dc.contributor | Molina Ochoa, Alejandro | |
dc.contributor | Cortés Correa, Farid Bernardo | |
dc.contributor | Fenómenos de Superficie - Michael Polanyi | |
dc.creator | Céspedes Zuluaga, Santiago | |
dc.date.accessioned | 2021-02-24T14:40:01Z | |
dc.date.accessioned | 2022-09-21T18:00:45Z | |
dc.date.available | 2021-02-24T14:40:01Z | |
dc.date.available | 2022-09-21T18:00:45Z | |
dc.date.created | 2021-02-24T14:40:01Z | |
dc.date.issued | 2020-12 | |
dc.identifier | Céspedes, S. (2021). Computational Fluid Dynamics as a Tool for the Design of Micromodels for the Evaluation of Surfactant Injection in Enhanced Oil Recovery Processes (M.S. Thesis). Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79291 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3405174 | |
dc.description.abstract | Se usó la dinámica de fluidos computacional (CFD) con el fin de proponer una guía para el diseño de dispositivos de microfluídica donde la diferencia entre dos surfactantes con propiedades similares en el rango ultra bajo de tensión interfacial se haga mas evidente durante procesos de recuperación química mejorada de petróleo (CEOR). En la inyección de surfactantes, uno de los métodos CEOR más ampliamente aplicados, el objetivo es disminuir la tensión interfacial de las fases presentes en el yacimiento. Las simulaciones de CFD se llevaron a cabo utilizando el método multifásico Volume of Fluid (VOF) para una geometría de un medio poroso con un mallado triangular generado a partir del software Meshing presente en el paquete de simulación de Ansys. El análisis CFD consideró el efecto de la tensión interfacial de dos surfactantes (0.037 mN /m y 0.045 mN/ m) sobre el factor de recobro, el tiempo de ruptura, la dimensión fractal del patrón de flujo, la caída de presión y el efecto de entrampamiento. Las propiedades de los dispositivos de microfluídica que se abordaron en la simulación fueron porosidad (50% -70%), forma de grano (circular e irregular), presencia o ausencia de fracturas y velocidad de inyección (10 ft/day - 30 ft/day). La metodología descrita en la guía indica que, para el par de surfactantes seleccionados, un micromodelo con una porosidad de 0.5, granos circulares, la presencia de una fractura y el funcionamiento a la velocidad máxima de inyección (30 pies / día) podría identificar mejor las diferencias en el rendimiento de ambos surfactantes. La guía desarrollada en esta investigación facilitará el diseño de micromodelos al acoplar esta tecnología con técnicas de simulación de CFD. | |
dc.description.abstract | Computational fluid dynamics (CFD) was used to propose a guide for the design of a microfluid device that would make more evident differences in the performance of surfactants with similar properties in the ultra-low range of interfacial tension during Chemical Enhanced Oil Recovery (CEOR). In surfactant injection, one of the most widely applied CEOR methods, the objective is to decrease the interfacial tension of the phases present in the reservoir. The CFD simulations were carried out using the Volume of Fluid (VOF) method for a fully meshed porous geometry generated using a triangular mesh from the Meshing software present in the Ansys simulation package. The CFD analysis considered the effect of the interfacial tension of two surfactants (0.037 mN/m and 0.045 mN/m) on the oil recovery factor, the breakthrough time, the fractal dimension of the flow pattern, the pressure drop, and the entrapment effect. The properties of the microfluid system that were addressed in the simulation were porosity (50%-70%), grain shape (circular and irregular), presence or absence of fractures, and injection velocity (10 ft/day - 30 ft/day). The methodology described in the guide indicates that for the pair of surfactants selected, a microfluid device with a porosity of 0.5, circular grains, the presence of a fracture and operating at the maximum injection velocity (30 ft/day) could better identify differences in the performance of both surfactants. The guide developed in this research will facilitate the design of micromodels by coupling this technology with CFD simulation techniques. | |
dc.language | eng | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Departamento de Procesos y Energía | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | J. M. Harris and B. Roach, Environmental and natural resource economics: A contemporary approach. Routledge, 2017. | |
dc.relation | S. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, no. 1, pp. 9-19, 2008. | |
dc.relation | J. J. Sheng, "Status of surfactant EOR technology," Petroleum, vol. 1, no. 2, pp. 97-105, 2015. | |
dc.relation | D. Levitt et al., "Identification and evaluation of high-performance EOR surfactants," in SPE/DOE Symposium on Improved Oil Recovery, 2006: Society of Petroleum Engineers. | |
dc.relation | C. A. Conn, "The characterization and visualization of multi-phase systems using microfluidic devices," 2015. | |
dc.relation | A. Howe, A. Clarke, J. Mitchell, J. Staniland, and L. Hawkes, "Visualising surfactant EOR in core plugs and micromodels," in SPE Asia Pacific enhanced oil recovery conference, 2015: Society of Petroleum Engineers. | |
dc.relation | A. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. Hawkes, and C. Whalan, "Visualising surfactant enhanced oil recovery," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 480, pp. 449-461, 2015. | |
dc.relation | S. Gogoi and S. B. Gogoi, "Review on microfluidic studies for EOR application," Journal of Petroleum Exploration and Production Technology, pp. 1-15, 2019. | |
dc.relation | N. Karadimitriou and S. Hassanizadeh, "A review of micromodels and their use in two-phase flow studies," Vadose Zone Journal, vol. 11, no. 3, 2012. | |
dc.relation | V. A. Lifton, "Microfluidics: an enabling screening technology for enhanced oil recovery (EOR)," Lab on a Chip, vol. 16, no. 10, pp. 1777-1796, 2016. | |
dc.relation | E. M. Chapman, "Microfluidic visualisation and analysis of multiphase flow phenomena at the pore scale," 2014. | |
dc.relation | E. D. Vavra, Y. Zeng, S. Xiao, G. J. Hirasaki, and S. L. Biswal, "Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications," JoVE (Journal of Visualized Experiments), no. 131, p. e56592, 2018. | |
dc.relation | J. Wan, T. K. Tokunaga, C. F. Tsang, and G. S. Bodvarsson, "Improved glass micromodel methods for studies of flow and transport in fractured porous media," Water resources research, vol. 32, no. 7, pp. 1955-1964, 1996. | |
dc.relation | P. Lele, H. Fadaei, U. Guerrero, and D. Sinton, "Development of a microfluidic device for rapid assessment of EOR additives," in SPE Heavy Oil Conference-Canada, 2014: Society of Petroleum Engineers. | |
dc.relation | G. Rosero et al., "Design and analysis of different models of microfluidic devices evaluated in Enhanced Oil Recovery (EOR) assays," Matéria (Rio de Janeiro), vol. 23, no. 2, 2018. | |
dc.relation | M. Mahmoodi, "Micromodel method for enhanced oil recovery; fabrication and image processing," Memorial University of Newfoundland, 2017. | |
dc.relation | A. Gerami et al., "Microfluidics for porous systems: fabrication, microscopy and applications," Transport in Porous Media, pp. 1-28, 2018. | |
dc.relation | A. Anbari, H. T. Chien, S. S. Datta, W. Deng, D. A. Weitz, and J. Fan, "Microfluidic model porous media: fabrication and applications," Small, vol. 14, no. 18, p. 1703575, 2018. | |
dc.relation | D. S. Park, S. Bou-Mikael, S. King, K. E. Thompson, C. S. Willson, and D. E. Nikitopoulos, "Design and fabrication of rock-based micromodel," in ASME 2012 International Mechanical Engineering Congress and Exposition, 2012, pp. 709-715: American Society of Mechanical Engineers. | |
dc.relation | W. Wang, S. Chang, and A. Gizzatov, "Toward reservoir-on-a-chip: fabricating reservoir micromodels by in situ growing calcium carbonate nanocrystals in microfluidic channels," ACS applied materials & interfaces, vol. 9, no. 34, pp. 29380-29386, 2017. | |
dc.relation | A. Ferrari, J. Jimenez‐Martinez, T. L. Borgne, Y. Méheust, and I. Lunati, "Challenges in modeling unstable two‐phase flow experiments in porous micromodels," Water Resources Research, vol. 51, no. 3, pp. 1381-1400, 2015. | |
dc.relation | T. Clemens, K. Tsikouris, M. Buchgraber, L. M. Castanier, and A. Kovscek, "Pore-Scale Evaluation of Polymers Displacing Viscous Oil--Computational-Fluid-Dynamics Simulation of Micromodel Experiments," Spe Reservoir Evaluation & Engineering, vol. 16, no. 02, pp. 144-154, 2013. | |
dc.relation | S. Maaref, M. R. Rokhforouz, and S. Ayatollahi, "Numerical investigation of two phase flow in micromodel porous media: Effects of wettability, heterogeneity, and viscosity," The Canadian Journal of Chemical Engineering, vol. 95, no. 6, pp. 1213-1223, 2017. | |
dc.relation | J. Wegner and L. Ganzer, "Rock-on-a-Chip Devices for High p, T Conditions and Wettability Control for the Screening of EOR Chemicals," in SPE Europec featured at 79th EAGE Conference and Exhibition, 2017: Society of Petroleum Engineers. | |
dc.relation | K. Xu et al., "A 2.5-D glass micromodel for investigation of multi-phase flow in porous media," Lab on a Chip, vol. 17, no. 4, pp. 640-646, 2017. | |
dc.relation | H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007. | |
dc.relation | R. Gharibshahi, A. Jafari, A. Haghtalab, and M. S. Karambeigi, "Application of CFD to evaluate the pore morphology effect on nanofluid flooding for enhanced oil recovery," RSC Advances, vol. 5, no. 37, pp. 28938-28949, 2015. | |
dc.relation | S. Betancur et al., "A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery," vol. 184, p. 106589, 2020. | |
dc.relation | F. J. N.-H. Escobar, Universidad Surcolombiana, "Aspectos fundamentales de recobro secundario y terciario," 2006. | |
dc.relation | E. J. Manrique et al., "EOR: current status and opportunities," in SPE improved oil recovery symposium, 2010: Society of Petroleum Engineers. | |
dc.relation | J. Sheng, Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing, 2010. | |
dc.relation | M. Sedaghat, O. Mohammadzadeh, S. Kord, and I. Chatzis, "Heavy oil recovery using ASP flooding: A pore‐level experimental study in fractured five‐spot micromodels," The Canadian Journal of Chemical Engineering, vol. 94, no. 4, pp. 779-791, 2016. | |
dc.relation | D. Wever, F. Picchioni, and A. Broekhuis, "Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution," Progress in Polymer Science, vol. 36, no. 11, pp. 1558-1628, 2011. | |
dc.relation | J. J. Sheng, "A comprehensive review of alkaline–surfactant–polymer (ASP) flooding," Asia‐Pacific Journal of Chemical Engineering, vol. 9, no. 4, pp. 471-489, 2014. | |
dc.relation | M. Mohajeri, M. Hemmati, and A. S. Shekarabi, "An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel," Journal of petroleum Science and engineering, vol. 126, pp. 162-173, 2015. | |
dc.relation | M. Dong, Q. Liu, and A. Li, "Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel," Particuology, vol. 10, no. 3, pp. 298-305, 2012. | |
dc.relation | H. Yarveicy and A. J. P. Javaheri, "Application of Lauryl Betaine in enhanced oil recovery: A comparative study in micromodel," vol. 5, no. 2, pp. 123-127, 2019. | |
dc.relation | H. Hematpour, R. Arabjamloei, M. Nematzadeh, H. Esmaili, and M. Mardi, "An experimental investigation of surfactant flooding efficiency in low viscosity oil using a glass micromodel," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 19, pp. 1745-1758, 2012. | |
dc.relation | A. Chatenever and J. C. J. J. o. P. T. Calhoun Jr, "Visual examinations of fluid behavior in porous media-part i," vol. 4, no. 06, pp. 149-156, 1952. | |
dc.relation | A. Rufai, "Porous media drying and two-phase flow studies using micromodels," 2018. | |
dc.relation | Y. M. Corapcioglu, S. Chowdhury, and S. E. J. W. r. r. Roosevelt, "Micromodel visualization and quantification of solute transport in porous media," vol. 33, no. 11, pp. 2547-2558, 1997. | |
dc.relation | C. Tsakiroglou and D. J. J. o. m. s. Avraam, "Fabrication of a new class of porous media models for visualization studies of multiphase flow processes," vol. 37, no. 2, pp. 353-363, 2002. | |
dc.relation | B. B. J. P. s. Mandelbrot, "Self-affine fractals and fractal dimension," vol. 32, no. 4, p. 257, 1985. | |
dc.relation | J. T. Cheng, L. J. Pyrak‐Nolte, D. D. Nolte, and N. J. J. G. R. L. Giordano, "Linking pressure and saturation through interfacial areas in porous media," vol. 31, no. 8, 2004. | |
dc.relation | N. Mosavat and F. J. F. Torabi, "Micro-optical analysis of carbonated water injection in irregular and heterogeneous pore geometry," vol. 175, pp. 191-201, 2016. | |
dc.relation | M. Borji, "Alkali-based Displacement Processes in Microfluidic Experiments: Application to the Matzen Oil Field." | |
dc.relation | D. Park, S. Bou-Mikael, S. King, K. Thompson, C. Willson, and D. Nikitopoulos, "Design and Fabrication of Rock-Based Polymer Micromodel," in Proc. ASME 2012 International Mechanical Engineering Congress & Exposition, ASME, Houston, TX, USA, 2012, pp. 709-716. | |
dc.relation | B. Sandnes, H. Knudsen, K. Måløy, and E. J. P. r. l. Flekkøy, "Labyrinth patterns in confined granular-fluid systems," vol. 99, no. 3, p. 038001, 2007. | |
dc.relation | G. Løvoll et al., "Influence of viscous fingering on dynamic saturation–pressure curves in porous media," vol. 86, no. 1, pp. 305-324, 2011. | |
dc.relation | M. Wegner, J. J. P. Christie, and C. o. Minerals, "Chemical etching of deformation sub-structures in quartz," vol. 9, no. 2, pp. 67-78, 1983. | |
dc.relation | K. Kolari, V. Saarela, S. J. J. o. M. Franssila, and Microengineering, "Deep plasma etching of glass for fluidic devices with different mask materials," vol. 18, no. 6, p. 064010, 2008. | |
dc.relation | F. P. Melchels, J. Feijen, and D. W. J. B. Grijpma, "A review on stereolithography and its applications in biomedical engineering," vol. 31, no. 24, pp. 6121-6130, 2010. | |
dc.relation | T. Hug, D. Parrat, P.-A. Kunzi, U. Staufer, E. Verpoorte, and N. F. de Rooij, "Fabrication of nanochannels with PDMS, silicon and glass walls and spontaneous filling by capillary forces," 2003. | |
dc.relation | W. Soll, M. A. Celia, and J. J. W. r. r. Wilson, "Micromodel studies of three‐fluid porous media systems: Pore‐scale processes relating to capillary pressure‐saturation relationships," vol. 29, no. 9, pp. 2963-2974, 1993. | |
dc.relation | A. A. Keller, M. J. Blunt, and A. P. V. J. T. i. P. M. Roberts, "Micromodel observation of the role of oil layers in three-phase flow," vol. 26, no. 3, pp. 277-297, 1997. | |
dc.relation | C. D. Montemagno and W. G. J. G. r. l. Gray, "Photoluminescent volumetric imaging: A technique for the exploration of multiphase flow and transport in porous media," vol. 22, no. 4, pp. 425-428, 1995. | |
dc.relation | P. Rostami, M. Sharifi, B. Aminshahidy, and J. Fahimpour, "The effect of nanoparticles on wettability alteration for enhanced oil recovery: micromodel experimental studies and CFD simulation," Petroleum Science, pp. 1-15, 2019. | |
dc.relation | S. Farzaneh, M. Ghazanfari, R. Kharrat, S. J. P. S. Vossoughi, and Technology, "An experimental and numerical investigation of solvent injection to heavy oil in fractured five-spot micromodels," vol. 28, no. 15, pp. 1567-1585, 2010. | |
dc.relation | A. Danesh, D. Krinis, G. Henderson, J. J. J. o. P. S. Peden, and Engineering, "Pore-level visual investigation of miscible and immiscible displacements," vol. 2, no. 2-3, pp. 167-177, 1989. | |
dc.relation | O. S. Owete and W. E. J. S. R. E. Brigham, "Flow behavior of foam: a porous micromodel study," vol. 2, no. 03, pp. 315-323, 1987. | |
dc.relation | F. Mohammadi, A. Haghtalab, A. Jafari, and R. Gharibshahi, "CFD Study of Surfactant Flooding in a Micromodel with Quadratic Pore Shape," in The 1st National Conference on Oil and Gas Fields Development (OGFD), 28-29 January, Tehran, Iran, 2015. | |
dc.relation | N. C. Wardlaw, "The effects of pore structure on displacement efficiency in reservoir rocks and in glass micromodels," in SPE/DOE Enhanced Oil Recovery Symposium, 1980: Society of Petroleum Engineers. | |
dc.relation | T. W. Willingham, C. J. Werth, A. J. J. E. s. Valocchi, and technology, "Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments," vol. 42, no. 9, pp. 3185-3193, 2008. | |
dc.relation | R. Gharibshahia, A. Jafaria, A. Haghtalaba, and M. S. Karambeigib, "Simulation of Nanofluid Flooding in a Micromodel with Quadratic Pore Shape Using CFD." | |
dc.relation | A. Jafari, S. E. F. Pour, R. J. I. J. o. C. E. Gharibshahi, and Applications, "CFD Simulation of Biosurfactant Flooding into a Micromodel for Enhancing the Oil Recovery," vol. 7, no. 6, pp. 353-358, 2016. | |
dc.relation | J. Zhao and D. J. R. a. Wen, "Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery," vol. 7, no. 66, pp. 41391-41398, 2017. | |
dc.relation | J. Zhao, G. Yao, D. J. F. o. C. S. Wen, and Engineering, "Pore-scale simulation of water/oil displacement in a water-wet channel," pp. 1-12, 2019. | |
dc.relation | B. Goudarzi, P. Mohammadmoradi, and A. Kantzas, "Pore-level simulation of heavy oil reservoirs; competition of capillary, viscous, and gravity forces," in SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, 2016: Society of Petroleum Engineers. | |
dc.relation | V. Bramer and W. Christopher, "Nanoparticle dispersion flow for enhanced oil recovery using micromodels," 2014. | |
dc.relation | R. Gharibshahi, A. Jafari, H. J. J. o. P. S. Ahmadi, and Engineering, "CFD investigation of enhanced extra-heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution," vol. 174, pp. 374-383, 2019. | |
dc.relation | F. J. U. S. Escobar, "Fundamentos de ingeniería de yacimientos," 2000. | |
dc.relation | M. A. Nilsson et al., "Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device," Journal of Non-Newtonian Fluid Mechanics, vol. 202, pp. 112-119, 2013. | |
dc.relation | M. Karambeigi, M. Schaffie, M. J. P. s. Fazaelipoor, and technology, "Improvement of water flooding efficiency using mixed culture of microorganisms in heterogeneous micro-models," vol. 31, no. 9, pp. 923-931, 2013. | |
dc.relation | N. K. Karadimitriou, "Two-phase flow experimental studies in micro-models," UU Department of Earth Sciences, 2013. | |
dc.relation | J. Cui and T. Babadagli, "Use of new generation chemicals and nano materials in heavy-oil recovery: Visual analysis through micro fluidics experiments," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 529, pp. 346-355, 2017. | |
dc.relation | S. Ehrenberg, P. Nadeau, and Ø. J. A. b. Steen, "Petroleum reservoir porosity versus depth: Influence of geological age," vol. 93, no. 10, pp. 1281-1296, 2009. | |
dc.relation | S. Ehrenberg and P. J. A. b. Nadeau, "Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships," vol. 89, no. 4, pp. 435-445, 2005. | |
dc.relation | M. Buchgraber, M. Al-Dossary, C. Ross, A. R. J. J. o. P. S. Kovscek, and Engineering, "Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow," vol. 86, pp. 27-38, 2012. | |
dc.relation | M. Ghanad Dezfully, A. Jafari, and R. Gharibshahi, "CFD simulation of enhanced oil recovery using nanosilica/supercritical CO2," in Advanced Materials Research, 2015, vol. 1104, pp. 81-86: Trans Tech Publ. | |
dc.relation | A. Minakov, E. Mikhienkova, M. Pryazhnikov, and V. Zhigarev, "Numerical simulation of the oil displacement process from a porous medium by nanofluid," in Journal of Physics: Conference Series, 2019, vol. 1382, no. 1, p. 012115: IOP Publishing. | |
dc.relation | A. J. A. I. Fluent, USA, "Ansys fluent theory guide," vol. 15317, pp. 724-746, 2011. | |
dc.relation | J. U. Brackbill, D. B. Kothe, and C. J. J. o. c. p. Zemach, "A continuum method for modeling surface tension," vol. 100, no. 2, pp. 335-354, 1992. | |
dc.relation | J. J. J. P. Sheng, "Status of surfactant EOR technology," vol. 1, no. 2, pp. 97-105, 2015. | |
dc.relation | C. T. Gerold, A. T. Krummel, and C. S. Henry, "Microfluidic devices containing thin rock sections for oil recovery studies," Microfluidics and Nanofluidics, vol. 22, no. 7, p. 76, 2018. | |
dc.relation | M. Lv and S. J. R. A. Wang, "Pore-scale modeling of a water/oil two-phase flow in hot water flooding for enhanced oil recovery," vol. 5, no. 104, pp. 85373-85382, 2015. | |
dc.relation | A. Timgren, G. Trägårdh, and C. J. C. e. s. Trägårdh, "Effects of cross-flow velocity, capillary pressure and oil viscosity on oil-in-water drop formation from a capillary," vol. 64, no. 6, pp. 1111-1118, 2009. | |
dc.relation | M. Ferer, W. N. Sams, R. Geisbrecht, and D. H. J. A. J. Smith, "Fractal nature of viscous fingering in two‐dimensional pore level models," vol. 41, no. 4, pp. 749-763, 1995. | |
dc.relation | J. Nittmann, G. Daccord, and H. E. J. N. Stanley, "Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon," vol. 314, no. 6007, pp. 141-144, 1985. | |
dc.relation | A. Nabizadeh, M. Adibifard, H. Hassanzadeh, J. Fahimpour, and M. K. J. J. o. M. L. Moraveji, "Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immiscible two-phase flow in a pore doublet model," vol. 273, pp. 248-258, 2019. | |
dc.relation | K. XU, P. Zhu, C. Tatiana, C. Huh, and M. Balhoff, "A microfluidic investigation of the synergistic effect of nanoparticles and surfactants in macro-emulsion based EOR," in SPE Improved Oil Recovery Conference, 2016: Society of Petroleum Engineers. | |
dc.relation | A. Afsharpoor, M. T. Balhoff, R. Bonnecaze, C. J. J. o. P. S. Huh, and Engineering, "CFD modeling of the effect of polymer elasticity on residual oil saturation at the pore-scale," vol. 94, pp. 79-88, 2012. | |
dc.relation | H. Gutiérrez Pulido and R. d. l. Vara Salazar, "Análisis y diseño de experimentos," 2004. | |
dc.relation | A. Ferrari, J. Jimenez‐Martinez, T. L. Borgne, Y. Méheust, and I. J. W. R. R. Lunati, "Challenges in modeling unstable two‐phase flow experiments in porous micromodels," vol. 51, no. 3, pp. 1381-1400, 2015. | |
dc.relation | A. Q. Raeini, M. J. Blunt, and B. J. J. o. C. P. Bijeljic, "Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method," vol. 231, no. 17, pp. 5653-5668, 2012. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Computational fluid dynamics as a tool for the design of micromodels for the evaluation of surfactant injection in enhanced oil recovery processes | |
dc.type | Otros | |