dc.contributor | Garavito Cardenas, Giovanny | |
dc.contributor | Arias Marciales, María Helena | |
dc.contributor | Fametra | |
dc.creator | Perez Lozada, Jhindy Tatiana | |
dc.date.accessioned | 2022-08-04T17:14:29Z | |
dc.date.available | 2022-08-04T17:14:29Z | |
dc.date.created | 2022-08-04T17:14:29Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81783 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La enfermedad de Chagas causada por el parásito Trypanosoma cruzi, representa un
problema de salud pública a nivel mundial. Su tratamiento está restringido a dos fármacos, Benznidazol y Nifurtimox, que poseen efectos adversos, eficacia limitada y su oportunidad de acceso es igualmente limitado. Las pruebas farmacológicas in vitro constituyen la herramienta inicial para el tamizaje de alternativas promisorias, sin embargo, en este caso particular, no existe un consenso en los protocolos utilizados, por lo que es fundamental optimizar una prueba farmacológica in vitro para evaluar sustancias con potencial actividad frente a Trypanosoma cruzi, con el fin de obtener resultados reproducibles y comparables que aporten al avance del desarrollo de nuevo fármacos. En el presente trabajo se optimizó las condiciones más relevantes usadas en las pruebas farmacológicas in vitro a partir de epimastigotes de la cepa Y de Trypanosoma cruzi. Se determinó que el parásito tiene un crecimiento sostenido hasta el día 8 con una estabilización o disminución a partir del día 9 de incubación. El recambio de medio de cultivo debe ser cada 3 días para garantizar un porcentaje de epimastigotes mayor al 90%. Para el cultivo óptimo del parásito se puede usar tanto el medio LIT como el BHI suplementado con 10 % de SFB. En cuanto a la prueba farmacológica se determinó que se puede usar indistintamente placas con fondo en U o
fondo plano sin afectar el crecimiento del parásito, los mejores resultados los obtuvimos empleando una concentración de 1x10 6 parásitos/mL como inóculo inicial y una incubación de 72 horas. Se determinó una CI50 de 16,6 µM (4,32 µg/mL) de benznidazole frente a epimastigotes de T. cruzi de la Cepa Y, coincidente con reportes previos bajo las mismas condiciones. (Texto tomado de la fuente) | |
dc.description.abstract | Chagas disease caused by the parasite Trypanosoma cruzi represents a worldwide public health problem. Its treatment is restricted to two drugs, Benznidazole and Nifurtimox, which have adverse effects, limited efficacy, and their opportunity for access is equally limited. In vitro pharmacological tests are the initial tool for screening promising alternatives, however, in this particular case, there is no consensus on the protocols used, so it is essential to optimize an in vitro pharmacological test to evaluate substances with potential activity against Trypanosoma cruzi, in order to obtain reproducible and comparable results that contribute to the advancement of the development of new drugs. In the present work, the most relevant conditions used in vitro pharmacological tests were optimized from epimastigotes of the Y strain of Trypanosoma cruzi. It was determined that the parasite has a sustained growth until day 8 with a stabilization or decrease from day 9 of incubation. The change of culture medium should be every 3 days to guarantee a percentage of epimastigotes greater than 90%. For optimal culture of the parasite, both LIT medium and BHI supplemented with 10% FBS can be used. Regarding the pharmacological test, it was determined that plates with a U-bottom or flat bottom can be used interchangeably without affecting the growth of the parasite; The best results were obtained using a concentration of 1x10 6 parasites / mL as initial inoculum and an incubation of 72 hours. An IC50 of 16.6 µM (4.32 µg/mL) of benznidazole was determined against epimastigotes of T. cruzi of Strain Y, which coincides with previous reports under the same conditions. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.publisher | Instituto de Biotecnología (IBUN) | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | AA, G., & MG, L. (2017). Triatomine physiology in the context of trypanosome infection.
Journal of Insect Physiology, 97, 66–76.
https://doi.org/10.1016/J.JINSPHYS.2016.07.005 | |
dc.relation | AL, V., P, R., M, W., P, M., E, M., & MG, de L. (2010). Fetal bovine serum concentration
affects delta9 desaturase activity of Trypanosoma cruzi. Lipids, 45(3), 275–283.
https://doi.org/10.1007/S11745-010-3387-2 | |
dc.relation | Álvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez,
A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas
disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital
General de México, 81(3), 154–164. https://doi.org/10.1016/j.hgmx.2016.09.010 | |
dc.relation | AM, C., JM, B., AM, P., CM, P. B., LJ, S., D, X., CL, B., & RL, T. (2010). In vitro and in vivo
high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS
Neglected Tropical Diseases, 4(7). https://doi.org/10.1371/JOURNAL.PNTD.0000740 | |
dc.relation | Amato Neto, V. (n.d.). Origin of the “Y strain” of Trypanosoma cruzi. Revista Do Instituto de
Medicina Tropical de Sao Paulo, 52(3), 171. https://doi.org/10.1590/s0036-
46652010000300012 | |
dc.relation | Bhattacharya, A., Corbeil, A., Monte-Neto, R. L. do, & Fernandez-Prada, C. (2020). Of
Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in
Drug Discovery. Genes, 11(7), 1–24. https://doi.org/10.3390/GENES11070722 | |
dc.relation | Carneiro, P. F., Do Nascimento, S. B., Pinto, A. V., Pinto, M. D. C. F. R., Lechuga, G. C.,
Santos, D. O., Dos Santos Júnior, H. M., Resende, J. A. L. C., Bourguignon, S. C., &
Ferreira, V. F. (2012). New oxirane derivatives of 1,4-naphthoquinones and their
evaluation against T. cruzi epimastigote forms. Bioorganic & Medicinal Chemistry,
20(16), 4995–5000. https://doi.org/10.1016/J.BMC.2012.06.027 | |
dc.relation | CDC. (2019). American Trypanosomiasis.
https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html | |
dc.relation | Ceole, L. F., Gandhi, H., Villamizar, L. H., Soares, M. J., & O’Sullivan, T. P. (2018). Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma
cruzi. Future Medicinal Chemistry, 10(4), 391–408. https://doi.org/10.4155/FMC-2017-
0184 | |
dc.relation | CMBD, S., A, L., RL, K., RCP, R., AH, I., MA, K., DP, P., & CM, P. (2018). Trypanosoma
cruzi transcriptome during axenic epimastigote growth curve. Memorias Do Instituto
Oswaldo Cruz, 113(5). https://doi.org/10.1590/0074-02760170404 | |
dc.relation | Cortez, C., Martins, R. M., Alves, R. M., Silva, R. C., Bilches, L. C., Macedo, S., Atayde, V.
D., Kawashita, S. Y., Briones, M. R. S., & Yoshida, N. (2012). Differential Infectivity by
the Oral Route of Trypanosoma cruzi Lineages Derived from Y Strain. PLoS Neglected
Tropical Diseases, 6(10). https://doi.org/10.1371/JOURNAL.PNTD.0001804 | |
dc.relation | Cos, P., Vlietinck, A. J., Berghe, D. Vanden, & Maes, L. (2006). Anti-infective potential of
natural products: How to develop a stronger in vitro ‘proof-of-concept.’ Journal of
Ethnopharmacology, 106(3), 290–302. https://doi.org/10.1016/J.JEP.2006.04.003 | |
dc.relation | De Lima, A. R., Noris-Suárez, K., Bretaña, A., Contreras, V. T., Navarro, M. C., PérezYbarra, L., & Bubis, J. (2017). Growth arrest and morphological changes triggered by
emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie,
142, 31–40. https://doi.org/10.1016/J.BIOCHI.2017.08.005 | |
dc.relation | Dias, J. C. P., Ramos, A. N., Gontijo, E. D., Luquetti, A., Shikanai-Yasuda, M. A., Coura, J.
R., Torres, R. M., Melo, J. R. da C., Almeida, E. A. de, Oliveira, W. de, Silveira, A. C.,
Rezende, J. M. de, Pinto, F. S., Ferreira, A. W., Rassi, A., Fragata, A. A., Sousa, A.
S. de, Correia, D., Jansen, A. M., … Alves, R. V. (2016). II Consenso Brasileiro em
Doença de Chagas, 2015. Epidemiologia e Servicos de Saude : Revista Do Sistema
Unico de Saude Do Brasil, 25(spe), 7–86. https://doi.org/10.5123/S1679-
49742016000500002 | |
dc.relation | ENFERMEDAD DE CHAGAS Ministerio de Salud y Protección Social-Federación Médica
Colombiana. (2012). | |
dc.relation | ENGEL, J. C., & DVORAK, J. A. (1988). Trypanosoma cruzi: Cell Biological Behavior of
Epimastigote and Amastigote Forms in Axenic Culture. The Journal of Protozoology,
35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.X | |
dc.relation | Fallas, J. J., & Chavarría, J. (2011). Implementación del Análisis en Componentes
Principales con el software estadístico R. Revista Digital Matemática, Educación e Internet, 11(2), 1659–0643. https://repositoriotec.tec.ac.cr/handle/2238/12882 | |
dc.relation | Gómez Marin, J. E. (2016). Need for a national pharmacy: An issue of national security.
Infectio, 20(1), 1–2. https://doi.org/10.1016/j.infect.2015.08.001 | |
dc.relation | Heger, J. I., Froehlich, K., Pastuschek, J., Schmidt, A., Baer, C., Mrowka, R., Backsch, C.,
Schleußner, E., Markert, U. R., & Schmidt, A. (2018). Human serum alters cell culture
behavior and improves spheroid formation in comparison to fetal bovine serum.
Experimental Cell Research, 365(1), 57–65.
https://doi.org/10.1016/J.YEXCR.2018.02.017 | |
dc.relation | Hernández, R., Cevallos, A. M., Nepomuceno-Mejía, T., & López-Villaseñor, I. (2012).
Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for
metacyclogenesis. In Parasitology Research (Vol. 111, Issue 2, pp. 509–514).
https://doi.org/10.1007/s00436-012-2974-y | |
dc.relation | Isabel, L., Jaramillo, J., Mejía, R., María, L., Sánchez, M., & Henao, S. V. (2017).
Enfermedad de Chagas: una mirada alternativa al tratamiento Chagas disease: an
alternative look to treatment. In Revista Cubana de Medicina Tropical (Vol. 69, Issue
2). http://scielo.sld.cu | |
dc.relation | Jaimes-Dueñez, J., Triana-Chávez, O., Cantillo-Barraza, O., Hernández, C., Ramírez, J.
D., & Góngora-Orjuela, A. (2017). Molecular and serological detection of
Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission
risk in areas of recent acute Chagas disease outbreaks in Colombia. Preventive
Veterinary Medicine, 141, 1–6. https://doi.org/10.1016/j.prevetmed.2017.03.009 | |
dc.relation | JC, E., & JA, D. (1988). Trypanosoma cruzi: cell biological behavior of epimastigote and
amastigote forms in axenic culture. The Journal of Protozoology, 35(4), 513–518.
https://doi.org/10.1111/J.1550-7408.1988.TB04140.X | |
dc.relation | Kessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L.
H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M.
(2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to
the mammalian host. Molecular Microbiology, 104(5), 712–736.
https://doi.org/10.1111/mmi.13653 | |
dc.relation | Kitamura, Y., Suzuki, M., Tsukioka, T., Isobe, K., Tsujino, T., Watanabe, T., Watanabe, T.,
Okudera, H., Nakata, K., Tanaka, T., & Kawase, T. (2018). Spectrophotometric determination of platelet counts in platelet-rich plasma. International Journal of Implant
Dentistry, 4(1). https://doi.org/10.1186/S40729-018-0140-8 | |
dc.relation | Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198,
105107. https://doi.org/10.1016/j.actatropica.2019.105107 | |
dc.relation | Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., MessiasReason, I. J., & Sandri, T. L. (2019). Chagas Disease: From Discovery to a Worldwide
Health Problem. Frontiers in Public Health, 7.
https://doi.org/10.3389/fpubh.2019.00166 | |
dc.relation | Lima, D. B., Mello, C. P., Bandeira, I. C. J., De Menezes, R. R. P. P. B., Sampaio, T. L.,
Falcão, C. B., Morlighem, J. É. R. L., Rádis-Baptista, G., & Martins, A. M. C. (2018).
The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in
vitro antitrypanosomal activity. Biological Chemistry, 399(2), 187–196.
https://doi.org/10.1515/HSZ-2017-0198 | |
dc.relation | Lourenço, A. M., Faccini, C. C., Costa, C. A. de J., Mendes, G. B., & Fragata Filho, A. A.
(2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications
benznidazole, amiodarone hydrochloride, and their combination. Revista Da
Sociedade Brasileira de Medicina Tropical, 51(1), 52–56.
https://doi.org/10.1590/0037-8682-0285-2017 | |
dc.relation | Martínez-Díaz, R. A., Escario, J. A., Nogal-Ruiz, J. J., & Gómez-Barrio, A. (2001). Biological
Characterization of Trypanosoma cruzi Strains. Memorias Do Instituto Oswaldo Cruz,
96(1), 53–59. https://doi.org/10.1590/S0074-02762001000100006 | |
dc.relation | Martinez, F., Perna, E., Perrone, S. V, & Liprandi, A. S. (2019). Chagas DiseZingales, B.,
Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., …
Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature:
rationale, epidemiological relevance and research applications. Infect. European
Cardiology Review, 14(2), 82–88. https://doi.org/10.15420/ecr.2018.30.2 | |
dc.relation | MC, E., JP, da C., FP, de F., RA, M., E, F., & S, S. (2007). Morphological events during
the Trypanosoma cruzi cell cycle. Protist, 158(2), 147–157.
https://doi.org/10.1016/J.PROTIS.2006.10.002 | |
dc.relation | Olivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas
disease in Colombia: A systematic review and meta-analysis. In PLoS ONE (Vol. 14Issue 1). Public Library of Science. https://doi.org/10.1371/journal.pone.0210156 | |
dc.relation | OMS | Notas descriptivas: enfermedades tropicales desatendidas. (2017). WHO; World
Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/chagasdisease-(american-trypanosomiasis)
Özbilgin, A., Çavuş, İ., Nuraydın, A., & Ö | |
dc.relation | Özbilgin, A., Çavuş, İ., Nuraydın, A., & Özel, Y. (2020). The Production of Trypanosoma
Brucei Rhodesiense, Cause of African Sleeping Sickness, and Trypanosoma Cruzi,
Cause of American Chagas Disease, on Different Medias and Testing a New Media.
Turkiye Parazitolojii Dergisi, 44(1), 7–11.
https://doi.org/10.4274/TPD.GALENOS.2019.6656 | |
dc.relation | Özbilgin, A., Kaya, T., Çavuş, İ., Yıldırım, A., & Özpınar, N. (2018). Comparison of
Reproduction Densities in Different Liquid Media of Trypanosoma cruzi and
Cryopreservation. Turkiye Parazitolojii Dergisi, 42(4), 249–253.
https://doi.org/10.5152/TPD.2018.5750 | |
dc.relation | Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J.
(2017). Epidemiología de las principales enfermedades transmitidas por vectores en
Colombia, 1990-2016. Biomedica : Revista Del Instituto Nacional de Salud, 37, 27–
40. https://doi.org/10.7705/biomedica.v37i0.3769 | |
dc.relation | Querales, M., Torres, J., Graterol, D., Arteaga, R., Navarro, M., Contreras, V., Pineda, W.,
& De Lima, A. R. (2013). Cambios metabólicos durante la epimastigogénesis in vitro
de Trypanosoma cruzi. Salus, 17(3).
http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-71382013000300003 | |
dc.relation | Quinn, G. (2016). What plates to use for measuring bacterial growth in Plate reader?..swer.
Https://Www.Researchgate.Net/Post/What_plates_to_use_for_measuring_bacterial_
growth_in_Plate_reader/57d07e54b0366dfb10602cd4/Citation/Download. .
https://www.researchgate.net/post/What_plates_to_use_for_measuring_bacterial_gr
owth_in_Plate_reader/57d07e54b0366dfb10602cd4/citation/download | |
dc.relation | Ribeiro, A. R., Lima, L., Almeida, L. A. de, Monteiro, J., Moreno, C. J. G., Nascimento, J.
D., Araújo, R. F. de, Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M.
G., Silva, M. S., Steindel, M., & Rosa, J. A. da. (2018). Biological and Molecular
Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The
American Journal of Tropical Medicine and Hygiene, 98(2), 453. | |
dc.relation | Rodríguez-Monguí, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E., & Cucunubá, Z. M.
(2019). Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal
reservoirs in Colombia: A systematic review and meta-analysis. In Parasites and
Vectors (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-019-
3541-5 | |
dc.relation | Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018).
Pharmacological activity of Curarea toxicofera in combination with classical
antimalarial treatments. Journal of Ethnopharmacology, 222, 288–294.
https://doi.org/10.1016/J.JEP.2018.04.008 | |
dc.relation | Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani,
A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E.,
Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I.,
Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for
drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo
Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022 | |
dc.relation | RR, K., AH, A. S., E, A.-E. R., AO, S., & HN, O. (2019). Addressing the impact of different
fetal bovine serum percentages on mesenchymal stem cells biological performance.
Molecular Biology Reports, 46(4), 4437–4441. https://doi.org/10.1007/S11033-019-
04898-1 | |
dc.relation | Rueda, K., Trujillo, J. E., Carranza, J. C., & Vallejo, G. A. (2014). Transmisión oral de
Trypanosoma cruzi: Una nueva situación epidemiológica de la enfermedad de Chagas
en Colombia y otros países suramericanos. Biomedica, 34(4), 631–641.
https://doi.org/10.7705/biomedica.v34i4.2204 | |
dc.relation | Santos, S. S., de Araújo, R. V., Giarolla, J., Seoud, O. El, & Ferreira, E. I. (2020). Searching
for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review.
International Journal of Antimicrobial Agents, 55(4), 105906.
https://doi.org/10.1016/J.IJANTIMICAG.2020.105906 | |
dc.relation | Shafaie, S., Hutter, V., Brown, M. B., Cook, M. T., & Chau, D. Y. S. (2017). Influence of
surface geometry on the culture of human cell lines: A comparative study using flat,
round-bottom and v-shaped 96 well plates. PLOS ONE, 12(10), e0186799. | |
dc.relation | Tapia, R. A., Salas, C. O., Vázquez, K., Espinosa-Bustos, C., Soto-Delgado, J., Varela, J.,
Birriel, E., Cerecetto, H., González, M., & Paulino, M. (2014). Synthesis and biological
characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents.
Bioorganic & Medicinal Chemistry Letters, 24(16), 3919–3922.
https://doi.org/10.1016/J.BMCL.2014.06.044 | |
dc.relation | Veiga-Santos, P., Pelizzaro-Rocha, K. J., Santos, A. O., Ueda-Nakamura, T., Filho, B. P.
D., Silva, S. O., Sudatti, D. B., Bianco, E. M., Pereira, R. C., & Nakamura, C. V. (2010).
In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia
dendroidea. Parasitology, 137(11), 1661–1670.
https://doi.org/10.1017/S003118201000034X | |
dc.relation | Vela, A., Coral-Almeida, M., Sereno, D., Costales, J. A., Barnabé, C., & Brenière, S. F.
(2021). In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to
benznidazole: A systematic review and meta-analysis. PLOS Neglected Tropical
Diseases, 15(3), e0009269. https://doi.org/10.1371/JOURNAL.PNTD.0009269 | |
dc.relation | Zingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M.
G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S.
G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature:
rationale, epidemiological relevance and research applications. Infection, Genetics
and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in
Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi | |
dc.type | Trabajo de grado - Maestría | |