dc.contributorRivadeneira Paz, Pablo Santiago
dc.contributorVallejo Velásquez, Mónica Ayde
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorGRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA
dc.creatorHoyos Giraldo, Juan David
dc.date.accessioned2020-09-09T19:23:49Z
dc.date.accessioned2022-09-21T17:56:36Z
dc.date.available2020-09-09T19:23:49Z
dc.date.available2022-09-21T17:56:36Z
dc.date.created2020-09-09T19:23:49Z
dc.date.issued2020-09-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78431
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3404677
dc.description.abstractEn este trabajo se propone aplicar técnicas de identificación en modelos relevantes al control, para representar la glicemia considerando la administración de insulina e ingesta de carbohidratos en pacientes con diabetes mellitus tipo 1. Se realizó un estudio observacional analítico, utilizando el simulador metabólico UVA/Padova para generar 33 pacientes virtuales, además se recolectaron datos de 75 pacientes reales tratados en Medellín-Colombia entre los años 2017-2019. Se compararon diferentes modelos matemáticos existentes en la literatura y el modelo propuesto, realizando un análisis de identificabilidad estructural y práctica de estos modelos para garantizar la unicidad de la solución, así como la capacidad de estimar los parámetros que expliquen la dinámica interna del sistema. También se plantearon varios tipos discretización, funciones de costo y técnicas de optimización determinísticas y no convencionales. En los pacientes virtuales, se obtuvo un ajuste promedio del 52.2% en la etapa de calibración, y una diferencia en la estimación de las herramientas de la insulinoterapia del 16.5%, estos resultados fueron obtenidos en un periodo de 3 días. Mientras que en la cohorte de 75 pacientes reales, inicialmente se obtuvo un ajuste promedio del 30.5% y una diferencia del 46.9% entre las herramientas de la terapia definidas por el modelo y las configuradas en la bomba, sin embargo se propuso un algoritmo de corrección para mitigar el efecto de factores como la omisión de bolo, mal conteo de carbohidratos y anuncios a destiempo, corrigiendo los datos de entrada de forma fuera de línea. Al corregir los datos mediante reglas y un algoritmo genético, se obtuvo en promedio un ajuste del 47.8% y una diferencia en las herramientas del 35.1%.
dc.description.abstractOn this thesis, identification techniques in relevant control models are applied, in order to represent glycemia considering the insulin administration and carbohydrate intake in patients with type 1 diabetes mellitus. An analytical observational study was carried out, using the UVA / Padova metabolic simulator to generate 33 virtual patients, alsa real data was collected from 75 real patients treated in Medellín-Colombia between years 2017-2019. Different mathematical models existing in the literature and the proposed model were compared, carrying out an analysis of the structural and practical identifiability of these models to guarantee the uniqueness of the solution, as well as the ability to estimate the parameters that explain the internal dynamics of the system. Various types of discretization, cost functions, deterministic and unconventional optimization techniques were also considered. In virtual patients, an average adjustment of 52.2% was obtained in the calibration stage, and a difference in the estimation of insulin therapy tools of 16.5%, these results were obtained during a 3 days period. While in the cohort of 75 real patients, an average fit of 30.5% was initially obtained and a difference of 46.9% between the therapy tools defined by the model and those configured in the pump, however, a correction algorithm was proposed to mitigate the effect of factors such as bolus skipping, poor carbohydrate counting, and untimely advertisements, correcting the input data offline. Correcting the data using rules and a genetic algorithm, an average adjustment of 47.8% and a difference in the tools of 35.1% were obtained.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Automática
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[Association, 2011] Association, A. (2011). Diagnosis and classi cation of diabetes mellitus. Diabetes Care, 36:S67{S74.
dc.relation[Balsa-Canto et al., 2010] Balsa-Canto, E., Alonso, A., and Banga, J. (2010). An iterative identi cation procedure for dynamic modeling of biochemical networks. BMC systems biology, 4:11.
dc.relation[Bellman and Astr om, 1970] Bellman, R. and Astr om, K. (1970). On structural identi ability. Mathematical Biosciences, 7:329{339.
dc.relation[Bellu et al., 2007] Bellu, G., Saccomani, M. P., Audoly, S., and D'Angi o, L. (2007). Daisy: A new software tool to test global identi ability of biological and physiological systems. Computer Methods and Programs in Biomedicine, 88(1):52 { 61.
dc.relation[Ben Sasi and Elmalki, 2013] Ben Sasi, A. and Elmalki, M. (2013). A fuzzy controller for blood glucose-insulin system. Journal of Signal and Information Processing, 04:111{117.
dc.relation[Bergman et al., 1979] Bergman, R., Ider, Y., Bowden, C., and Cobelli, C. (1979). Quantitative estimation of insulin sensitivity. The American journal of physiology, 236:E667{77.
dc.relation[Bode et al., 2012] Bode, B. W., Kyllo, J., and Kaufman, F. R. (2012). Pumping protocol: A guide to insulin pump therapy initiation. Medtronic.
dc.relation[Brun et al., 2001] Brun, R., Reichert, P., and K unsch, H. (2001). Practical identi ability analysis of large environmental simulation models. Water Resources Research - WATER RESOUR RES, 37:1015{1030.
dc.relation[Cappon et al., 2017] Cappon, G., Acciaroli, G., Vettoretti, M., Facchinetti, A., and Sparacino, G. (2017). Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics (Switzerland), 6.
dc.relation[Chi s et al., 2011] Chi s, O., Banga, J., and Balsa-Canto, E. (2011). Genssi: A software toolbox for structural identi ability analysis of biological models. Bioinformatics (Oxford, England), 27:2610{1.
dc.relation[Clarke et al., 2009] Clarke, W., Anderson, S., Breton, M., Patek, S., Kashmer, L., and Kovatchev, B. (2009). Closed-loop arti cial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: The virginia experience. Journal of diabetes science and technology, 3:1031{8.
dc.relation[Cobelli et al., 2011] Cobelli, C., Renard, E., and Kovatchev, B. (2011). Arti cial pancreas: Past, present, future. Diabetes, 60:2672{82.
dc.relation[Dalla Man et al., 2014] Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., and Cobelli, C. (2014). The uva/padova type 1 diabetes simulator: New features. Journal of diabetes science and technology, 8:26{34.
dc.relation[El Youssef et al., 2011] El Youssef, J., Castle, J., Branigan, D., Massoud, R., Breen, M., Jacobs, P., Bequette, B., and Ward, W. (2011). A controlled study of the e ectiveness of an adaptive closed-loop algorithm to minimize corticosteroid-induced stress hyperglycemia in type 1 diabetes. Journal of diabetes science and technology, 5:1312{26.
dc.relation[Ellingsen et al., 2009] Ellingsen, C., Dassau, E., Zisser, H., Grosman, B., Percival, M., Jovanovic, L., and Doyle, F. (2009). Safety constraints in an arti cial pancreatic cell: An implementation of model predictive control with insulin on board. Journal of diabetes science and technology, 3:536{44.
dc.relation[Facchinetti et al., 2013] Facchinetti, A., Del Favero, S., Sparacino, G., Castle, J., Ward, W., and Cobelli, C. (2013). Modeling the glucose sensor error. IEEE transactions on bio-medical engineering, 61.
dc.relation[Galias and Yu, 2008] Galias, Z. and Yu, X. (2008). Analysis of zero-order holder discretization of two-dimensional sliding-mode control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(12):1269{1273.
dc.relation[Garcia-Tirado et al., 2018] Garcia-Tirado, J., Zuluaga-Bedoya, C., and Breton, M. (2018). Identi ability analysis of three control-oriented models for use in arti cial pancreas systems. Journal of diabetes science and technology, 12:937{952.
dc.relation[Grosman et al., 2018] Grosman, B., Wu, D., Miller, D., Lintereur, L., Roy, A., Parikh, N., and Kaufman, F. (2018). Sensor-augmented pump-based customized mathematical model for type 1 diabetes. Diabetes Technology and Therapeutics, 20:207{221.
dc.relation[Haidar, 2016] Haidar, A. (2016). The arti cial pancreas: How closed-loop control is revolutionizing diabetes. IEEE Control Systems, 36:28{47.
dc.relation[Hassan K., 1992] Hassan K., K. (1992). Nonlinear Systems. Macmillan, New York.
dc.relation[Hong et al., 2018] Hong, H., Ovchinnikov, A., Pogudin, G., and Yap, C. (2018). Global identi ability of di erential models.
dc.relation[Jeandidier et al., 2008] Jeandidier, N., Riveline, J.-P., Tubiana-Ru , N., Vambergue, A., Catargi, B., Melki, V., Charpentier, G., and Guerci, B. (2008). Treatment of diabetes mellitus using an external insulin pump in clinical practice. Diabetes & Metabolism, 34:425{438.
dc.relation[Kalman, 1960] Kalman, R. E. (1960). On the general theory of control systems. IFAC Proceedings Volumes, 1(1):471{502.
dc.relation[Kaya and Mart nez, 2007] Kaya, C. and Mart nez, J. (2007). Euler discretization and inexact restoration for optimal control. Journal of Optimization Theory and Applications, 134:191{206.
dc.relation[Kirchsteiger et al., 2011] Kirchsteiger, H., Castillo Estrada, G., P olzer, S., Renard, E., and del Re, L. (2011). Estimating interval process models for type 1 diabetes for robust control design. In Proceedings of the 18th World Congress The International Federation of Automatic Control, pages 11761{11766.
dc.relation[Li et al., 2018] Li, Z., Lu, P., Daijun, Z., and Zhang, T. (2018). Practical identi ability analysis and optimal experimental design for the parameter estimation of the asm2d-based ebpr anaerobic submodel. Mathematical Problems in Engineering, 2018:1{9.
dc.relation[Ljung and Glad, 1994] Ljung, L. and Glad, T. (1994). On global identi ability for arbitrary model parametrizations. Automatica, 30(2):265 { 276.
dc.relation[Magdelaine et al., 2016] Magdelaine, N., Chaillous, L., Guilhem, I., Poirier, J.-Y., Krempf, M., Anne-Laure, F.-G., and Moog, C. H. (2016). Wavelets for CGM o -line Denoising. Diabetes Technology and Therapeutics, 18 (S1):A{137.
dc.relation[Magdelaine et al., 2015] Magdelaine, N., Chaillous, L., Guilhem, I., Poirier, J.-Y., Krempf, M., Moog, C. H., and Le Carpentier, E. (2015). A long-term model of the glucose-insulin dynamics of type 1 diabetes. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEE- RING, 62(6):1546{1552.
dc.relation[Magni et al., 2007] Magni, L., Raimondo, D., Bossi, L., Dalla Man, C., Nicolao, G., Kovatchev, B., and Cobelli, C. (2007). Model predictive control of type 1 diabetes: An in silico trial. Journal of diabetes science and technology, 1:804{12.
dc.relation[Meng et al., 2016] Meng, X., Li, J., Zhou, M., Dai, X., and Dou, J. (2016). Population-based incremental learning algorithm for a serial colored traveling salesman problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP:1{12.
dc.relation[Meshkat et al., 2014] Meshkat, N., Kuo, C. E.-z., and DiStefano, III, J. (2014). On nding and using identi able parameter combinations in nonlinear dynamic systems biology models and combos: A novel web implementation. PLOS ONE, 9(10):1{14.
dc.relation[Miao et al., 2011] Miao, H., Xia, X., Perelson, A., and Wu, H. (2011). On identi ability of nonlinear ode models and applications in viral dynamics. SIAM review. Society for Industrial and Applied Mathematics, 53:3{39.
dc.relation[Mizuno et al., 1993] Mizuno, S., Todd, M., and Ye, Y. (1993). On adaptive-step primal-dual interior-point algorithms for linear programming. Mathematics of Operations Research - MOR, 18:964{981.
dc.relation[Mueckler and Thorens, 2013] Mueckler, M. and Thorens, B. (2013). The slc2 (glut) family of membrane transporters. Molecular aspects of medicine, 34:121{138.
dc.relation[Nathan et al., 1993] Nathan, D. M., Genuth, S. M., Lachin, J. M., Cleary, P., Cro ord, O. B., Davis, M. I., Rand, L. L., and Siebert, C. (1993). The e ect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. The New England journal of medicine, 329 14:977{86.
dc.relation[Parker et al., 2000] Parker, R., III, F., Ward, J., and Peppas, N. (2000). Robust h-inf glucose control in diabetes using a physiological model. AIChE Journal, 46:2537 { 2549.
dc.relation[Pickup, 2012] Pickup, J. (2012). Insulin-pump therapy for type 1 diabetes mellitus. The New England journal of medicine, 366:1616{24.
dc.relation[Pinsker et al., 2016] Pinsker, J., Lee, J., Dassau, E., Seborg, D., Bradley, P., Gondhalekar, R., Bevier, W., Huyett, L., Zisser, H., and Doyle, F. (2016). Randomized crossover comparison of personalized mpc and pid control algorithms for the arti cial pancreas. Diabetes Care, 39:dc152344.
dc.relation[Pohjanpalo, 1978] Pohjanpalo, H. (1978). System identi ability based on the power series expansion of the solution. volume 41, pages 21{23.
dc.relation[Poretsky, 2010] Poretsky, L. (2010). Principles of Diabetes Mellitus.
dc.relation[Ramkissoon et al., 2018] Ramkissoon, C., Herrero, P., Bondia, J., and Veh , J. (2018). Unannounced meals in the arti cial pancreas: Detection using continuous glucose monitoring. Sensors (Basel, Switzerland), 18.
dc.relation[Ramprasad et al., 2004] Ramprasad, Y., Rangaiah, G., and Lakshminarayanan, S. (2004). Robust pid controller for blood glucose regulation in type i diabetics. Industrial and Engineering Chemistry Research - IND ENG CHEM RES, 43.
dc.relation[Raue et al., 2013] Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingm uller, U., and Timmer, J. (2013). Structural and practical identi ability analysis of partially observed dynamical models by exploiting the pro le likelihood. Bioinformatics, 25:1923{1929.
dc.relationRaviv and Djaja, 1999] Raviv, D. and Djaja, E. W. (1999). Technique for enhancing the performance of discretized controllers. IEEE Control Systems Magazine, 19(3):52{57.
dc.relation[R oder et al., 2016] R oder, P., Wu, B., Liu, Y., and Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 48:e219.
dc.relation[Reiband et al., 2014] Reiband, H., Schmidt, S., Ranjan, A., Holst, J., Madsbad, S., and N rgaard, K. (2014). Dual-hormone treatment with insulin and glucagon in patients with type 1 diabetes. Diabetes/Metabolism Research and Reviews, 31.
dc.relation[Rodriguez-Fernandez et al., 2012] Rodriguez-Fernandez, M., Banga, J., and III, F. (2012). Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: Application to systems biology models. International Journal of Robust and Nonlinear Control, 22:1082{1102.
dc.relation[Ruan et al., 2017] Ruan, Y., Wilinska, M. E., Thabit, H., and Hovorka, R. (2017). Modeling day-to-day variability of glucose{insulin regulation over 12-week home use of closedloop insulin delivery. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 64(6):1412{1419.
dc.relation[Saeedi et al., 2019] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A., Ogurtsova, K., Shaw, J., Bright, D., and Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157:107843.
dc.relation[S eborg et al., 2011] S eborg, T., Rasmussen, C., Mosekilde, E., and Colding-J rgensen, M. (2011). Bioavailability and variability of biphasic insulin mixtures. European journal of pharmaceutical sciences : o cial journal of the European Federation for Pharmaceutical Sciences, 46:198{208.
dc.relation[Shapira et al., 2010] Shapira, G., Yodfat, O., HaCohen, A., Feigin, P., and Rubin, R. (2010). Bolus guide: A novel insulin bolus dosing decision support tool based on selection of carbohydrate ranges. Journal of diabetes science and technology, 4:893{902.
dc.relation[Thompson et al., 2008] Thompson, D., Capes, S., Feig, D., Kader, T., Keely, E., and Kozak, S. (2008). Canadian diabetes association 2008 clinical practice guidelines for the prevention and management of diabetes in canada. Can J Diabetes, 32:S168{S180.
dc.relation[Tiham er et al., 2003] Tiham er, d., Dadvandipour, S., and Fut as, J. (2003). In uence of discretization method on the digital control system performance. Acta Montanistica Slovaca, 8.
dc.relation[Todd, 2010] Todd, J. (2010). Etiology of type 1 diabetes. Immunity, 32:457{67.
dc.relation[Tuncer and Le, 2018] Tuncer, N. and Le, T. (2018). Structural and practical identi ability analysis of outbreak models. Mathematical biosciences, 299.
dc.relation[Turksoy et al., 2015] Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., and Cinar, A. (2015). Meal-detection in patients with type 1 diabetes: A new module for the multivariable adaptive arti cial pancreas control system. IEEE journal of biomedical and health informatics, 20.
dc.relation[Vajda et al., 1989] Vajda, S., Godfrey, K. R., and Rabitz, H. (1989). Similarity transformation approach to identi ability analysis of nonlinear compartmental models. Mathematical Biosciences, 93(2):217 { 248.
dc.relation[Villaverde and Barreiro, 2016] Villaverde, A. and Barreiro, A. (2016). Identi ability of large nonlinear biochemical networks. MATCH Communications in Mathematical and in Computer Chemistry, 76:259{296.
dc.relation[Villaverde et al., 2016] Villaverde, A., Barreiro, A., and Papachristodoulou, A. (2016). Structural identi ability of dynamic systems biology models. PLOS Comput Biol, 12.
dc.relation[Villaverde, 2019] Villaverde, A. F. (2019). Observability and structural identi ability of nonlinear biological systems. Computational Methods for Identi cation and Modelling of Complex Biological Systems, 2019.
dc.relation[Walsh et al., 2011] Walsh, J., Roberts, R., and Bailey, T. (2011). Guidelines for optimal bolus calculator settings in adults. Journal of diabetes science and technology, 5:129{35.
dc.relation[Walter and Lecourtier, 1982] Walter, E. and Lecourtier, Y. (1982). Global approaches to identi ability testing for linear and nonlinear state space models. Mathematics and Com- puters in Simulation, 24(6):472 { 482.
dc.relation[Walter and Pronzato, 1997] Walter, E. and Pronzato, L. (1997). Identi cation of Parame- tric Models from Experimental Data. Springer, London.
dc.relation[Yuen et al., 2019] Yuen, L., Saeedi, P., Riaz, M., Karuranga, S., Divakar, H., Levitt, N., Yang, X., and Simmons, D. (2019). Idf diabetes atlas: Projections of the prevalence of hyperglycaemia in pregnancy in 2019 and beyond: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157:107841.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleIdentificación de modelos relevantes al control de glicemia en personas con diabetes mellitus tipo 1
dc.typeOtros


Este ítem pertenece a la siguiente institución