matsuoka, H. Kawamoto, and S. Saka, “What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end,” J. Anal. Appl. Pyrolysis, vol. 106, pp. 138–146, 2014, doi: 10.1016/j.jaap.2014.01.011.
dc.relation[63] Specac, “High Temperature High Pressure Cell - User Manual,” 2016.
dc.relation[64] P. H. Eilers and H. F. Boelens, “Asymmetric Least Squares Smoothing,” Leiden Univ. Med. Cent. Rep., vol. 1, p. 5, 2005.
dc.relation[65] A. Kuzmiakova, A. M. Dillner, and S. Takahama, “An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters,” Atmos. Meas. Tech., vol. 9, pp. 2615–2631, 2016, doi: 10.5194/amt-9-2615-2016.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
dc.typeTesis


Este ítem pertenece a la siguiente institución