dc.contributorDepartamento de Ingeniería Química y Ambiental
dc.contributorGodoy Silva, Rubén Darío
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorPalomino Martínez, Alejandra
dc.date.accessioned2020-12-11T16:37:16Z
dc.date.available2020-12-11T16:37:16Z
dc.date.created2020-12-11T16:37:16Z
dc.date.issued2020-12-10
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78697
dc.description.abstractHydrothermal liquefaction of the microalga was carried out. A response surface methodology was used to explore the effect of reaction temperature, retention time, initial total solids, and biomass composition, as well as their interactions, on the yield and quality of the resultant biocrude. The maximum biocrude yield was obtained between 315–325 °C and 40–45 min, at lipid ratio and initial total solids of 0.65 and 15 %, respectively. Under these conditions, the higher heating value was 35 MJ/kg, the total acid number was 70 mg KOH/g and the carbon, nitrogen and oxygen contents were 72 %, 3.7 % and 13 %, respectively. The inclusion of the chemical composition of the biomass as a modeling factor allowed predicting the yield and quality of the biocrude for several data sets published in the literature. The regression model predicted 61 % of the biocrude yields published within the standard deviation zone of ± 5 %. The degree of success for the models predicting quality parameters ranged from to 50-80 %. A new quantitative model was proposed for the calculation of biocrude yield of microalgae. The new model was tested with large numbers of experimental data published over a wide range of temperatures (200–400 °C), retention times (1–120 min) and chemical composition of microalgae (0.0–66 % lipids, 9–75 % proteins, 5–64 % carbohydrates, in dry basis). This model predicted 45 % of the biocrude yields published within the standard deviation zone of ± 5 % and 78 % of the total data was within the zone of standard deviation of ± 10 %. The effect of reaction temperature, retention time and elementary composition of the biomass was evaluated on the quality of the algae biocrude and used to propose a new quantitative model for the calculation of the elemental composition of this biocrude. The model provided information on the behavior of the reaction temperature and retention time on the carbon, nitrogen, hydrogen, and oxygen content of the algae biocrude. The new model was successful in more than 81 % for predicting the elemental composition of the macroalgae biocrude. The prediction capacity of the carbon, nitrogen, and oxygen content in the microalgae biocrude was between 53 and 81 %. The storage stability of biocrude produced from hydrothermal liquefaction of microalgae was systematically studied over 60 days, and the effect of the storage material, feedstock species, liquefaction temperature and storage temperature were assessed. Biocrudes obtained at 300 °C and 350 °C from the microalgae Spirulina and Chlorella vulgaris were stored at three temperatures: cold (4 °C), ambient (20 °C) and elevated temperatures (35 °C), over the two-month period. The viscosity of the biocrudes only increased considerably at 35 °C. The reaction temperature and biomass type were also strong determining factors of the impact on biocrude stability. Biocrudes produced from C. vulgaris were more stable than the Spirulina, and the crudes formed at 350 °C were considerably less reactive than those produced at 300 °C.
dc.description.abstractSe realizó licuefacción hidrotermal de la microalga. Se utilizó una metodología de superficie de respuesta para explorar el efecto de la temperatura de reacción, el tiempo de retención, los sólidos totales iniciales y la composición de la biomasa, así como sus interacciones, sobre el rendimiento y la calidad del biocrudo resultante. El rendimiento máximo de biocrudo se obtuvo entre 315-325 °C y 40-45 min, con una proporción de lípidos y sólidos totales iniciales de 0,65 y 15%, respectivamente. En estas condiciones, el poder calorífico superior fue 35 MJ/kg, el índice de acidez total fue 70 mg KOH/g y los contenidos de carbono, nitrógeno y oxígeno fueron 72%, 3,7% y 13%, respectivamente. La inclusión de la composición química de la biomasa como factor de modelado permitió predecir el rendimiento y la calidad del biocrudo para varios conjuntos de datos publicados en la literatura. El modelo de regresión predijo el 61% de los rendimientos de biocrudo publicados dentro de la zona de desviación estándar de ± 5%. El grado de éxito de los modelos que predicen los parámetros de calidad osciló entre el 50 y el 80%. Se propuso un nuevo modelo cuantitativo para el cálculo del rendimiento de biocrudo de microalgas. El nuevo modelo se probó con una gran cantidad de datos experimentales publicados en una amplia gama de temperaturas (200–400 °C), tiempos de retención (1–120 min) y composición química de las microalgas (0,0–66% de lípidos, 9–75% proteínas, 5-64% de carbohidratos, en base seca). Este modelo predijo el 45% de los rendimientos de biocrudo publicados dentro de la zona de desviación estándar de ± 5% y el 78% de los datos totales estaba dentro de la zona de desviación estándar de ± 10%. Se evaluó el efecto de la temperatura de reacción, el tiempo de retención y la composición elemental de la biomasa sobre la calidad del biocrudo de algas y se utilizó para proponer un nuevo modelo cuantitativo para el cálculo de la composición elemental de este biocrudo. El modelo proporcionó información sobre el comportamiento de la temperatura de reacción y el tiempo de retención en el contenido de carbono, nitrógeno, hidrógeno y oxígeno del biocrudo de algas. El nuevo modelo tuvo éxito en más del 81% para predecir la composición elemental del biocrudo de macroalgas. La capacidad de predicción del contenido de carbono, nitrógeno y oxígeno en el biocrudo de microalgas estuvo entre 53 y 81%. La estabilidad de almacenamiento del biocrudo producido a partir de la licuefacción hidrotermal de microalgas se estudió sistemáticamente durante 60 días y se evaluó el efecto del material de almacenamiento, las especies de materia prima, la temperatura de licuefacción y la temperatura de almacenamiento. Los biocrudos obtenidos a 300 °C y 350 °C de las microalgas Spirulina y Chlorella vulgaris se almacenaron a tres temperaturas: frío (4 °C), ambiente (20 °C) y temperaturas elevadas (35 °C), durante el período de dos meses. período. La viscosidad de los biocrudes solo aumentó considerablemente a 35 °C. La temperatura de reacción y el tipo de biomasa también fueron fuertes factores determinantes del impacto en la estabilidad del biocrudo. Los biocrudos producidos a partir de C. vulgaris eran más estables que la espirulina, y los crudos formados a 350 °C eran considerablemente menos reactivos que los producidos a 300 °C.
dc.languageeng
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] International Energy Agency (IEA), Technology Roadmap Biofuels for Transport, 2011.
dc.relation[2] L. Gouveia, Microalgae as a Feedstock for Biofuels, in: SpringerBriefs Microbiol., 2011: pp. 1–69.
dc.relation[3] S. Kumar, Sub- and Supercritical Water Technology for Biofuels, in: J.W. Lee (Ed.), Adv. Biofuels Bioprod., Springer New York, 2013: pp. 147–183.
dc.relation[4] N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. 103 (2006) 15729–15735.
dc.relation[5] J.P. Maity, J. Bundschuh, C.-Y. Chen, P. Bhattacharya, Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review, Energy. (2014).
dc.relation[6] G.C. Dismukes, D. Carrieri, N. Bennette, G.M. Ananyev, M.C. Posewitz, Aquatic phototrophs: efficient alternatives to land-based crops for biofuels., Curr. Opin. Biotechnol. 19 (2008) 235–40.
dc.relation[7] A.E. Harman-Ware, T. Morgan, M. Wilson, M. Crocker, J. Zhang, K. Liu, J. Stork, S. Debolt, Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp., Renew. Energy. 60 (2013) 625–632.
dc.relation[8] R. Thilakaratne, M.M. Wright, R.C. Brown, A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels, Fuel. 128 (2014) 104–112.
dc.relation[9] R. Halim, M.K. Danquah, P.A. Webley, Extraction of oil from microalgae for biodiesel production: A review., Biotechnol. Adv. 30 (2012) 709–32.
dc.relation[10] R. Halim, B. Gladman, M.K. Danquah, P.A. Webley, Oil extraction from microalgae for biodiesel production., Bioresour. Technol. 102 (2011) 178–85.
dc.relation[11] D. López Barreiro, W. Prins, F. Ronsse, W. Brilman, W. Prins, F. Ronsse, W. Brilman, Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects, Biomass and Bioenergy. 53 (2013) 113–127.
dc.relation[12] C. Tian, Z. Liu, Y. Zhang, Hydrothermal liquefaction (HTL): A promising pathway for biorefinery of algae, 2017.
dc.relation[13] S. Kumar, Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels, in: R. Gordon, J. Seckbach (Eds.), Sci. Algal Fuels SE - 25, Springer Netherlands, 2012: pp. 467–493.
dc.relation[14] G. Yu, Y. Zhang, B. Guo, T. Funk, L. Schideman, Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae, BioEnergy Res. 7 (2014) 1317–1328.
dc.relation[15] H. Li, Z. Liu, Y. Zhang, B. Li, H. Lu, N. Duan, M. Liu, Z. Zhu, B. Si, Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction., Bioresour. Technol. 154 (2014) 322–9.
dc.relation[16] L. Leng, J. Li, Z. Wen, W. Zhou, Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process, Bioresour. Technol. (2018).
dc.relation[17] M. Saber, B. Nakhshiniev, K. Yoshikawa, A review of production and upgrading of algal bio-oil, Renew. Sustain. Energy Rev. 58 (2016) 918–930.
dc.relation[19] P.J. Valdez, V.J. Tocco, P.E. Savage, A general kinetic model for the hydrothermal liquefaction of microalgae, Bioresour. Technol. 163 (2014) 123–7.
dc.relation[20] K. Anastasakis, A.B.B. Ross, Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods, Fuel. 139 (2015) 546–553.
dc.relation[21] R. Singh, B. Balagurumurthy, T. Bhaskar, Hydrothermal liquefaction of macro algae: Effect of feedstock composition, Fuel. 146 (2015) 69–74.
dc.relation[22] N. Neveux, A.K.L. Yuen, C. Jazrawi, M. Magnusson, B.S. Haynes, A.F. Masters, A. Montoya, N.A. Paul, T. Maschmeyer, R. de Nys, Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae., Bioresour. Technol. 155 (2014) 334–41.
dc.relation[23] D. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil, Energy & Fuels. 24 (2010) 4054–4061.
dc.relation[24] P.S. Christensen, G. Peng, F. Vogel, B.B. Iversen, Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum: Impact of Reaction Conditions on Product and Elemental Distribution, Energy & Fuels. 28 (2014) 5792–5803.
dc.relation[25] D. López Barreiro, C. Zamalloa, N. Boon, W. Vyverman, F. Ronsse, W. Brilman, W. Prins, Influence of strain-specific parameters on hydrothermal liquefaction of microalgae., Bioresour. Technol. 146 (2013) 463–71.
dc.relation[26] U. Jena, K.C. Das, J.R. Kastner, Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis, Appl. Energy. 98 (2012) 368–375.
dc.relation[27] W.-T. Chen, Y. Zhang, J. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil, Appl. Energy. 128 (2014) 209–216.
dc.relation[28] W.-T.W.-T.. Chen, Y. Zhang, J.J.. b Zhang, G.. G. Yu, L.C.L.C.. Schideman, P.P.. P. Zhang, M.M.. M. Minarick, Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil., Bioresour. Technol. 152 (2014) 130–9.
dc.relation[29] B. Jin, P. Duan, Y. Xu, F. Wang, Y. Fan, Co-liquefaction of micro- and macroalgae in subcritical water., Bioresour. Technol. 149 (2013) 103–10.
dc.relation[30] Q.-H. Shen, Y.-P. Gong, W.-Z. Fang, Z.-C. Bi, L.-H. Cheng, X.-H. Xu, H.-L. Chen, Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency, Bioresour. Technol. 193 (2015) 68–75.
dc.relation[31] C. Safi, B. Zebib, O. Merah, P.-Y. Pontalier, C. Vaca-Garcia, Morphology, composition, production, processing and applications of Chlorella vulgaris: A review, Renew. Sustain. Energy Rev. 35 (2014) 265–278.
dc.relation[32] L.M. Serrano, Estudio de cuatro cepas nativas de microalgas para evaluar su potencial uso en la producción de biodiesel, Universidad Nacional de Colombia, 2012.
dc.relation[33] K. Anastasakis, A.B. Ross, Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition., Bioresour. Technol. 102 (2011) 4876–83.
dc.relation[34] U. Jena, K.C. Das, J.R. Kastner, Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis., Bioresour. Technol. 102 (2011) 6221–9.
dc.relation[35] D. Li, L. Chen, D. Xu, X. Zhang, N. Ye, F. Chen, S. Chen, Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh., Bioresour. Technol. 104 (2012) 737–42.
dc.relation[36] S. Zou, Y. Wu, M. Yang, C. Li, J. Tong, Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characterization of Bio-oils, Energy & Fuels. 23 (2009) 3753–3758.
dc.relation[37] B.E. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp., Bioresour. Technol. 170 (2014) 20–9.
dc.relation[38] P. Duan, P.E. Savage, Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts, Ind. Eng. Chem. Res. 50 (2010) 52–61.
dc.relation[39] P. Biller, R. Riley, A.B. Ross, Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids., Bioresour. Technol. 102 (2011) 4841–8. https://doi.org/10.1016/j.biortech.2010.12.113.
dc.relation[40] Y. Xu, X. Zheng, H. Yu, X. Hu, Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5., Bioresour. Technol. 156 (2014) 1–5.
dc.relation[41] C. Torri, D. Fabbri, L. Garcia-Alba, D.W.F. Brilman, Upgrading of oils derived from hydrothermal treatment of microalgae by catalytic cracking over H-ZSM-5: A comparative Py–GC–MS study, J. Anal. Appl. Pyrolysis. 101 (2013) 28–34.
dc.relation[42] J. Li, G. Wang, M. Chen, J. Li, Y. Yang, Q. Zhu, X. Jiang, Z. Wang, H. Liu, Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil., Bioresour. Technol. 169 (2014) 110–8.
dc.relation[43] C. Tian, B. Li, Z. Liu, Y. Zhang, H. Lu, Hydrothermal liquefaction for algal biorefinery: A critical review, Renew. Sustain. Energy Rev. 38 (2014) 933–950.
dc.relation[44] Y. Guo, T. Yeh, W. Song, D. Xu, S. Wang, A review of bio-oil production from hydrothermal liquefaction of algae, Renew. Sustain. Energy Rev. 48 (2015) 776–790.
dc.relation[45] G. Yu, Y. Zhang, L. Schideman, T.L. Funk, Z. Wang, Hydrothermal liquefaction of low lipid content microalgae into bio‐crude oil, Am. Soc. Agric. Biol. Eng. 54 (2011) 239–246.
dc.relation[46] Q.-V. Bach, M.V. Sillero, K.-Q. Tran, J. Skjermo, Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests, Algal Res. 6 (2014) 271–276.
dc.relation[47] L. Garcia Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A. Kersten, D.W.F. (Wim) Brilman, Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept, Energy & Fuels. 26 (2011) 642–657.
dc.relation[48] T. Minowa, S. Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel. 74 (1995) 1735–1738.
dc.relation[49] T.T.-O. Matsui, A. Nishihara, C. Ueda, M. Ohtsuki, N. Ikenaga, T. Suzuki, Liquefaction of micro-algae with iron catalyst, Fuel. 76 (1997) 1043–1048.
dc.relation[50] P.J. Valdez, M.C. Nelson, H.Y. Wang, X.N. Lin, P.E. Savage, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions, Biomass and Bioenergy. 46 (2012) 317–331.
dc.relation[51] P.J. Valdez, J.G. Dickinson, P.E. Savage, Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp. and the Influence of Solvents, Energy & Fuels. 25 (2011) 3235–3243.
dc.relation[52] H. Li, J. Hu, Z. Zhang, H. Wang, F. Ping, C. Zheng, H. Zhang, Q. He, Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil., Bioresour. Technol. 163 (2014) 143–51.
dc.relation[53] J. Zhang, Y. Zhang, Z. Luo, Hydrothermal Liquefaction of Chlorella pyrenoidosa in Ethanol-water for Bio-crude Production, Energy Procedia. 61 (2014) 1961–1964.
dc.relation[54] D.R. Vardon, B.K. Sharma, J. Scott, G. Yu, Z. Wang, L. Schideman, Y. Zhang, T.J. Strathmann, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge., Bioresour. Technol. 102 (2011) 8295–303.
dc.relation[55] B. Patel, K. Hellgardt, Hydrothermal upgrading of algae paste in a continuous flow reactor, Bioresour. Technol. 191 (2015) 460–468.
dc.relation[56] P. Duan, B. Wang, Y. Xu, Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae, Bioresour. Technol. 186 (2015) 58–66.
dc.relation[57] D. López Barreiro, C. Samorì, G. Terranella, U. Hornung, A. Kruse, W. Prins, Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction., Bioresour. Technol. 174C (2014) 256–265.
dc.relation[58] N. Neveux, A.K.L. Yuen, C. Jazrawi, Y. He, M. Magnusson, B.S. Haynes, A.F. Masters, A. Montoya, N.A. Paul, T. Maschmeyer, R. de Nys, Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction, Algal Res. 6 (2014) 22–31.
dc.relation[59] S. Leow, J.R. Witter, D.R. Vardon, B.K. Sharma, J.S. Guest, T.J. Strathmann, Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition, Green Chem. 17 (2015) 3584–3599.
dc.relation[60] E.U. Franck, Fluids at high pressures and temperatures, Pure Appl. Chem. 59 (1987) 25.
dc.relation[61] C. Jazrawi, P. Biller, Y. He, A. Montoya, A.B. Ross, T. Maschmeyer, B.S. Haynes, Two-stage hydrothermal liquefaction of a high-protein microalga, Algal Res. 8 (2015) 15–22.
dc.relation[62] Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, J. Tong, Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake, Energy. 35 (2010) 5406–5411.
dc.relation[63] J. Li, G. Wang, Z. Wang, L. Zhang, C. Wang, Z. Yang, Conversion of Enteromorpha prolifera to high-quality liquid oil via deoxy-liquefaction, J. Anal. Appl. Pyrolysis. 104 (2013) 494–501.
dc.relation[64] S.S. Toor, H. Reddy, S. Deng, J. Hoffmann, D. Spangsmark, L.B. Madsen, J.B. Holm-Nielsen, L.A. Rosendahl, Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions., Bioresour. Technol. 131 (2013) 413–9.
dc.relation[65] B.E.-O. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation., Bioresour. Technol. 174C (2014) 212–221.
dc.relation[66] Z. Li, P.E. Savage, Feedstocks for fuels and chemicals from algae: Treatment of crude bio-oil over HZSM-5, Algal Res. 2 (2013) 154–163.
dc.relation[67] P. Duan, X. Bai, Y. Xu, A. Zhang, F. Wang, L. Zhang, J. Miao, Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water, Fuel. 109 (2013) 225–233.
dc.relation[68] C. Gai, Y. Zhang, W.-T. Chen, P. Zhang, Y. Dong, An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis, Energy Convers. Manag. 96 (2015) 330–339.
dc.relation[69] H. Huang, X. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991–998.
dc.relation[70] D.C. Hietala, C.M. Godwin, B.J. Cardinale, P.E. Savage, The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction, Appl. Energy. (2019) 714–728.
dc.relation[71] Y. Huang, Y. Chen, J. Xie, H. Liu, X. Yin, C. Wu, Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp., Fuel. 183 (2016) 9–19.
dc.relation[72] K.P.R. Dandamudi, T. Muppaneni, J.S. Markovski, P. Lammers, S. Deng, Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions, Biomass and Bioenergy. 120 (2019) 224–228.
dc.relation[73] Y. Li, S. Leow, A.C. Fedders, B.K. Sharma, J.S. Guest, T.J. Strathmann, Quantitative multiphase model for hydrothermal liquefaction of algal biomass, Green Chem. 19 (2017) 1163–1174.
dc.relation[74] D.C. Hietala, C.K. Koss, A. Narwani, A.R. Lashaway, C.M. Godwin, B.J. Cardinale, P.E. Savage, Influence of biodiversity, biochemical composition, and species identity on the quality of biomass and biocrude oil produced via hydrothermal liquefaction, Algal Res. 26 (2017) 203–214.
dc.relation[75] W. Song, S. Wang, Y. Guo, D. Xu, Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass: Influence of process variables and their interactions on the product distributions, Int. J. Hydrogen Energy. 42 (2017) 20361–20374.
dc.relation[76] C. Gai, Y. Zhang, W.-T. Chen, P. Zhang, Y. Dong, Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa, RSC Adv. 4 (2014) 16958–16967.
dc.relation[77] D. Xu, G. Lin, S. Guo, S. Wang, Y. Guo, Z. Jing, Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review, Renew. Sustain. Energy Rev. 97 (2018) 103–118.
dc.relation[78] S. Xiu, A. Shahbazi, Bio-oil production and upgrading research: A review, Renew. Sustain. Energy Rev. 16 (2012) 4406–4414.
dc.relation[79] R. Shakya, J. Whelen, S. Adhikari, R. Mahadevan, S. Neupane, Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae, Algal Res. 12 (2015) 80–90.
dc.relation[80] R. Shakya, S. Adhikari, R. Mahadevan, S.R. Shanmugam, H. Nam, E.B. Hassan, T.A. Dempster, Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties, Bioresour. Technol. 243 (2017) 1112–1120.
dc.relation[81] S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel. 81 (2002) 1051–1063.
dc.relation[82] M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem. 28 (1956) 350–356.
dc.relation[83] Y.S. Cheng, Y. Zheng, J.S. VanderGheynst, Rapid quantitative analysis of lipids using a colorimetric method in a microplate format, Lipids. 46 (2011) 95–103.
dc.relation[84] T.K. Vo, S.-S. Kim, H.V. Ly, E.Y. Lee, C.-G. Lee, J. Kim, A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp., Bioresour. Technol. 241 (2017) 610–619.
dc.relation[85] T.K. Vo, O.K. Lee, E.Y. Lee, C.H. Kim, J.-W. Seo, J. Kim, S.-S. Kim, Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101, Chem. Eng. J. 306 (2016) 763–771.
dc.relation[86] X. Bai, P. Duan, Y. Xu, A. Zhang, P.E. Savage, Hydrothermal catalytic processing of pretreated algal oil: A catalyst screening study, Fuel. 120 (2014) 141–149.
dc.relation[87] Y.-P. Xu, P.-G. Duan, F. Wang, Q.-Q. Guan, Liquid fuel generation from algal biomass via a two-step process: Effect of feedstocks, Biotechnol. Biofuels. 11 (2018).
dc.relation[88] ASTM, ASTM International Designation: Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate, ASTM Int. D6751-19 (2019) 1–10.
dc.relation[89] T.M. Brown, P. Duan, P.E. Savage, Hydrothermal Liquefaction and Gasification of Nannochloropsis sp., Energy & Fuels. 24 (2010) 3639–3646.
dc.relation[90] R.C. Selley, S.A. Sonnenberg, Chapter 2 - The Physical and Chemical Properties of Petroleum, in: R.C. Selley, S.A. Sonnenberg (Eds.), Elem. Pet. Geol., Third Edit, Academic Press, Boston, 2015: pp. 13–39.
dc.relation[91] F. Obeid, T. Chu Van, R. Brown, T. Rainey, Nitrogen and sulphur in algal biocrude: A review of the HTL process, upgrading, engine performance and emissions, Energy Convers. Manag. 181 (2019) 105–119.
dc.relation[92] S. Oh, H.S. Choi, U.-J. Kim, I.-G. Choi, J.W. Choi, Storage performance of bio-oil after hydrodeoxygenative upgrading with noble metal catalysts, Fuel. 182 (2016) 154–160.
dc.relation[93] Z. Yang, A. Kumar, R.L. Huhnke, Review of recent developments to improve storage and transportation stability of bio-oil, Renew. Sustain. Energy Rev. 50 (2015) 859–870.
dc.relation[94] Z. He, D. Xu, L. Liu, Y. Wang, S. Wang, Y. Guo, Z. Jing, Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae, Algal Res. 33 (2018) 8–15.
dc.relation[95] B.P. Hollebone, Oil Physical Properties: Measurement and Correlation, Handb. Oil Spill Sci. Technol. (2015) 37–50.
dc.relation[96] D. Chen, J. Zhou, Q. Zhang, X. Zhu, Evaluation methods and research progresses in bio-oil storage stability, Renew. Sustain. Energy Rev. 40 (2014) 69–79.
dc.relation[97] M.S. Haider, D. Castello, K.M. Michalski, T.H. Pedersen, L.A. Rosendahl, Catalytic Hydrotreatment of Microalgae Biocrude from Continuous Hydrothermal Liquefaction: Heteroatom Removal and Their Distribution in Distillation Cuts, Energies. 11 (2018).
dc.relation[98] D. López Barreiro, F.J. Martin-Martinez, C. Torri, W. Prins, M.J. Buehler, Molecular characterization and atomistic model of biocrude oils from hydrothermal liquefaction of microalgae, Algal Res. 35 (2018) 262–273.
dc.relation[99] L. Gouveia, A.C. Oliveira, Microalgae as a raw material for biofuels production, J Ind Microbiol Biot. 36 (2009).
dc.relation[100] S. Jones, Y. Zhu, D. Anderson, R.T. Hallen, D.C. Elliott, Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons : Whole Algae Hydrothermal Liquefaction and Upgrading, 2014.
dc.relation[101] J. Wagner, R. Bransgrove, T.A. Beacham, M.J. Allen, K. Meixner, B. Drosg, V.P. Ting, C.J. Chuck, Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria, Bioresour. Technol. 207 (2016) 166–174.
dc.relation[102] G. Teri, L. Luo, P.E. Savage, Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures, Energy & Fuels. 28 (2014) 7501–7509.
dc.relation[103] J. Lu, Z. Liu, Y. Zhang, P.E. Savage, Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin, ACS Sustain. Chem. Eng. 6 (2018) 14501–14509.
dc.relation[104] L. Sheng, X. Wang, X. Yang, Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds, Bioresour. Technol. 247 (2017) 14–20.
dc.relation[105] P.J. Valdez, P.E. Savage, A reaction network for the hydrothermal liquefaction of Nannochloropsis sp., Algal Res. 2 (2013) 416–425.
dc.relation[106] J.D. Sheehan, P.E. Savage, Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction, Bioresour. Technol. 239 (2017) 144–150.
dc.relation[107] D.C. Hietala, J.L. Faeth, P.E. Savage, A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp., Bioresour. Technol. 214 (2016) 102–111.
dc.relation[108] Z. Liu, H. Li, J. Zeng, M. Liu, Y. Zhang, Z. Liu, Influence of Fe/HZSM-5 catalyst on elemental distribution and product properties during hydrothermal liquefaction of Nannochloropsis sp., Algal Res. 35 (2018) 1–9.
dc.relation[109] H.K. Reddy, T. Muppaneni, S. Ponnusamy, N. Sudasinghe, A. Pegallapati, T. Selvaratnam, M. Seger, B. Dungan, N. Nirmalakhandan, T. Schaub, F.O. Holguin, P. Lammers, W. Voorhies, S. Deng, Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp., Appl. Energy. 165 (2016) 943–951.
dc.relation[110] S. Chaudry, P.A. Bahri, N.R. Moheimani, Pathways of processing of wet microalgae for liquid fuel production: A critical review, Renew. Sustain. Energy Rev. 52 (2015) 1240–1250. https://doi.org/10.1016/j.rser.2015.08.005.
dc.relation[111] H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production: Progress and perspectives, Renew. Sustain. Energy Rev. 47 (2015) 427–437.
dc.relation[112] T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sustain. Energy Rev. 55 (2016) 909–941.
dc.relation[113] U. Jena, K.C. Das, Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae, Energy & Fuels. 25 (2011) 5472–5482.
dc.relation[114] A. Palomino, L.C. Montenegro-Ruíz, R.D. Godoy-Silva, Evaluation of yield-predictive models of biocrude from hydrothermal liquefaction of microalgae, Algal Res. 44 (2019).
dc.relation[115] Y. Chen, Y. Huang, J. Xie, X. Yin, C. Wu, Hydrothermal reaction of phenylalanine as a model compound of algal protein, J. Fuel Chem. Technol. 42 (2014) 61–67.
dc.relation[116] L. Luo, J.D. Sheehan, L. Dai, P.E. Savage, Products and Kinetics for Isothermal Hydrothermal Liquefaction of Soy Protein Concentrate, ACS Sustain. Chem. Eng. 4 (2016) 2725–2733.
dc.relation[117] E. Barbarino, S.O. Lourenço, An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae, J. Appl. Phycol. 17 (2005) 447–460.
dc.relation[118] C. Safi, M. Charton, O. Pignolet, F. Silvestre, C. Vaca-Garcia, P.-Y. Pontalier, Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors, J. Appl. Phycol. 25 (2013) 523–529.
dc.relation[119] M. Bjarnadóttir, B.V. Aðalbjörnsson, A. Nilsson, R. Slizyte, M.Y. Roleda, G.Ó. Hreggviðsson, Ó.H. Friðjónsson, R. Jónsdóttir, Palmaria palmata as an alternative protein source: enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor, J. Appl. Phycol. 30 (2018) 2061–2070.
dc.relation[120] J. Cheng, R. Huang, T. Yu, T. Li, J. Zhou, K. Cen, Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction., Bioresour. Technol. 151 (2014) 415–8.
dc.relation[121] A.R.K. Gollakota, N. Kishore, S. Gu, A review on hydrothermal liquefaction of biomass, Renew. Sustain. Energy Rev. (2016) 1–15.
dc.relation[122] A. Galadima, O. Muraza, Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts, Renew. Sustain. Energy Rev. 81 (2018) 1037–1048.
dc.relation[123] K.O. Albrecht, Y. Zhu, A.J. Schmidt, J.M. Billing, T.R. Hart, S.B. Jones, G. Maupin, R. Hallen, T. Ahrens, D. Anderson, Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors, Algal Res. 14 (2016) 17–27.
dc.relation[124] D. Elliott, T. Hart, A. Schmidt, G. Neuenschwander, L. Rotness, M. Olarte, A. Zacher, K. Albrecht, R. Hallen, J. Holladay, Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor, Algal Res. 2 (2013) 445–454.
dc.relation[125] D.C. Elliott, T.R. Hart, G.G. Neuenschwander, L.J. Rotness, G. Roesijadi, A.H. Zacher, J.K. Magnuson, Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors, ACS Sustain. Chem. Eng. 2 (2013) 207–215.
dc.relation[126] Y.. Chen, N.. Zhao, Y.. b Wu, K.. Wu, X.. Wu, J.. Liu, M.. Yang, Distributions of organic compounds to the products from hydrothermal liquefaction of microalgae, Environ. Prog. Sustain. Energy. 36 (2017) 259–268.
dc.relation[127] S. Czernik, D.K. Johnson, S. Black, Stability of wood fast pyrolysis oil, Biomass and Bioenergy. 7 (1994) 187–192.
dc.relation[128] R.N. Hilten, K.C. Das, Comparison of three accelerated aging procedures to assess bio-oil stability, Fuel. 89 (2010) 2741–2749.
dc.relation[129] O.D. Mante, F.A. Agblevor, Storage stability of biocrude oils from fast pyrolysis of poultry litter, Waste Manag. 32 (2012) 67–76.
dc.relation[130] J. Kosinkova, J.A. Ramirez, Z.D. Ristovski, R.J. Brown, T.J. Rainey, Physical and Chemical Stability of Bagasse Bio-crude from Liquefaction Stored in Real Conditions, Energy & Fuels. (2016).
dc.relation[131] T.-S. Kim, J.-Y. Kim, K.-H. Kim, S. Lee, D. Choi, I.-G. Choi, J.W. Choi, The effect of storage duration on bio-oil properties, J. Anal. Appl. Pyrolysis. 95 (2012) 118–125.
dc.relation[132] J.P. Diebold, A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils, NREL, 2000.
dc.relation[133] M.. Boucher, A. Chaala, H. Pakdel, C. Roy, Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase, Biomass and Bioenergy. 19 (2000) 351–361.
dc.relation[134] H. Li, S. Xia, Y. Li, P. Ma, C. Zhao, Stability evaluation of fast pyrolysis oil from rice straw, Chem. Eng. Sci. 135 (2015) 258–265.
dc.relation[135] A. Oasmaa, J. Korhonen, E. Kuoppala, An Approach for Stability Measurement of Wood-Based Fast Pyrolysis Bio-Oils, Energy & Fuels. 25 (2011) 3307–3313.
dc.relation[136] A. Oasmaa, E. Kuoppala, Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel, Energy and Fuels. 17 (2003) 1075–1084.
dc.relation[137] J. Meng, A. Moore, D.C. Tilotta, S.S. Kelley, S. Adhikari, S. Park, Thermal and Storage Stability of Bio-Oil from Pyrolysis of Torrefied Wood, Energy & Fuels. 29 (2015) 5117–5126.
dc.relation[138] L. Zhu, K. Li, H. Ding, X. Zhu, Studying on properties of bio-oil by adding blended additive during aging, Fuel. 211 (2018) 704–711.
dc.relation[139] S. Raikova, H. Smith-Baedorf, R. Bransgrove, O. Barlow, F. Santomauro, J.L. Wagner, M.J. Allen, C.G. Bryan, D. Sapsford, C.J. Chuck, Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage, Fuel Process. Technol. 142 (2016) 219–227.
dc.relation[140] J.-H. Yang, H.-Y. Shin, Y.-J. Ryu, C.-G. Lee, Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery, J. Ind. Eng. Chem. 68 (2018) 267–273.
dc.relation[141] Y. Dote, S. Sawayama, S. Inoue, T. Minowa, S. Yokoyama, Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction, Fuel. 73 (1994) 1855–1857.
dc.relation[142] Y. He, X. Liang, C. Jazrawi, A. Montoya, A. Yuen, A.J. Cole, N. Neveux, N.A. Paul, R. de Nys, T. Maschmeyer, B.S. Haynes, Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents, Algal Res. 17 (2016) 185–195.
dc.relation[143] S. Ren, X.P. Ye, Stability of crude bio-oil and its water-extracted fractions, J. Anal. Appl. Pyrolysis. 132 (2018) 151–162.
dc.relation[144] M. Garcìa-Pèrez, A. Chaala, H. Pakdel, D. Kretschmer, D. Rodrigue, C. Roy, Evaluation of the Influence of Stainless Steel and Copper on the Aging Process of Bio-Oil, Energy & Fuels. 20 (2006) 786–795.
dc.relation[145] S. Liu, M. Chen, Q. Hu, J. Wang, L. Kong, The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil, Bioresour. Technol. 129 (2013) 381–386.
dc.relation[146] T.N. Trinh, P.A. Jensen, K. Dam-Johansen, N.O. Knudsen, H.R. Sørensen, S. Hvilsted, Comparison of Lignin, Macroalgae, Wood, and Straw Fast Pyrolysis, Energy & Fuels. 27 (2013) 1399–1409.
dc.relation[147] H. Jo, D. Verma, J. Kim, Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol, Fuel. 232 (2018) 610–619.
dc.relation[148] H. Hwang, J.-H. Lee, J. Moon, U.-J. Kim, I.-G. Choi, J.W. Choi, Influence of K and Mg Concentration on the Storage Stability of Bio-Oil, ACS Sustain. Chem. Eng. 4 (2016) 4346–4353.
dc.relation[149] J.D. Adjaye, R.K. Sharma, N.N. Bakhshi, Characterization and stability analysis of wood-derived bio-oil, Fuel Process. Technol. 31 (1992) 241–256.
dc.relation[150] H. Talbi, G. Monard, M. Loos, D. Billaud, Theoretical study of indole polymerization, J. Mol. Struct. THEOCHEM. 434 (1998) 129–134.
dc.relation[151] F. Yu, S. Deng, P. Chen, Y. Liu, Y. Wan, A. Olson, D. Kittelson, R. Ruan, Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover, Appl. Biochem. Biotechnol. 137 (2007) 957–970.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMetabolic manipulation as a strategy for the improvement of the biocrude obtained by hydrothermal liquefaction of microalgae
dc.typeOtro


Este ítem pertenece a la siguiente institución