dc.contributorWeber, Marion
dc.contributorGómez-Tuena, Arturo
dc.creatorErrazuriz Henao, Carlos
dc.date.accessioned2021-08-30T21:44:35Z
dc.date.accessioned2022-09-21T17:50:20Z
dc.date.available2021-08-30T21:44:35Z
dc.date.available2022-09-21T17:50:20Z
dc.date.created2021-08-30T21:44:35Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80055
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3403889
dc.description.abstractLa Provincia Volcánica del Norte (PVN) de los Andes del Norte colombianos está constituida por una secuencia de ~65 km de estratovolcanes alineados de N-S producto de la subducción de la placa relativamente joven de Nazca bajo el margen del continente suramericano. La columna sedimentaria subducida a lo largo de la trinchera colombiana está constituida por una unidad inferior rica en carbonato, cubierta por una secuencia hemipelágica rica en arcillas. Los productos volcánicos típicos de la PVN son lavas calco-alcalinas andesítico-dacíticas con un alto #Mg (> 58) que intruyen un basamento paleozoico relativamente uniforme de 40-50 km de espesor. A pesar de la homogeneidad de los productos volcánicos en términos de los elementos mayores, las rocas volcánicas exhiben una clara variación a lo largo del arco en elementos traza y composiciones isotópicas: los volcanes en los bordes al norte y sur de la provincia (i.e. Cerro Bravo y Cerro Machín) muestran una relación alta de Nb/Ta y Ba/Th, una relación baja de Th(U)/La y composiciones isotópicas de Sr-Nd-Hf más enriquecidas que los volcanes del centro (i.e. Santa Isabel). Estas variaciones no pueden explicarse por la asimilación cortical, por variaciones en el grado de fusión del manto o por cambios en los parámetros térmicos de la corteza oceánica subducida, ya que la arquitectura cortical es relativamente similar y la profundidad de la placa subducente aumenta gradualmente hacia el sur. En cambio, modelados geoquímicos indican que los volcanes en los bordes de la PVN incorporan una mayor proporción de sedimento carbonatado, mientras que los productos volcánicos hacia el centro tienen una mayor influencia de los componentes sedimentarios hemipelágicos. Debido a que el cese de la actividad magmática en los bordes de la NVP parece estar controlado por una segmentación de la subducción, se propone que un estado termal más alto producido por la desgarre de la placa Nazca en profundidad permite que una mayor incorporación del sedimento carbonatado sea retrabajado en los volcanes de los extremos. En contraste, los volcanes en el centro de la PVN, que están más alejados del desgarre de la placa, están ubicados sobre un régimen termal más frío que impide la fusión de las litologías refractarias propias de los sedimentos altamente carbonatados. (Texto tomado de la fuente)
dc.description.abstractThe Northern Volcanic Province (NVP) of the Colombian Andes is constituted by a ~65 km long N-S alignment of arc stratovolcanoes produced by the subduction of the young Nazca plate beneath the South American margin. The subducted sedimentary column along the Colombian trench is made up of a lower carbonate-rich unit covered by a hemipelagic clay sequence. The typical volcanic products of the NVP are high Mg# (>58) calc-alkaline andesitic-dacitic lavas built upon a uniform 40-50 km thick Paleozoic basement. Despite their homogeneity in terms of the major elements, the volcanic rocks exhibit a clear along-arc variation in trace elements and isotopic compositions: volcanoes at the northern and southern edges of the volcanic province (i.e. Cerro Bravo and Cerro Machín) display higher Nb/Ta and Ba/Th, lower Th(U)/La and more enriched Sr-Nd-Hf isotopic compositions than the volcanoes at the center (i.e. Santa Isabel). These variations cannot be explained by crustal assimilation, variations in the extent of mantle melting or changes in the slab thermal parameters because the crustal architecture is the same along strike and the slab depth gradually increases to the south. Instead, geochemical modelling indicates that volcanoes at the edges of the PVN incorporate a larger proportion of subducted sedimentary carbonate, while the volcanic products at the center have a greater influence of hemipelagic sediment components. Because the cessation of magmatic activity at the edges of the NVP appears to be controlled by a segmentation in the subducted slab, we propose that a higher thermal state produced by the slab-tear at depth allows a larger proportion of carbonate to be incorporated into the mantle source of the edge volcanoes. In contrast, volcanoes at the center of the chain, which are farther away from the slab-tear, are built upon a cooler thermal regime that hinders melting of the more refractory carbonate-rich lithologies.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisherMedellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAiuppa, A., Fischer, T.P., Plank, T., Robidoux, P., Di Napoli, R., 2017. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/STratios reveal dual source of carbon in arc volcanism. Earth-Science Reviews 168, 24–47. https://doi.org/10.1016/j.earscirev.2017.03.005 Albarède, F., Simonetti, A., Vervoort, J.D., Blichert-Toft, J., Abouchami, W., 1998. A Hf-Nd isotopic correlation in ferromanganese nodules. Geophysical Research Letters 25, 3895–3898. https://doi.org/10.1029/1998GL900008 Allen, J.C., Boettcher, A.L., 1983. The stability of amphibole in andesite and basalt at high pressures. American Mineralogist 68, 307–314. https://doi.org/scopus/2-s2.0-0020558282 Alonso-Perez, R., Müntener, O., Ulmer, P., 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology 157, 541–558. https://doi.org/10.1007/s00410-008-0351-8 Ancellin, M.A., Samaniego, P., Vlastélic, I., Nauret, F., Gannoun, A., Hidalgo, S., 2017. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochemistry, Geophysics, Geosystems 18, 1163–1188. https://doi.org/10.1002/2016GC006679 Anderson, D.L., 2007. New Theory of the Earth. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167291 Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47, 505–539. https://doi.org/10.1093/petrology/egi084 Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P., Antonelli, A., 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences 112, 6110–6115. https://doi.org/10.1073/pnas.1423853112 Bebout, G.E., 2013. Chemical and Isotopic Cycling in Subduction Zones, en: Treatise on Geochemistry: Second Edition. Elsevier, pp. 703–747. https://doi.org/10.1016/B978-0-08-095975-7.00322-3 Behn, M.D., Kelemen, P.B., Hirth, G., Hacker, B.R., Massonne, H.J., 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience 4, 641–646. https://doi.org/10.1038/ngeo1214 Beiersdorf, H., Natland, J.H., 1983. Sedimentary And Diagenetic Processes In The Central Panama Basin Since The Late Miocene: The Lithology And Composition Of Sediments From Deep Sea Drilling Project Sites 504 And 505. Beiersdorf, H., Rösch, H., 1983. Mineralogy Of Sediments Encountered During Deep Sea Drilling Project Leg 69 (Costa Rica Rift, Panama Basin), As Determined By X-Ray Diffraction. Bloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., Müntener, O., 2017. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth and Planetary Science Letters 476, 47–58. https://doi.org/10.1016/j.epsl.2017.07.041 Borrero, C., Murcia, H., Agustin-Flores, J., Arboleda, M.T., Giraldo, A.M., 2017. Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications 446, 361–374. https://doi.org/10.1144/SP446.10 Botero-Gómez, L.A., Osorio, P., Murcia, H., Borrero, C., Grajales, J.A., 2018. Campo Volcánico Monogenético Villamaría-Termales , Cordillera Central , Andes colombianos ( Parte I ): Características morfológicas y relaciones temporales 40, 85–102. https://doi.org/10.18273/revbol.v40n3-2018005.RESUMEN Bottazzi, P., Tiepolo, M., Vannucci, R., Zanetti, A., Brumm, R., Foley, S.F., Oberti, R., 1999. Distinct site preferences for heavy and light REE in amphibole and the prediction of (Amph/L)D(REE). Contributions to Mineralogy and Petrology 137, 36–45. https://doi.org/10.1007/s004100050580 Bowen, N.., 1928. The Evolution of the Igneous Rocks., Cambridge University Press. Cambridge University Press. https://doi.org/10.1017/S0016756800105424 Bryant, J.A., Yogodzinski, G.M., Hall, M.L., Lewicki, J.L., Bailey, D.G., 2006. Geochemical constraints on the origin of volcanic rocks from the Andean Northern volcanic zone, Ecuador. Journal of Petrology 47, 1147–1175. https://doi.org/10.1093/petrology/egl006 Bustamante, C., Archanjo, C.J., Cardona, A., Vervoort, J.D., 2016. Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America 128, 1762–1779. https://doi.org/10.1130/B31307.1 Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J., Weber, M., 2010. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences 29, 772–783. https://doi.org/10.1016/j.jsames.2009.12.005 Carpentier, M., Chauvel, C., Mattielli, N., 2008. Pb – Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system 272, 199–211. https://doi.org/10.1016/j.epsl.2008.04.036 Carpentier, M., Chauvel, C., Maury, R.C., Mattielli, N., 2009. The “zircon effect” as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth and Planetary Science Letters 287, 86–99. https://doi.org/10.1016/j.epsl.2009.07.043 Cashman, K. V., Sparks, R.S.J., Blundy, J.D., 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 355. https://doi.org/10.1126/science.aag3055 Castro, A., Gerya, T., García-Casco, A., Fernández, C., Díaz-Alvarado, J., Moreno-Ventas, I., Löw, I., 2010. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; Implications for the origin of Cordilleran-type batholiths. Journal of Petrology 51, 1267–1295. https://doi.org/10.1093/petrology/egq019 Cediel, F., Shaw, R.P., 2003. Tectonic Assembly of the Northern Andean Block. eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics 79, 815–848. Chang, Y., Warren, L.M., Prieto, G.A., 2017. Precise locations for intermediate-depth earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America 107, 2649–2663. https://doi.org/10.1785/0120170127 Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048 Chiaradia, M., 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: An Earth scale perspective. Scientific Reports 5, 8115. https://doi.org/10.1038/srep08115 Chiaradia, M., 2009. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology 265, 468–487. https://doi.org/10.1016/j.chemgeo.2009.05.014 Clift, P.D., Vannucchi, P., Morgan, J.P., 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews 97, 80–104. https://doi.org/10.1016/j.earscirev.2009.10.003 Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., Chiaradia, M., 2014. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020 Cook, H.E., Zimmels, I., 1972. X-Ray Mineralogy Studies, Leg 9, en: Initial Reports of the Deep Sea Drilling Project, 9. U.S. Government Printing Office, pp. 0–3. https://doi.org/10.2973/dsdp.proc.9.111.1972 Cortés, M., Angelier, J., 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020 Cuadros, F.A., Botelho, N., Ordoñez-Carmona, O., Matteini, M., 2015. Mesoproterozoic crust in the San Lucas Range ( Colombia ): An insight into the crustal evolution of the northern Andes a. https://doi.org/http://dx.doi.org/10.1016/j.precamres.2014.02.010 Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., 2007. Amphibole “sponge” in arc crust? Geology 35, 787–790. https://doi.org/10.1130/G23637A.1 Davies, J.H., Stevenson, D.J., 1992. Physical model of source region of subduction zones volcanics. Journal of Geophysical Research 97, 2037–2070. Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665. https://doi.org/10.1038/347662a0 Depaolo, D.J., 1981. AFC 53, 189–202. Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth 102, 14991–15019. https://doi.org/10.1029/97JB00788 Errazuriz-Henao, C., 2017. Origen de la Provincia Volcánica Norte de los Andes Colombianos: Andesitas primarias y diapiros sedimentarios. Universidad EAFIT. Farner, M.J., Lee, C.T.A., 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters 470, 96–107. https://doi.org/10.1016/j.epsl.2017.04.025 Farris, D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D., Valencia, V., 2011. Fracturing of the Panamanian Isthmus during initial collision with: South America. Geology 39, 1007–1010. https://doi.org/10.1130/G32237.1 Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems 14, 489–518. https://doi.org/10.1029/2012GC004334 Garcia, P.P., Vargas, C.A., Hugo Monsalve, J., 2007. Geometric model of the Nazca plate subduction in Southwest Colombia. Earth Sciences Research Journal 11, 118–131. Gazel, E., Trela, J., Bizimis, M., Sobolev, A., Batanova, V., Class, C., Jicha, B., 2018. Long-Lived Source Heterogeneities in the Galapagos Mantle Plume. Geochemistry, Geophysics, Geosystems 19, 2764–2779. https://doi.org/10.1029/2017GC007338 Gerya, T., 2011. Future directions in subduction modeling. Journal of Geodynamics 52, 344–378. https://doi.org/10.1016/j.jog.2011.06.005 Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics, Orogenic Andesites and Plate Tectonics. https://doi.org/10.1007/978-3-642-68012-0 Gómez-Tuena, A., Cavazos-Tovar, J.G., Parolari, M., Straub, S.M., Espinasa-Pereña, R., 2018. Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas. Lithos 322, 52–66. https://doi.org/10.1016/j.lithos.2018.10.005 Gómez-Tuena, A., Díaz-Bravo, B., Vázquez-Duarte, A., Pérez-Arvizu, O., Mori, L., 2014. Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society, London, Special Publications 385, 65–101. https://doi.org/10.1144/SP385.4 Gómez-Tuena, A., LaGatta, A.B., Langmuir, C.H., Goldstein, S.L., Fernando, O.G., Carrasco-Núñez, G., 2003. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochemistry, Geophysics, Geosystems 4. https://doi.org/10.1029/2003GC000524 Gómez-Tuena, A., Langmuir, C.H., Goldstein, S.L., Straub, S.M., Ortega-Gutiérrez, F., 2007. Geochemical evidence for slab melting in the trans-Mexican volcanic belt. Journal of Petrology 48, 537–562. https://doi.org/10.1093/petrology/egl071 Gómez-Tuena, A., Mori, L., Goldstein, S.L., Pérez-Arvizu, O., 2011. Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta 75, 213–241. https://doi.org/10.1016/j.gca.2010.09.029 Gómez-Tuena, A., Mori, L., Straub, S.M., 2016. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2016.12.006 Gómez-Tuena, A., Straub, S.M., Zellmer, G.F., 2014. An introduction to orogenic andesites and crustal growth. Geological Society, London, Special Publications 385, 1–13. https://doi.org/10.1144/SP385.16 Gómez-Tuena, A., Straub, S.M., Zellmer, G.F., 2013. An introduction to orogenic andesites and crustal growth. Geological Society, London, Special Publications. https://doi.org/10.1144/sp385.16 Gorring, M.L., Kay, S.M., 2001. Mantle processes and sources of neogene slab window magmas from Southern Patagonia, Argentina. Journal of Petrology 42, 1067–1094. https://doi.org/10.1093/petrology/42.6.1067 Goss, A.R., Kay, S.M., 2006. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochemistry, Geophysics, Geosystems 7. https://doi.org/10.1029/2005GC001163 Green, T., 1995. Significance of ? as an indicator of geochemical processes in the crust-mantle system. Chemical Geology 120, 347–359. https://doi.org/10.1016/0009-2541(94)00145-X Gutscher, M.A., Malavieille, J., Lallemand, S., Collot, J.Y., 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth and Planetary Science Letters 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6 Hacker, B.R., 2008. H<inf>2</inf>O subduction beyond arcs. Geochemistry, Geophysics, Geosystems 9. https://doi.org/10.1029/2007GC001707 Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters 307, 501–516. https://doi.org/10.1016/j.epsl.2011.05.024 Hayes, G.P., Wald, D.J., Johnson, R.L., 2012. Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth 117, 1–15. https://doi.org/10.1029/2011JB008524 Hays, J.D., Cook, H.E., III, J., D.G., C., F.M., F., J.T., G., R.M., M., E.D., O., 1972. Site 84, Initial Reports, en: Initial Reports of the Deep Sea Drilling Project, 9. U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.9.110.1972 Hildreth, W., Moorbath, S., 1988. Crustal contribution to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–489. https://doi.org/10.1007/BF00372365 Idárraga-García, J., Kendall, J.M., Vargas, C.A., 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems 17, 3655–3673. https://doi.org/10.1002/2016GC006323 Jadamec, M.A., 2016. Insights on slab-driven mantle flow from advances in three-dimensional modelling. Journal of Geodynamics 100, 51–70. https://doi.org/10.1016/j.jog.2016.07.004 Jadamec, M.A., Billen, M.I., 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature 465, 338–341. https://doi.org/10.1038/nature09053 James, D.E., Murcia, L.A., 1984. Crustal contamination in northern Andean volcanics. Journal of the Geological Society 141, 823–830. https://doi.org/10.1144/gsjgs.141.5.0823 Jaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V., León, S., 2019. Petrogenesis of the late Miocene Combia Volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. LITHOS. https://doi.org/10.1016/j.lithos.2019.02.017 Jochum, K.P., Hofmann, A.W., Ito, E., Seufert, H.M., White, W.M., 1983. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306, 431–436. https://doi.org/10.1038/306431a0 John, T., Klemd, R., Klemme, S., 2011. Nb – Ta fractionation by partial melting at the titanite – rutile transition 35–45. https://doi.org/10.1007/s00410-010-0520-4 Johnson, M.C., Plank, T., 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1. https://doi.org/10.1029/1999GC000014 Kelemen, P.B., 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology 120, 1–19. https://doi.org/10.1007/BF00311004 Kelemen, P.B., Behn, M.D., 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience. https://doi.org/10.1038/ngeo2662 Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry: Second Edition 4, 749–806. https://doi.org/10.1016/B978-0-08-095975-7.00323-5 Kelemen, P.B., Manning, C.E., 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences 112, E3997–E4006. https://doi.org/10.1073/pnas.1507889112 Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology 38, 677–702. https://doi.org/10.1093/petroj/38.6.677 Kerr, A.C., Tarney, J., Kempton, P.D., Spadea, P., Nivia, A., Marriner, G.F., Duncan, R.A., 2002. Pervasive mantle plume head heterogeneity : Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau. Journal of Geophysical Research 107, 1–13. https://doi.org/10.1029/2001JB000790 Kerrick, D.M., Connelly, J.A.D., 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296. https://doi.org/10.1038/35077056 Klein, E.M., Langmuir, C.H., 1995. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. Geophy 49, 633–664. https://doi.org/10.1093/petrology/egm051 Klemme, S., Prowatke, S., Hametner, K., Günther, D., 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochimica et Cosmochimica Acta 69, 2361–2371. https://doi.org/10.1016/j.gca.2004.11.015 Labanieh, S., Chauvel, C., Germa, A., Quidelleur, X., 2012. Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the trench. Journal of Petrology 53, 2441–2464. https://doi.org/10.1093/petrology/egs055 Laeger, K., Halama, R., Hansteen, T., Savov, I.P., Murcia, H.F., Cortés, G.P., Garbe-Schönberg, D., 2013. Crystallization conditions and petrogenesis of the lava dome from the ~900yearsBP eruption of Cerro Machín Volcano, Colombia. Journal of South American Earth Sciences 48, 193–208. https://doi.org/10.1016/j.jsames.2013.09.009 Lelij, R. Van Der, Spikings, R., Ulianov, A., Chiaradia, M., Mora, A., 2015. Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana , and implications for the evolution of the Iapetus , Rheic and Paci fi c Oceans. Gondwana Research. https://doi.org/10.1016/j.gr.2015.01.011 Lescinsky, D.T., 1990. Geology, Volcanology, and Petrology of Cerro Bravo, a Young, Dacitic; Stratovolcano in West - Central Colmbia. Dartmouth College. López, A., Sierra, G., Ramiréz, D., 2008. Vulcanismo Neógeno En El Suroccidente Antioqueño Y Sus Implicaciones Tectónicas. Boletín de Ciencias de la Tierra 0, 27–42. Luhr, J.F., 1992. Slab-derived fluids and partial melting in subduction zones: insights from two contrasting Mexican volcanoes (Colima and Ceboruco). Journal of Volcanology and Geothermal Research 54, 1–18. https://doi.org/10.1016/0377-0273(92)90111-P Macdonald, G.A., Katsura, T., 1964. Chemical composition of Hawaiian lavas. Journal of Petrology 5, 82–133. https://doi.org/10.1093/petrology/5.1.82 Manea, V.C., Leeman, W.P., Gerya, T., Manea, M., Zhu, G., 2014. Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nature Communications 5, 1–10. https://doi.org/10.1038/ncomms6095 Marín-Cerón, M.I., Leal-Mejía, H., Bernet, M., Mesa-García, J., 2019. Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_8 Marín-Cerón, M.I., Moriguti, T., Makishima, A., Nakamura, E., 2010. Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta 74, 1104–1121. https://doi.org/10.1016/j.gca.2009.10.031 Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience 5, 862–867. https://doi.org/10.1038/ngeo1634 Martens, U., Restrepo, J.J., Ordóñez-Carmona, O., Correa-Martínez, A.M., 2014. The Tahamí and Anacona Terranes of the Colombian Andes: Missing Links between the South American and Mexican Gondwana Margins. The Journal of Geology 122, 507–530. https://doi.org/10.1086/677177 Martínez, L.M., Pulgarin-Alzate, B.A., Sofia, N.A., Correa, A.M., Murcia A., H.F., Rueda, J.B., Zuluaga, I., Valencia, L.G., Ceballos Hernández, J.A., Narváez, B.L., Pardo-Villaveces, N., 2014. Geología y Estratigrafía del Complejo Volcánico Nevado del Ruíz. Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., Maas, R., 2002. The geochemical variations of the upper cenozoic volcanism along the Calama–Olacapato–El Toro transversal fault system in central Andes (~24°S): petrogenetic and geodynamic implications. Tectonophysics 345, 211–227. https://doi.org/10.1016/S0040-1951(01)00214-1 Maya, M., González, H., 1995. Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, Ingeominas. Miller, D.M., Goldstein, S.L., Langmuir, C.H., 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520. https://doi.org/10.1038/368514a0 Molnar, P., 2008. Closing of the Central American Seaway and the ice age: A critical review. Paleoceanography 23, 1–15. https://doi.org/10.1029/2007PA001574 Monsalve, M.L., Ortiz, I.D., Norini, G., 2017. El Escondido, a newly identified silicic Quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2017.12.010 Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodriguez-Parra, L.A., Ramirez, V., Niño, H., 2015. Middle Miocene closure of the Central American Seaway. Science 348, 226–229. https://doi.org/10.1126/science.aaa2815 Montes, C., Cardona, A., McFadden, R., Morón, S.E., Silva, C.A., Restrepo-Moreno, S., Ramírez, D.A., Hoyos, N., Wilson, J., Farris, D., Bayona, G.A., Jaramillo, C.A., Valencia, V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Bulletin of the Geological Society of America 124, 780–799. https://doi.org/10.1130/B30528.1 Mori, L., Gomez-Tuena, A., 2007. Origen del magmatismo miocénico en el sector central de la FVTM y sus implicaciones en la evolución del sistema de subducción mexicano. Centro de Geociencias PhD Thesis, 136. Mori, L., Gómez-Tuena, A., Cai, Y., Goldstein, S.L., 2007. Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chemical Geology 244, 452–473. https://doi.org/10.1016/j.chemgeo.2007.07.002 Murcia, H., Borrero, C., Németh, K., 2018. Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes ’ volcanic province. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2018.06.013 Murcia, H.F., Sheridan, M.F., Macías, J.L., Cortés, G.P., 2010. TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications. Journal of South American Earth Sciences 29, 161–170. https://doi.org/10.1016/j.jsames.2009.09.005 Nauret, F., Samaniego, P., Ancellin, M.A., Tournigand, P.Y., Le Pennec, J.L., Vlastelic, I., Gannoun, A., Hidalgo, S., Schiano, P., 2018. The genetic relationship between andesites and dacites at Tungurahua volcano, Ecuador. Journal of Volcanology and Geothermal Research 349, 283–297. https://doi.org/10.1016/j.jvolgeores.2017.11.012 Newkirk, D.R., Martin, E.E., 2009. Circulation through the Central American Seaway during the Miocene carbonate crash. Geology 37, 87–90. https://doi.org/10.1130/G25193A.1 Nielsen, S.G., Marschall, H.R., 2017. Geochemical evidence for mélange melting in global arcs. Science Advances 3, 1–7. https://doi.org/10.1126/sciadv.1602402 Nivia, A., Marriner, G.F., Kerr, A.C., Tarney, J., 2006. The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences 21, 423–436. https://doi.org/10.1016/j.jsames.2006.07.002 Nof, D., Van Gorder, S., 2003. Did an open Panama Isthmus correspond to an invasion of Pacific water into the Atlantic? Journal of Physical Oceanography 33, 1324–1336. https://doi.org/10.1175/1520-0485(2003)033<1324:DAOPIC>2.0.CO;2 Osborne, A.H., Newkirk, D.R., Groeneveld, J., Martin, E.E., Tiedemann, R., Frank, M., 2014. The seawater neodymium and lead isotope record of the final stages of Central American Seaway closure. Paleoceanography 29, 715–729. https://doi.org/10.1002/2014PA002676 Osorio, P., Botero-gómez, L.A., Murcia, H., Borrero, C., Grajales, J.A., 2018. Campo Volcánico Monogenético Villamaría-Termales , Cordillera Central , Andes colombianos ( Parte II ): Características composicionales 40, 103–123. https://doi.org/10.18273/revbol.v40n3-2018006.RESUMEN Paczkowski, K., Montési, L.G.J., Long, M.D., Thissen, C.J., 2014. Three-dimensional flow in the subslabmantle. Geochemistry Geophysics Geosystems 15, 3989–4008. https://doi.org/10.1002/2016GC006679.Received Parolari, M., Gómez-Tuena, A., Cavazos-Tovar, J.G., Hernández-Quevedo, G., 2018. A balancing act of crust creation and destruction along the western Mexican convergent margin. Geology 46, 455–458. https://doi.org/10.1130/G39972.1 Patino, L.C., Carr, M.J., Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology 138, 265–283. https://doi.org/10.1007/s004100050562 Piedrahita, D.A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., 2018. Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología 40, 29–48. https://doi.org/https://doi.org/10.18273/revbol.v40n3-2018002 Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame. The geology and evolution of the region between North and South America 1–55. Pinzón, C., Echeverri, J.F., Murcia, H., Schonwalder-Ángel, D., 2018. Petrogénesis y condiciones de cristalización del domo intracratérico del volcán Cerro Bravo, Colombia. Revista Boletín de Geología 40, 67–84. https://doi.org/10.18273/revbol.v40n3-2018004 Plank, T., 2013. The Chemical Composition of Subducting Sediments, 2a ed, Treatise on Geochemistry: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00319-3 Plank, T., 2005. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology 46, 921–944. https://doi.org/10.1093/petrology/egi005 Plank, T., Balzer, V., Carr, M., 2002. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway. Geology 30, 1087–1090. https://doi.org/10.1130/0091-7613(2002)030<1087:NVRPCA>2.0.CO;2 Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2 Plank, T., Langmuir, C.H., 1993. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743. https://doi.org/10.1038/362739a0 Plank, T., Langmuir, C.H., 1988. An evaluation of the global variations in the major element chemistry of arc basalta. Earth and Planetary Science Letters 90, 349–370. https://doi.org/10.1016/0012-821X(88)90135-5 Poli, S., 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geoscience 8, 633–636. https://doi.org/10.1038/ngeo2464 Poli, S., Schmidt, M.W., 2002. Petrology of Subducted Slabs. Annual Review of Earth and Planetary Sciences 30, 207–235. https://doi.org/10.1146/annurev.earth.30.091201.140550 Porritt, R.W., Becker, T.W., Monsalve, G., 2014. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophysical Research Letters 41, 8775–8783. https://doi.org/10.1002/2014GL061958 Poveda, E., Monsalve, G., Vargas, C., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth 2408–2425. https://doi.org/10.1002/2014JB011304.Received Prowatke, S., Klemme, S., 2006. Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta 70, 4513–4527. https://doi.org/10.1016/j.gca.2006.06.162 Rapp, R.P., 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research: Solid Earth 100, 15601–15610. https://doi.org/10.1029/95JB00913 Restrepo-Moreno, S.A., Foster, D.A., Stockli, D.F., Parra-Sánchez, L.N., 2009. Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters 278, 1–12. https://doi.org/10.1016/j.epsl.2008.09.037 Restrepo-Pace, P.., 1992. Petrotectonic characterization of the Central Andean Terrane, Colombia. Journal of South American Earth Sciences 5, 97–116. https://doi.org/10.1016/0895-9811(92)90062-4 Restrepo, J.J., Ordóñez-Carmona, O., Armstrong, R., Pimentel, M.M., 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences 32, 497–507. https://doi.org/10.1016/j.jsames.2011.04.009 Restrepo, J.J., Toussaint, J., 1982. Metamorfismos superpuestos en la Cordillera Central de Colombia, en: Memorias V Congreso Latinoamericano de Geologı´a, Buenos Aires. pp. 1–8. Rodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., Weber, M.B.I., 2005. Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82, 471–484. https://doi.org/10.1016/j.lithos.2004.09.027 Rodríguez, G., Arango, M.I., Zapata, G., Bermúdez, J.G., 2018. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences 81, 10–30. https://doi.org/10.1016/J.JSAMES.2017.10.012 Rollinson, H.R., 1993. Using Geochemical Data. https://doi.org/10.4324/9781315845548 Rosenbaum, G., Sandiford, M., Caulfield, J., Garrison, J.M., 2019. A trapdoor mechanism for slab tearing and melt generation in the northern Andes. Geology 47, 23–26. https://doi.org/10.1130/G45429.1 Rudnick, R.L., 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281. https://doi.org/10.1126/science.287.5451.278 Rudnick, R.L., 1995. Making continental crust. Nature 378, 571–578. https://doi.org/10.1038/378571a0 Rudnick, R.L., Fountain, D.M., 1995. Nature and Composition of the Continental-Crust - a Lower Crustal Perspective. Reviews of Geophysics 33, 267–309. https://doi.org/10.1029/95rg01302 Ryan, J.G., Morris, J., Tera, F., Leeman, W.P., Tsvetkov, A., 1995. Cross-Arc Geochemical Variations in the Kurile Arc as a Function of Slab Depth. Science 270, 625–627. https://doi.org/10.1126/science.270.5236.625 Schmidt, M.W., Poli, S., 2013. Devolatilization During Subduction, 2a ed, Treatise on Geochemistry: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00321-1 Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394–409. https://doi.org/10.1007/BF00307273 Shipboard Scientific Party, L. 69, 1983. Sites 501 and 504: Sediments and Ocean Crust in an Area of High Heat Flow on the Southern Flank of the Costa Rica Rift, en: Initial Reports of the Deep Sea Drilling Project, 69. U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.69.102.1983 Shipboard Scientific Party, L. 9, 1970. 10. site 84. Deep Sea Drilling Project, Reports and Publications. Skora, S., Blundy, J., 2010. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. Journal of Petrology 51, 2211–2243. https://doi.org/10.1093/petrology/egq054 Skora, S., Blundy, J.D., Brooker, R.A., Green, E.C.R., de Hoog, J.C.M., Connolly, J.A.D., 2015. Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions. Journal of Petrology 56, 953–980. https://doi.org/10.1093/petrology/egv024 Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., Beate, B., 2015. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). Gondwana Research 27, 95–139. https://doi.org/10.1016/j.gr.2014.06.004 Straub, S.M., Gómez-Tuena, A., Bindeman, I.N., Bolge, L.L., Brandl, P.A., Espinasa-Perena, R., Solari, L., Stuart, F.M., Vannucchi, P., Zellmer, G.F., 2015a. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica et Cosmochimica Acta 166, 29–52. https://doi.org/10.1016/J.GCA.2015.06.001 Straub, S.M., Gómez-Tuena, A., Bindeman, I.N., Bolge, L.L., Brandl, P.A., Espinasa-Perena, R., Solari, L., Stuart, F.M., Vannucchi, P., Zellmer, G.F., 2015b. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica et Cosmochimica Acta 166, 29–52. https://doi.org/10.1016/j.gca.2015.06.001 Straub, S.M., Gomez-Tuena, A., Stuart, F.M., Zellmer, G.F., Espinasa-Perena, R., Cai, Y., Iizuka, Y., 2011. Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters 303, 337–347. https://doi.org/10.1016/j.epsl.2011.01.013 Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050 Syracuse, E.M., van Keken, P.E., Abers, G.A., Suetsugu, D., Bina, C., Inoue, T., Wiens, D., Jellinek, M., 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors 183, 73–90. https://doi.org/10.1016/j.pepi.2010.02.004 Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., Rivera, C., 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 19, 787–813. https://doi.org/10.1029/2000TC900004 Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168, 279–281. https://doi.org/10.1016/S0009-2541(00)00198-4 Taylor, S.R., 1967. The origin and growth of continents. Tectonophysics 4, 17–34. https://doi.org/10.1016/0040-1951(67)90056-X Thorkelson, D.J., Breitsprecher, K., 2005. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos 79, 25–41. https://doi.org/10.1016/j.lithos.2004.04.049 Thorkelson, D.J., Madsen, J.K., Sluggett, C.L., 2011. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology 39, 267–270. https://doi.org/10.1130/G31522.1 Thouret, J.C., Cantagrel, J.M., Robin, C., Murcia, A., Salinas, R., Cepeda, H., 1995. Quaternary eruptive history and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. Journal of Volcanology and Geothermal Research 66, 397–426. https://doi.org/10.1016/0377-0273(94)00073-P Thouret, J.C., Cantagrel, J.M., Salinas, R., Murcia, A., 1990. Quaternary eruptive history of Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research 41, 225–251. https://doi.org/10.1016/0377-0273(90)90090-3 Todt, W., Cliff, R.A., Hanser, A., Hofmann, A.W., 1996. Evaluation of a 202 Pb- 205 Pb Double Spike for High - Precision Lead Isotope Analysis. American Geophysical Union (AGU), pp. 429–437. https://doi.org/10.1029/GM095p0429 Tsuno, K., Dasgupta, R., Danielson, L., Righter, K., 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc. Geophysical Research Letters 39, 1–7. https://doi.org/10.1029/2012GL052606 Turner, S.J., Langmuir, C.H., 2015. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth and Planetary Science Letters 422, 182–193. https://doi.org/10.1016/j.epsl.2015.03.056 Turner, S.J., Langmuir, C.H., Katz, R.F., Dungan, M.A., Escrig, S., 2016. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nature Geoscience 9, 772–776. https://doi.org/10.1038/ngeo2788 Van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth 116. https://doi.org/10.1029/2010JB007922 Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America 103, 2025–2046. https://doi.org/10.1785/0120120328 Vatin-Pérignon, N., Goemans, P., Oliver, R.A., Briqueu, L., Thouret, J.C., Salinas, R., Murcia, A., 1988. Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia: Mineral chemistry and geochemistry. Géodynamique, ORSTOM 3, 163–194. Vatin-Pérignon, N., Goemans, P., Oliver, R.A., Palacio, E.P., 1990. Evaluation of magmatic processes for the products of the Nevado del Ruiz Volcano, Colombia from geochemical and petrological data. Journal of Volcanology and Geothermal Research 41, 153–176. https://doi.org/10.1016/0377-0273(90)90087-V Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarède, F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168, 79–99. https://doi.org/10.1016/S0012-821X(99)00047-3 Vervoort, J.D., Plank, T., Prytulak, J., 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta 75, 5903–5926. https://doi.org/10.1016/j.gca.2011.07.046 Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., Beltrán, A., 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125, 875–896. https://doi.org/10.1016/j.lithos.2011.05.003 Villamil, T., 1999. Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology 153, 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9 Vinasco, C., 2019. The Romeral Shear Zone. pp. 833–876. https://doi.org/10.1007/978-3-319-76132-9_12 Vinasco, C.J., Cordani, U.G., González, H., Weber, M., Pelaez, C., 2006. Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences 21, 355–371. https://doi.org/10.1016/j.jsames.2006.07.007 Weber, M.B.I., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes. Ph.D Thesis Leicester University, UK. Weber, M.B.I., Tarney, J., Kempton, P.D., Kent, R.W., 2002. Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345, 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2 Whelan, J.K., Hunt, J.M., 1980. Organic Matter In Deep Sea Drilling Project Site 504 And 505 Sediments Studied By A Thermal Analysis-Gas Chromatography Technique 443–450. Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53–72. https://doi.org/10.1016/j.epsl.2004.12.005 Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–7. https://doi.org/10.1016/j.tecto.2014.09.006 Zapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castañeda, J.P., 2018. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research. https://doi.org/10.1016/j.gr.2018.10.008
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePetrogénesis de la Provincia Volcánica norte de Colombia: Implicaciones tectónicas en el retrabajamiento de los componentes en subducción y su impacto en el magmatismo de arco.
dc.typeTesis


Este ítem pertenece a la siguiente institución